

Where? How Much? Is it Changing? Why is it Changing? What is its fate?

Emmanuel Boss David Siegel













- Historical Approaches
- *The Carbon-based Approach* – What is it? – Challenges – Validation
- SeaWiFS Trends Revisited
- Where to go from Here?



| Date | Author                 | NPP (Pg y <sup>-1</sup> ) | Method                                              |
|------|------------------------|---------------------------|-----------------------------------------------------|
| 1952 | Steemann Nielsen       | 20                        | few <sup>14</sup> C measurements                    |
| 1957 | Fleming & Laevastu     | 20                        | FAO production data ( $O_2$ , <sup>14</sup> C, etc) |
| 1957 | Steemann Nielsen       | 20-25                     | few <sup>14</sup> C measurements                    |
| 1958 | Fogg                   | 32                        | FAO production data ( $O_2$ , <sup>14</sup> C, etc) |
| 1968 | Koblentz-Mishke et al. | 23                        | Synthesis of many <sup>14</sup> C stations          |
| 1969 | Bogorov                | 25                        | Synthesis of many <sup>14</sup> C stations          |
| 1969 | Ryther                 | 20                        | <sup>14</sup> C & spatial model                     |
| 1970 | Koblentz-Mishke et al. | 25-30                     | revision of '68 paper                               |
| 1975 | Platt & Subba Rao      | 31                        | new <sup>14</sup> C synthesis                       |
| 1985 | Shushkina              | 56                        | new <sup>14</sup> C & biomass data                  |
| 1987 | Martin <i>et al</i> .  | 51                        | revision of Koblentz-Mishke et al.                  |
| 1989 | Berger <i>et al</i> .  | 27                        | new <sup>14</sup> C synthesis                       |

**From:** Barber & Hilting (2002) In: *Phytoplankton Productivity: Carbon assimilation in marine and freshwater ecosystems* [Williams, Thomas, Reynolds eds.] Blackwell



*Basics*: surface pigment concentration \* assimilation efficiency \* light function

Issues:

- Pigment biomass
  - chlorophyll not = carbon biomass
  - empirical ratio algorithms semi-analytic algorithms
- Assimilation Efficiency
  - ➢ frequently dominates NPP variability
  - 'Conservation of Misery'
  - ➢ light, nutrients, temperature are critical drivers



## PIGMENT-BASED: PHYSIOLOGY





## PIGMENT-BASED: PHYSIOLOGY

## *Basics*: surface pigment concentration \* assimilation efficiency \* light function

## Approaches:

- Constant
- Biogeographical Provinces
- Temperature Functions
  - ≻ Linear
  - ➤ Exponential
  - Polynomial
- Fuzzy Logic / Blending
- Physiological 'Dynamic' Models
  - $\succ$  E<sub>0</sub>, K<sub>d</sub>, MLD...
  - ➢ Nutrient stress: degree & type
  - ➤ Temperature
  - ➤ Taxonomic Groups (?)

Longhurst & Platt (1995) - CZCS, provinces, PI data



VGPM with Eppley



0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 SeaWiFS: Primary Production (g C/m2/year)



- Pigment-based Global Annual NPP = 40's to 60's Pg C  $y^{-1}$
- <sup>14</sup>C-based = 20 to 30 Pg C y<sup>-1</sup>, but 2 recent @ 51 to 56 Pg C y<sup>-1</sup>
- Oxygen data suggests <sup>14</sup>C might be factor of 2 to 3 too low
- Carbon-based = 7 to 16% of Pigment based estimates\* (w/ equivalent shared inputs)



# THE 'CARBON-BASED' APPROACH



*Basics*: phytoplankton carbon biomass \* growth rate \* light function

## Approach:

- Semi-analytic algorithms provide estimates of particulate backscatter  $(b_{bp})$  and phytoplankton chlorophyll concentration
- Particulate backscattering is due to phytoplankton- and smaller sized particles
- $\bullet$  Conserved nature of particle size spectrum allows phytoplankton C biomass to be estimated from  ${\rm b}_{\rm bp}$
- Division of chlorophyll by carbon biomass is an index of intracellular pigmentation
- Intracellular pigmentation registers variations in growth rate and photoacclimation
- Yields 2 useful products for modeling: algal carbon biomass & growth rates





Basics: phytoplankton carbon biomass \* growth rate \* light function



# CARBON-BASED APPROACH

Basics: phytoplankton carbon biomass \* growth rate \* light function









*Basics*: phytoplankton carbon biomass \* growth rate \* light function

### Issues:

- Particulate backscatter is not uniquely algal in origin (...unlike chlorophyll...)
- Conserved / predictable nature of particle size distribution
- Stability of background particle load
- Difficult in Case II waters
- Little data on phytoplankton Carbon
- Little consensus on phytoplankton carbon measurement
- Validation of semi-analytic products: data limited
- Spectrally inadequate remote sensing data
- PIC 'one person's signal is another one's noise'





W.Balch, Bigelow Laboratory

Winter



*Basics*: phytoplankton carbon biomass \* growth rate \* light function

Issues:

- Ratio of two biomass terms
- Critically dependent on accurate separation of absorbing components
- Limited test data growth rates, acclimation of natural populations,...etc
- <sup>14</sup>C-based assimilation and growth rate share dependence on photoacclimation but differ in response to nutrient stress
- f(N,T) shape and intercept?
- recalibration with each reprocessing
- $\mu_{max}$  not well resolved
- $\mu$  difficult to determine in the field
- type of nutrient stress can be important (e.g., Fe)

CARBON-BASED: VALIDATION











#### References:

Winn, Campbell, Christian, Letelier, Hebel, Dore, Fujieki, Karl. 1995. *Global Biogeochem. Cycles* 9:605-620.

Figure 6. (a) Time series of mean *Prochlorococcus* cellular fluorescence (arbitrary units) in the upper euphotic zone (0-50 m) from December 1990 through December 1993.



CARBON-BASED: VALIDATION



\**Remote sensing data: Average June values for SeaWiFS time series* 







Year



## • Availability & interpretation of data

- Unresolved respiratory pathways
- ➢ Growth Rate & Phytoplankton Carbon
- Community-level acclimation
- Unique nutrient stress effects
- > Algorithm development  $a_{ph}$ , cDOM, chlorophyll,  $b_{bp}$ , taxon, etc.
- Atmospheric corrections
  - Absorbing aerosols & Aerosol Heights
  - ➤ 'Bright waters'
- Optically active components
  - cDOM vs Pigment absorption
  - > PIC and detritus vs living particles
  - ➤ taxonomic groups
  - $\succ$  particle size spectra
- Mixed layer depths
- Future Remote Sensing



#### GSM semi-analytic algorithm



#### NASA Standard Ratio Algorithm (OC4-V4)





**Boreal Summer Production (mg m<sup>-2</sup> d<sup>-1</sup>)** 

#### NPP difference



#### Colored dissolved organics





#### \*also note resuspension

























## CURRENT ISSUES: ABSORBING AEROSOLS

## Observations of Continental Haze by LITE

September 17, 1994 Orbit 117













AOD = 0.8 at 865 nm

SeaWiFS processing models: Moulin et al (2004), Banzon et al (2004)



# FUTURE REMOTE SENSING

- we can't take it for granted
- is where we're headed where we want to go?
- role for carbon planning groups



- Atmospheric corrections
  - Absorbing aerosols & Aerosol Heights
  - 'Bright waters'
- Optically active components
  - cDOM vs Pigment absorption
  - ▶ particle concentration  $(b_{bp}, c_p)$
  - > PIC and detritus vs living particles
  - taxonomic/functional groups
  - ➢ particle size spectra
- Mixed layer depths
- Active & Passive measurements
- Spatial Resolution
  - Global & geostationary sequence is important!
- Roadmapping
  - Current & Operational sensors are inadequate
  - 'One Mission, One Product'





Ocean Carbon, Ecosystems and Near-Shore



#### **Discovery Science**

- Pigment composition
- Functional Groups
- Particle size spectrum
- Beam-attenuation
- Harmful Algal Blooms
- Terrestrial Vegetation
- Land Productivity
- ...more...





![](_page_33_Picture_0.jpeg)

![](_page_33_Figure_1.jpeg)

Along-track multi-angle view LITE data of Lake Superior. Off-Nadir Angle changes between 28 degree and 2 degree (upper left). The fixed gain 355nm shows only surface reflectance for small off-nadir angles; The high-gain 532nm shows good sub-surface signals down to 75 meters (lower left) for large off-nadir angles. We do not see signals from high gain 1064nm with large off-nadir angles – which indicates the surface return for both 1064nm and 532nm are negligible, since the two channels have similar real-part of refractive indices and thus similar surface returns.

![](_page_34_Picture_0.jpeg)

## ACTIVE MEASUREMENTS

![](_page_34_Picture_2.jpeg)

#### **In-water Lidar Photon Return Calculations**

Energy\_per\_pulse\_in\_Joules = 0.0500 Mirror\_aperture\_in\_m = 1 Orbit\_altitude\_in\_km = 600 Detector\_quantum\_efficiency =0.8000 Spectral\_analyzer\_losses = 0.1000 Atmospheric\_losses =0.2000

![](_page_34_Picture_5.jpeg)

Total Number Of Photons Received per Pulse\*

\* Note: These results were not corrected for the 1/n2 effect at the surface. Photon counts should thus be reduced by a factor of 1/(1.33)2 = 0.565.

| GoMOOS 1      | 308.09  |
|---------------|---------|
| GoMOOS 2      | 388.83  |
| GoMOOS 3      | 228.99  |
| Gulf of Cal 1 | 232.36  |
| Gulf of Cal 2 | 349.29  |
| Gulf of Cal 3 | 1761.49 |
| Oligo 1       | 176.25  |
| Oligo 2       | 195.96  |
| Meso 1        | 217.22  |
| Meso 2        | 301.95  |
| Coastal 1     | 336.99  |
| Coastal 2     | 381.07  |
| Coastal 3     | 386.22  |
|               |         |

![](_page_35_Picture_0.jpeg)

![](_page_35_Figure_1.jpeg)

\* Does not reflect in any way agency objectives

CCEAN PRODUCTIVITY

![](_page_36_Figure_1.jpeg)