

Using Remote-sensed Sea Ice Thickness, Extent and Speed Observations to Optimise a Sea Ice Model

Paul Miller, Seymour Laxon, Daniel Feltham, Douglas Cresswell

Centre for Polar Observation and Modelling University College London

Motivation

Figure 12. (Upper) Annual mean thickness from several ice models during the period 1951 to 1999. (Lower) The thickness difference from the mean over each simulation.

*Rothrock et al., (JGR, 2003)*illustrated the significant
differences, in both means
and anomalies, between
model simulations of recent
Arctic ice thickness

- Reasons for differences not well understood, but there is both parameter and forcing uncertainty
- How can we reduce this uncertainty and increase our confidence in conjectures based on model output?

Reducing Parameter Uncertainty in Sea Ice Models

- Use the Los Alamos sea ice model, CICE, and force it with ERA-40 & POLES data
- Optimise and validate the model using a comprehensive range of sea ice observations:
 - Sea ice velocity, 1994-2001
 (SSM/I + buoy + AVHRR, NSIDC)
 - Sea ice extent, 1994-2001
 (SSM/I, *NSIDC*)
 - Sea ice thickness, 1993-2001 (ERS radar altimeter, *Laxon et al.,* Nature, 2003)

We used this model and forcing to reduce uncertainty surrounding sea ice model parameters

Satellite Altimetry - Measurement Principle

Origin of Radar Altimeter Sea Ice Echoes - ERS

- Co-incident ATSR imagery reveals the origin of Diffuse and Specular echoes over sea ice
- Diffuse echoes originate from ice floes
- Specular echoes originate from leads
- Gaps are caused by Complex echoes which are excluded

Freeboard to Thickness Conversion

- Conversion assumes reflection from the ice/snow interface
- Conversion to thickness uses climatology of snow depth/densities (*Warren et al.*, J. Climate 1999)

ERS Altimeter Ice Thickness Validation

Ice Thickness - Summer Melt

Laxon et al., Nature, 2003

Parameter Space

We explored the model's multi-dimensional parameter space to find the best fit to the observational data

Arctic Basin Ice Thickness

 $\{\alpha_{ice}, C_{air}, P^*\} = \{0.56, 0.0006, 5 \text{ kPa}\}$

Miller et al., J. Climate, submitted

Arctic Basin Ice Extent

 $\{\alpha_{ice}, C_{air}, P^*\} = \{0.56, 0.0006, 5 \text{ kPa}\}$

Miller et al., J. Climate, submitted

Arctic Basin Ice Speeds

 $\{\alpha_{ice}, C_{air}, P^*\} = \{0.56, 0.0006, 5 \text{ kPa}\}$

Miller et al., J. Climate, submitted

Rothrock et al., 2003, JGR, 108(C3), 3083

Validation With ULS Draft Data

R = 0.98RMS difference = 0.28m

Spatial Draft Discrepancy

Figure 9. Modeled minus observed mean draft (m) along cruise tracks from 1987 to 1997.

Model - ULS Observed Draft (m)

Improved Spatial Distribution

Figure 9. Modeled minus observed mean draft (m) along cruise tracks from 1987 to 1997.

Model - ULS Observed Draft (m)

Zonal and Interannual Variability

Zonal Draft Averages

Cruise Averages

• Observed e = 2 $e = \sqrt{.5}$

Miller et al., GRL, submitted

Model vs ERS Mean Winter Ice Thickness

Satellite Altimeter Missions 1993 -

IceSat vs Envisat RA-2 March 2003

IceSat vs Envisat RA-2 March 2004

The Future: Combining Radar/Laser Altimetry

- Remote-sensed sea ice data are vital for the optimisation and validation of sea ice models, and for reducing parameter uncertainty
- We have optimised CICE using remote-sensed thickness, extent and speeds, as well as ULS draft data
- Combining radar and laser data has the potential to significantly reduce uncertainties in snow loading
- Comparisons with submarine data suggest that our satellite thickness errors are considerably less than discrepancies between different model simulations
- These is still much work to do to fully understand these uncertainties. In particular, CryoSat will be a particular focus for a \$15m validation campaign, post-launch (land ice and sea ice)
- www.esa.int/esaLP/cryosat.html

Summer 2005?

www.esa.int/esaLP/cryosat.html

Repeat Profile Analysis

- Up to 60 repeat profiles are analysed along each of the 501 orbit tracks
- Ocean returns are used to construct a mean sea surface profile
- Residual height profiles are used to determine ice freeboard

Altimeter Elevation Profile

Comparison of Submarine and Altimeter Thickness PDF

Combining Radar/Laser Altimetry

Conceptual Experiment Design

Example: Level 2 Sea ice geometric and penetration model error

- Assess practicality and identify missing capability *e.g.* ASIRAS.
- Identify and contact important groups and planning time-scales *e.g.* Alfred Wegener Institute; 2-3 year planning horizon for polar activity.
- Identify practical locations *e.g.* Arctic Ocean N. and W. of Greenland is accessible and gives access to strong ice concentration variations.
- Identify experimental complexity and novelty and assess need for pre-launch trials *e.g.* LARA (2002) and CryoVEx (2003) campaigns.
- Identify and implement requirements on ground-segment capability.

Arctic Basin Ice Thickness Since 1980

Annual mean Arctic sea ice thickness has been in decline since the mid-1980s

Ice Thickness Anomalies 1993-2003

Sources of Uncertainty

