Arctic sea ice modelling: introducing the Uvic model with the granular sea ice model

Jean-François Lemieux¹, Jan Sedláček¹, Bruno Tremblay², David Holland³ and Lawrence Mysak¹

- ¹ McGill University, Montréal, Québec, Canada
- ² Lamont-Doherty Earth Observatory, New York, USA
- ³ Courant Institute of Mathematical Sciences, New York, USA

The UVic model version 2.6

- global with a resolution of 1.8° (lat) by 3.6° (long)
- oceanic component: MOM 2.2
 - 3D ocean with 19 unequally spaced levels
- the poles can be rotated to avoid the problem of grid convergence
- atmospheric component:
 - EMBM with moisture advection and dynamical feedbacks

Weaver et al. 2001

The granular sea ice model: the dynamics

- the major difference with other models is in the parameterization of the rheology term
- sea ice is treated as a slowly deforming granular material
- dilatancy effect included

$$-\rho_{i}hf(k\times u) + A(\tau_{a} - \tau_{w}) - \rho_{i}hg\nabla H_{d} + \nabla \cdot \boldsymbol{\sigma} = 0$$

rheology term

Tremblay and Mysak 1997

The granular sea ice model: the rheology term

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$

$$p = -\left(\frac{\sigma_{11} + \sigma_{22}}{2}\right)$$

$$q = \sqrt{\left(\frac{\sigma_{11} - \sigma_{22}}{2}\right)^2 + \sigma_{12}^2}$$

p and q are called the stress invariants

The granular sea ice model: the failure criterion

Failure criterion: defines the transition between the rigid phase and the plastic phase

• failure in compression:

$$p_{\text{max}} = p^* h e^{-C(1-A)}$$

failure in tension: free drift

• failure in shear:
$$au_s = -\sigma_s an \phi \Rightarrow q_{ ext{max}} = p \sin \phi$$

Mohr-Coulomb failure criterion

The granular sea ice model: the failure criterion

The failure criterion in stress invariants space

The granular sea ice model: the rheology term

To close the system of equations, we can relate the stress tensor to the strain rates

$$\sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$

$$\sigma_{ij} = -p\delta_{ij} - \eta \varepsilon_{kk} \delta_{ij} + 2\eta \varepsilon_{ij}$$

$$\eta = \min \left(\frac{p \sin \phi}{\sqrt{\left(\varepsilon_{11}^{2} - \varepsilon_{22}^{2}\right)^{2} + 4\varepsilon_{12}^{2}}}, \eta_{\text{max}} \cos^{2} \phi \right)$$

Tremblay and Mysak 1997

Numerical scheme:

- free drift u,v do k=1,#iterations
- pressure calculation and correction of u,v (Flato and Hibler 1992)
- η calculation and correction to u,v
 enddo

The granular sea ice model: the dilatancy effect

Research objectives

- To convert the granular sea ice model to spherical coordinates √ done
- To couple the granular model to the UVic model volume
- Validate the coupled model (compare with Arctic observations)
- Propose and implement improvements to the granular sea ice model
- Improve the numerical scheme of the granular sea ice model

Preliminary results: η_{max} and the plastic phase

Preliminary results: how many iterations are needed?

Preliminary results:

Annual mean NH average K as a function of P* and the angle of friction

Summary

- The rigid and the plastic phases of sea ice are well represented by the model
- We should increase the number of iterations to allow the average kinetic energy to converge
- The annual mean average kinetic energy decreases as the ice strength and the angle of friction increase