The role of tides in arctic ocean/ice climate

Greg Holloway and Andrey Proshutinsky

following

From tidal model, averaged over periods from 8 constituents, obtain mean values for

1) watercolumn total dissipation, εD

2) magnitude horizontal divergence, $\delta = |\nabla \cdot U|$

Estimate a reference diffusivity, $K_0 = \Gamma \varepsilon / N^2$, where $\Gamma = 0.2$ is efficiency of conversion to mixing and N^2 is watercolumn averaged stratification. Assume actual K decays upward from the bottom, $K = K_0 \exp\left\{ (z - z_b) / Z \right\}$ with Z a dissipation scale height.

Note1: after playing at taking decay also downward from underside of ice, I've set this aside for the present.

Note2: I ignore entirely topog scattering barotropic \Rightarrow baroclinic \Rightarrow internal wave breaking.

Periodic divergence breaks the ice cover, growing, ridging and mobilizing sea ice. Treat this in terms of “effective” area fraction, A. At every timestep with usual dynamics / thermodyn, reduce A by $\exp\left\{ -F \delta dt \exp\left\{ -\frac{h}{H} \left(1 - \frac{1-A}{p\delta} \right) \right\} \right\}$, where F is for Fudge-it, h is cell-average ice thickness, H is an ice-thickness (strength) scale, and p is quarter-period semi-diurnal (= 3 hr).

Fudge factors: Γ, Z, F, H and p. Really these are three: Z, F, H.
T at $y=0$, no tides
T at $y=0$, with tides
Diff T at y=0, tides-none
T at 123m, no tides
T at 123m, with tides
Diff T at 123m, tides-none
Diff, ocean only - none, lose 5cm
Where are we?

1. Tidal mixing in ocean
 a) ventilates AW
 b) thins ice

2. Tidal fracturing sea ice
 a) ventilates AW
 b) thickens ice

3. Tides altogether
 a) ventilate AW
 b) ambiguous re ice

4. Tidal (& other) mixing depends on quality advection