

An Energy-Diagnostics Intercomparison of Coupled Ice-Ocean Arctic Models

May 15, 2003

Petteri Uotila*, David M. Holland, Sirpa Häkkinen, Greg Holloway, Michael Karcher, Frank Kauker, Michael Steele, Nadja Steiner, Nikolai Yakovlev, Jinlun Zhang, and Andrey Proshutinsky

uotila@cims.nyu.edu

*Center for Atmosphere-Ocean Science Courant Institute of Mathematical Sciences New York University

- 1. Theory
- 2. Data
- 3. Results
 - 6 Annual statistics
 - 6 Seasonal statistics
- 4. Conclusions

Basic quantities

$$KE = \frac{1}{2} \int_{V} \rho \mathbf{c}^{2} dV$$
(1)
$$PE = \int_{V} \rho gz dV$$
(2)

$$APE = PE - \int_{V} \rho_{r} g z_{r} dV \simeq -\frac{1}{2} \int_{V} g(\rho - \tilde{\rho})^{2} (\frac{\partial \tilde{\rho_{\phi}}}{\partial z})^{-1} dV \quad (3)$$

P. Uotila, AMS'03 – p. 3/19

Balance of *KE* & *APE*

$$\frac{\partial KE}{\partial t} + ADV(KE) = G(KE) + C(APE, KE) + C(IE, KE) - D(KE)$$
(4)

$$\frac{\partial APE}{\partial t} + ADV(APE) = G(APE) - C(APE, KE) - D(APE)$$
(5)
$$ADV(E) = \int_{S} E\mathbf{c} \cdot \mathbf{n} dS$$
(6)

$$C(APE, KE) = -g \int_{V} (\rho - \tilde{\rho}) w dV$$
(7)

6 Long term mean

$$\overline{G(KE)} = -\overline{ADV(KE)} + \overline{D(KE)} - \overline{C(APE, KE)}$$
(8)
$$\overline{G(APE)} = -\overline{ADV(APE)} + \overline{D(APE)} + \overline{C(APE, KE)}$$
(9)

$APE \leftrightarrow KE$ diagram

A schematic energy diagram describing the potential and kinetic energy flow components in the ocean. Arrows indicate the positive direction of the flow. Estimates in mWm⁻² derived from *Oort et al.* (1994) for the northern hemisphere.

Energetics of the Polar Ocean Model

- 6 Surface is mixture of sea-ice and open water
- 6 APE and KE forcing fluxes dependent on C_{ice} :

$$G(KE) = C_{ice} < \tau_i \cdot \mathbf{u}_o > \tag{10}$$

$$+(1-C_{ice}) < \tau_o \cdot \mathbf{u}_o > \tag{11}$$

$$\boldsymbol{\tau}_i = \rho_w C_w | \mathbf{u}_i - \mathbf{u}_o | (\mathbf{u}_i - \mathbf{u}_o)$$
(12)

$$\tau_o = \rho_a C_a |\mathbf{u}_a| \mathbf{u}_a \tag{13}$$

$$G(APE) \propto \frac{\partial \rho}{\partial t} \propto f_H(\frac{\partial T}{\partial t}) + f_L(\frac{\partial S}{\partial t})$$
 (14)

Data descriptors

Model	Ocean Model	δx	vertical dims.	lce Dyn.
AWI	МОМ	$1/4^{\circ}$	z-coord., 33 levels	VP
GSFC	РОМ	$0.9^\circ imes 0.7^\circ$	σ -coord., 20 levels	gener. visc.
IOS	МОМ	$1/2^{\circ}$	z-coord., 29 levels	VP
NYU	MICOM	$1/2^{\circ}$	ρ-coord., 11 layers	cav. fluid
RAS	Finite element	1°	z-coord., 16 levels	VP
UW	МОМ	40 km	z-coord., 21 levels	VP
PHC	Climatology	1°	z-coord., 32 levels	

All data are monthly averages and interpolated to the common grid. AOMIP Live Access Server: http://hamish.cims.nyu.edu/las/.

Global APE from PHC

Vertically integrated annual average oceanic *APE* density field based on the Polar science center Hydrographic Climatology (PHC) v. 2.1. from http://psc.apl.washington .edu/Climatology.html

Study area

The common intercomparison area for all models is outlined by the rectangular box. That area is represented by a latitude-longitude grid with 1° spatial resolution and has rotated latitude-longitude coordinates with respect to true geographical latitude-longitude coordinates. It is referred as the AOMIP grid.

Annual statistics

					$\int_{S} \langle APE \rangle$
	PE	APE	KE	С	$<\mathbf{v}>dS$
	$10^{10} { m Jm}^{-2}$	$10^5 \mathrm{Jm}^{-2}$	Jm^{-2}	${ m mWm^{-2}}$	$ m mWm^{-2}$
PHC, global	6.0	2.2			
PHC, arctic	3.9	3.3			
AWI^1	3.7	3.7	110	2.0±0.1	-0.9
GSFC	3.4	3.6	230	8.4±1.0	0.7
IOS	3.3		150		
NYU^2	3.7	12.0	28	-0.9±0.2	-0.6
RAS	3.7	2.5	83	-5.0±1.3	1.0
UW^3	3.4	2.0	125	-2.8±0.3	0.3

Annual mean (μ), deviation ($\sigma = \sqrt{\sum \sigma_i^2}/N$). ¹SSS restoring.

 $^2\mbox{Apparently unrealistic sea-ice distribution.}\ ^3\mbox{SSS and SST}$ restoring. $_{\mbox{P. Uotila, A}}$

APE vertical integrals

a) PHC

Annual average fields for 1978.

P. Uotila, AMS'03 – p. 11/19

KE vertical integrals

0

0

Monthly time series

APE horizontal average

for 1978.

KE horizontal average

P. Uotila, AMS'03 – p. 15/19

- 6 New set of AOMIP experiments has been carried out: Forcing, initial and boundary conditions are uniformly defined.
- Models, however, have varying setup, e.g. SSS and SST restoring, which affects the intercomparison analysis.
- 6 C estimates suggest that the models have different energy balance or do not resolve energy balance.
- 6 Advection terms from monthly data are probably not reliable.
- 6 Modeled sea-ice conditions affect the forcing of *KE* and *APE* at the ice-ocean interface and further the energetics of the underlaying ocean model.

- 6 spinup experiment 1948 1979 (completed)
- 6 analysis experiment 1979 2002
- 50-yr rerun with enhanced models

Participating Models

- 6 Alfred-Wegener Institute (AWI), Germany
- 6 NASA/Goddard Space Flight Center (GSFC)
- Institute of Ocean Sciences (IOS), Sidney, Canada
- 6 Courant Institute, New York University (NYU)
- 6 Russian Academy of Sciences (RAS), Moscow
- 6 Applied Physics Laboratory, University of Washington (UW), Seattle

C vertical profile

5

0

-5

0

Vertical monthly section for 1978.

10

12

a) AWI

