Comparison of Arctic Simulations in Large-Scale Climate Models: Results from the Community Arctic Modeling Project (CAMP) Workshop

held in Madison, WI
May 20-22, 2002
Sponsored by International Arctic Research Center (IARC)

Steve Vavrus
Center for Climatic Research
University of Wisconsin-Madison
Comparison of Arctic Simulations in Large-Scale Climate Models: Results from the Community Arctic Modeling Project Workshop

Climate models have traditionally shown considerable inaccuracy in their simulations of the Arctic. This shortcoming is particularly troubling nowadays, because the Arctic is the region expected to undergo the most extreme climate changes in the future. Difficulties in simulating this region stem from a combination of numerical and physical conditions unique to high latitudes. To assess the current status of Arctic simulations in GCMs, the International Arctic Research Center (IARC) recently sponsored a workshop through its Community Arctic Modeling Project, the results of which will be presented here. The goals of the workshop were to (1) identify the most common systematic errors in simulations of the Arctic atmosphere, (2) explore reasons for differences in the Arctic fields simulated by different models, and (3) pursue strategies for reducing model errors in the Arctic. The climatic variables in the Arctic found to be the most challenging to simulate include clouds, surface pressure and winds, sea ice motion, and precipitation. Because most of these variables are atmospheric and show similar biases in both atmosphere-only and coupled atmosphere-ocean models, the key to improving coupled GCM simulations of the Arctic may lie in improving the representation of the atmospheric component.
PARTICIPANTS

Michael Alexander CIRES-NOAA-Climate Diagnostics Center, Boulder, CO
Lennart Bengtsson Max-Planck Institut für Meteorology, Hamburg, GERMANY
Uma Bhatt International Arctic Research Center, Fairbanks, AK
Cecilia Bitz Polar Science Center, Univ. of Washington-Seattle
Bruce Briegleb NCAR, Boulder, CO
Francis Bretherton Atmospheric Sciences & CCR, Univ. of Wisconsin-Madison
Bill Chapman Atmospheric Sciences, Univ. of Illinois-Urbana
Jens Christensen Danish Meteorological Institute, Copenhagen, Denmark
Richard Cullather ASEN/PAOS/CIRES, Univ. of Colorado-Boulder
Eric DeWeaver Atmospheric Sciences & CCR, Univ. of Wisconsin-Madison
Richard Essery Hadley Centre for Climate Prediction, Bracknell, UK
Gregory Flato Canadian Centre, Climate Modelling, Victoria, BC
Robert Gallimore CCR, Univ. of Wisconsin-Madison
Jonathan Gregory Hadley Centre for Climate Prediction, Bracknell, UK
Bill Hibler International Arctic Research Center, Fairbanks, AK
Robert Jacob Math/Computer Sciences, Argonne National Lab, IL
Vladimir Kattsov Voeikov Main Geophysical Observatory, St. Petersburg, Russia
Akio Kitoh Climate Research Dept., Tsukuba, Japan
Chris Lace International Arctic Research Center, Fairbanks, AK
William Lipscomb Los Alamos National Laboratory, New Mexico
Bette Otto-Bliesner NCAR, Boulder, CO
Jouni Raisanen Rossby Centre, Norrköping, Sweden
Anette Rinke Alfred Wegener Institut, Potsdam, Germany
Gary Russell NASA/Goddard Institute for Space Studies, New York, NY
Michael Timlin Atmospheric Science, Univ. of Illinois-Urbana
Steve Vavrus* CCR, Univ. of Wisconsin-Madison
John Walsh* Atmospheric Sciences, Univ. of Illinois-Urbana
John Weatherly U.S. Army, Cold Regions Research Lab, Hanover, NH
Michael Winton GFDL- Princeton, NJ
Xingren Wu National Ice Center, Washington, DC
Workshop Themes

I. Arctic Climate Variables Needing Improvement
 • clouds
 • precipitation
 • sea ice
 • sea level pressure and winds

II. Simulated Arctic Climate Variability
 • large inter-model variability

III. Simulated Arctic Climate Sensitivity
 • greenhouse gas forcing
 • warm paleoclimate simulation of Last Interglacial

IV. Numerical Issues
 • importance of model resolution
 • role of Regional Climate Models

V. Consequences of Coupled, Global Models
 • impact of remote processes affecting Arctic
Sea Ice Extent (million sq. km)

- Winter (D, J, F)
- Summer (J, J, A)

Source (observed or GCM)

Obs. - 1901–50
Obs. - 1976–90
BMRC
CCSR
CGCM
COLA
CSIRO
CSM
ECHAM3
ECHAM4
GFDL
GISS
HADCM2
MRI
NCAR

observed data: NSIDC–Walsh
CMIP Arctic Climate Sensitivity

19 Models
1%/year CO₂ increase

Control Simulations

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Bias</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Temperature</td>
<td>-11.4°</td>
<td>+1.5°</td>
<td>-4.3° – (-21.8°)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>1.21 mm/d</td>
<td>+25%</td>
<td>0.91-1.57 mm/d</td>
</tr>
</tbody>
</table>

2 x CO₂ (Year 60-80 Mean)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Air Temperature Change</td>
<td>+3.4°</td>
<td>1.4°-7.6°</td>
</tr>
<tr>
<td>Global Air Temperature Change</td>
<td>+1.75°</td>
<td>1.1°-3.1°</td>
</tr>
<tr>
<td>Arctic Precipitation Change</td>
<td>+11%</td>
<td>4%-24%</td>
</tr>
<tr>
<td>Global Precipitation Change</td>
<td>+2.5%</td>
<td>-0.2%-5.6%</td>
</tr>
</tbody>
</table>
Conclusions

Many climate models show similar errors whether coupled or uncoupled (SLP, clouds, precipitation)

There is a large scatter of simulated Arctic variables among models, both for modern and future climates

Higher atmospheric resolution may be necessary to simulate accurate Arctic SLP (and surface winds, ice drift)

Models with a prognostic cloud water parameterization seem to more accurately reproduce Arctic cloud cover

Approaches to improve simulated Arctic climate must carefully account for the remote impacts from lower latitudes