

Frank Muller-Karger

Institute for Marine Remote Sensing
College of Marine Science, University of South Florida

http://imars.usf.edu

Acknowledgements:

Chuanmin Hu
Remy Luerssen
Bob Thunell
Ramon Varela
Laura Lorenzoni

Funding: NASA, NSF

Comments: Rick Jahnke

IMaRS Web Site: http://imars.usf.edu

Outline

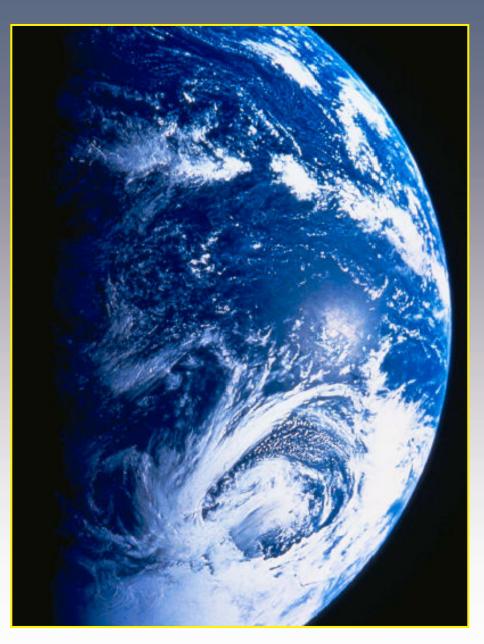
- Purpose of study
- Ocean productivity estimates
- Vertical POC flux estimates
- Global ocean POC flux
- Issues
- Recommendations for future research

PURPOSE OF STUDY

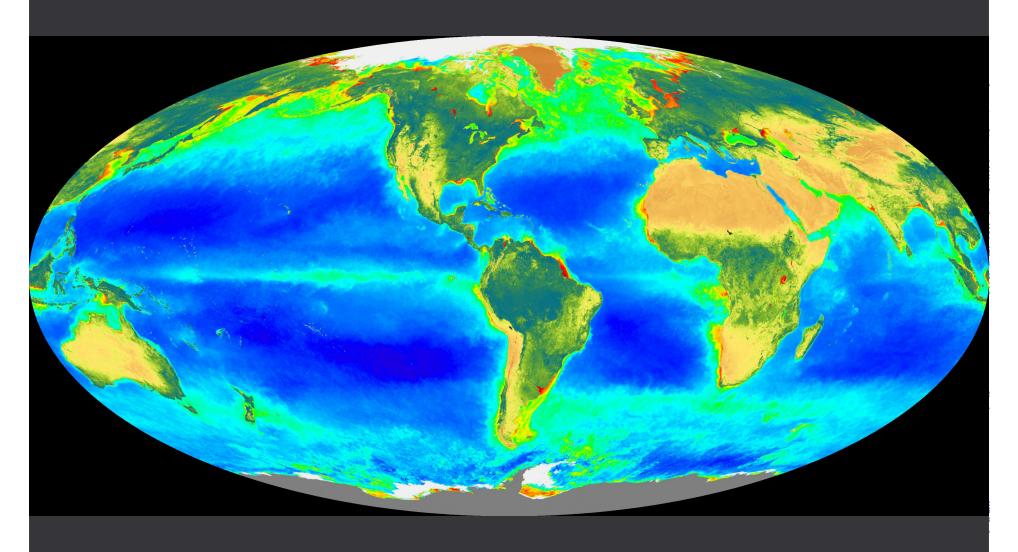
▲ How much carbon is fixed by photosynthesis in the ocean and how much is sequestered?

▲ Do continental margins play a significant role?

Global distribution of phytoplankton primary production [mgC m⁻² d⁻¹. White is > 500. Black is <100] (Walsh et al., 1988; after Koblenz-Mishke et al., 1970)



Productivity of Oceans


▲ Approximately 1/2 of world's annual photosynthesis occurs in the oceans

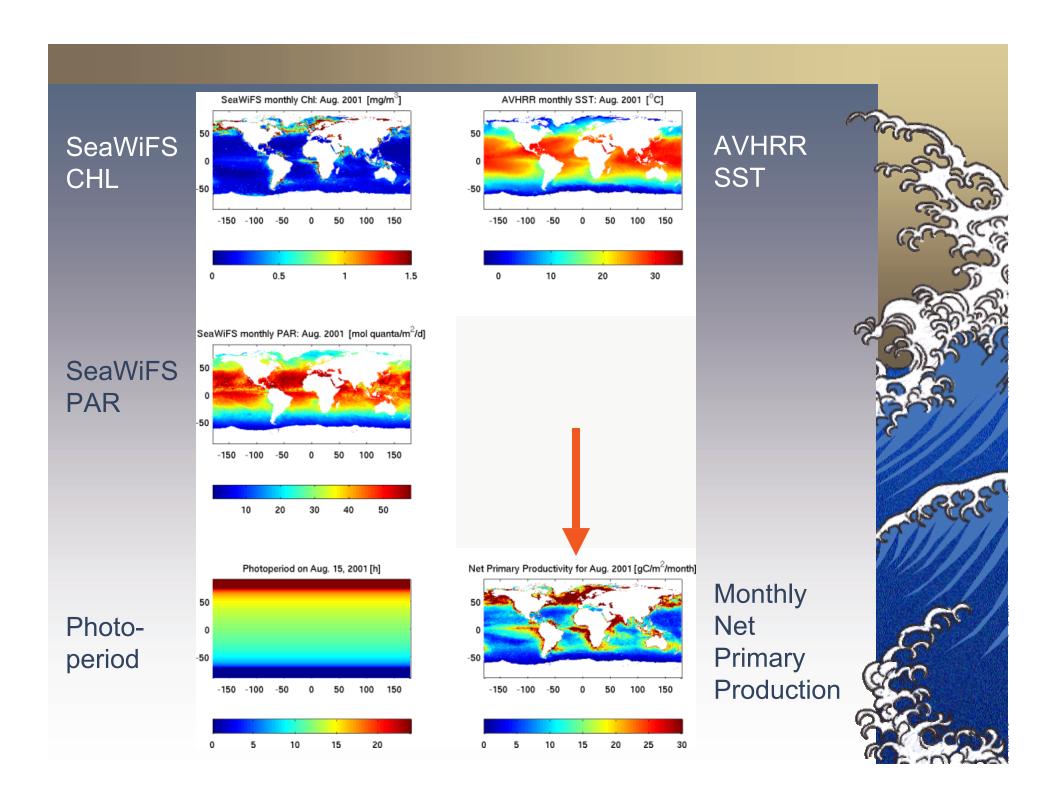
▲ Traditional estimates:

 $^{\sim}$ ~48 Pg C y⁻¹
(1 Pg = 1 petagram = 1x10¹⁵ g = 1 GTon)

Does global NPP vary over long periods of time?

Annual mean ocean chlorophyll concentration

Depth Integrated Net Primary Productivity from remote sensing data


$$PP_{eu} = \mathbf{0.66125} \ P_{opt}^{B} \frac{E_{o}}{E_{o} + \mathbf{4.1}} \ C_{SAT} \times Z_{eu} \times D_{IRR}$$

▲ Behrenfeld and Falkowski, 1997

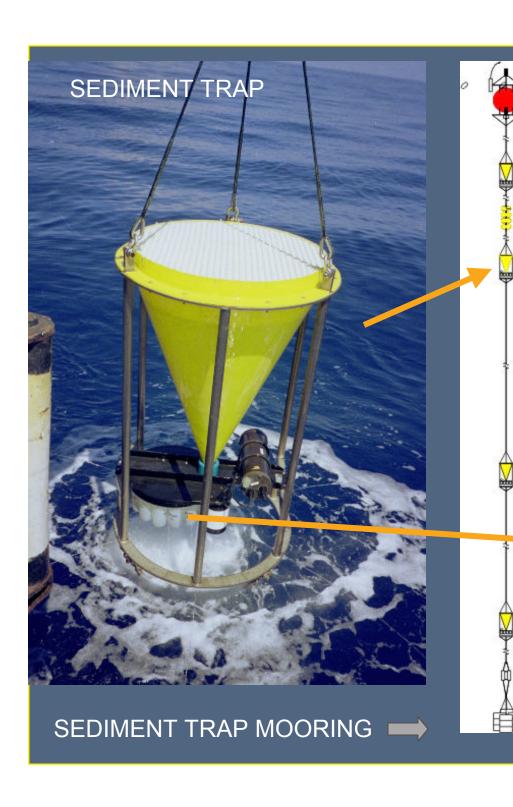
PBopt is difficult to estimate and is very variable.

-It is a source of great uncertainty

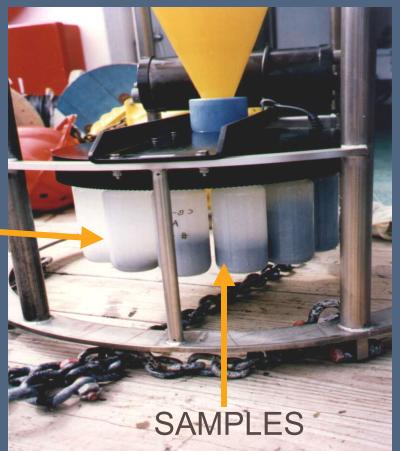
(Behrenfeld and others now advocate C-based approach

Global Oceans Primary Production

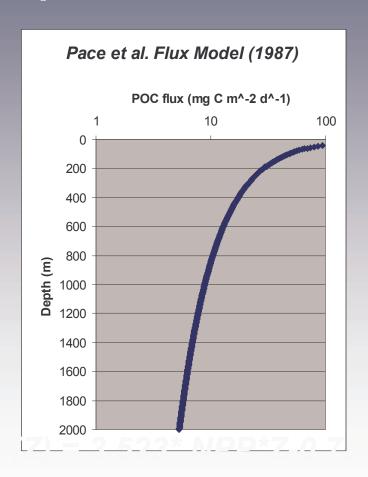
	Global	Deep water	Margins
Net PP [Pg [*]]	47.91	38.92 (81%)	8.99 (19%)


Interannual variation of global NPP was ~2% (4 years)

- Continental margins (bottom < 2000 m)
 - shelves and slopes
 - \wedge 5.8x10⁷ km² \rightarrow ~15% of world's oceans
- Deep ocean waters
 - \wedge 31x10⁷ km² \rightarrow ~85% of world's oceans


- ▲ Behrenfeld et al. (GBC, 2005):
 - ▲ Carbon-based production models should be better
 - ightharpoonup (but estimated global NPP > 60 Pg)
- ▲ Mouw and Yoder (L&O, 2005)
 - ▲ Satellite PP may "miss" 30% NPP in MAB

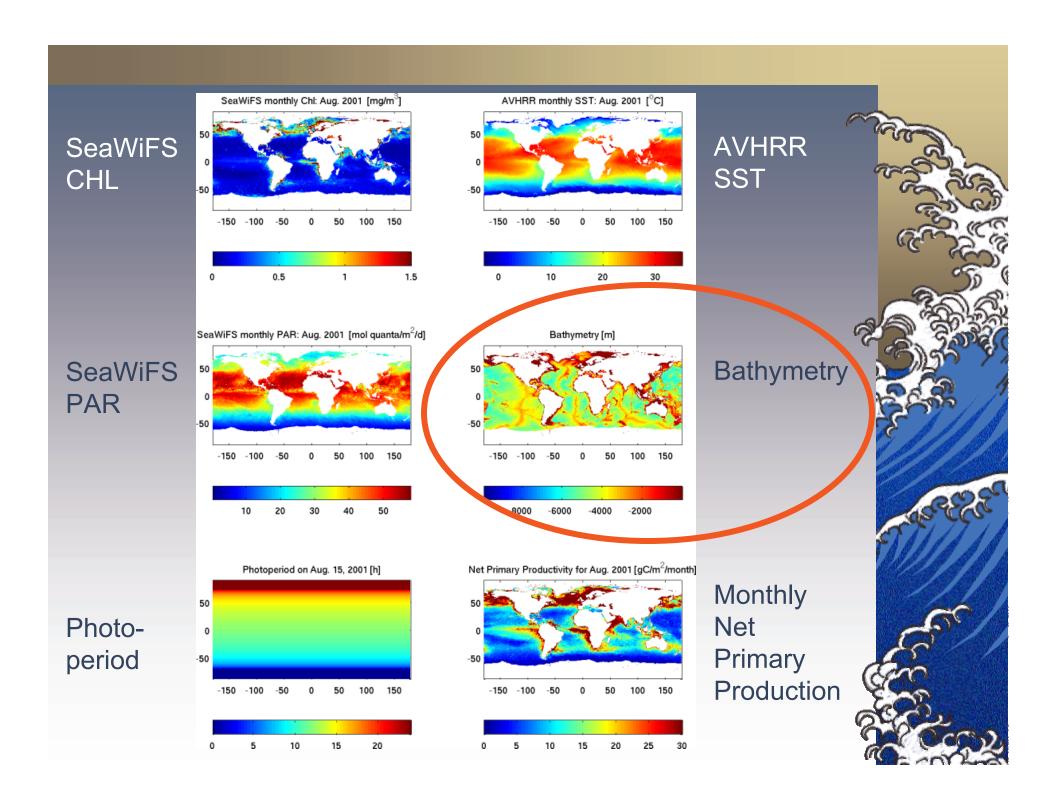
Particulate organic carbon (POC) flux

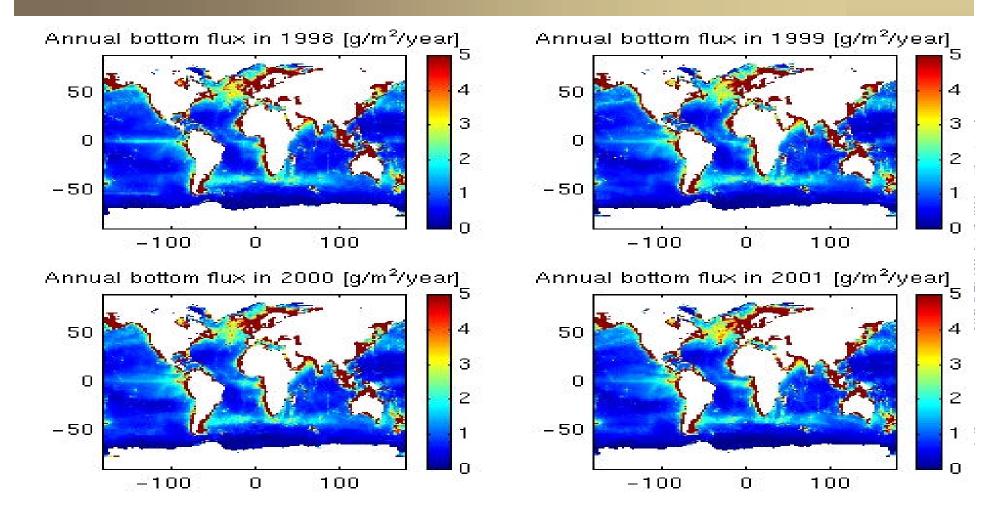


POC flux as function of NPP and depth

▶ Pace, M., G. Knauer, D. Karl and J. Martin. Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature. 325, 803-804 (1987)

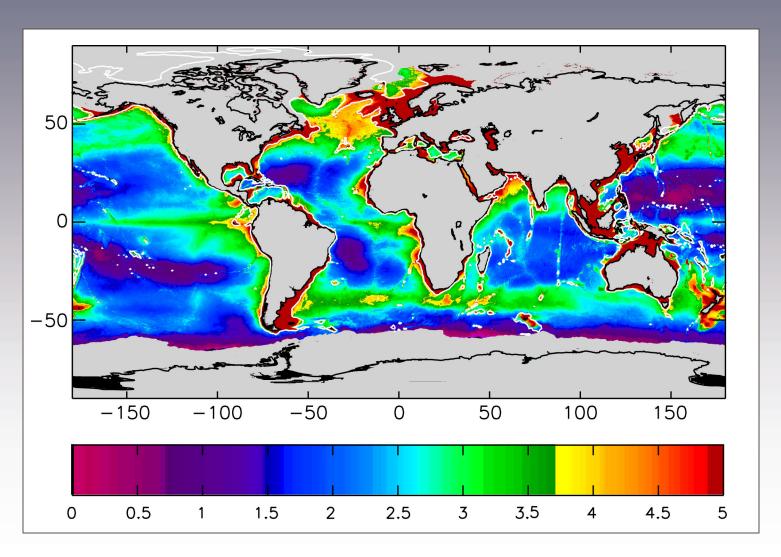
▲ See also:


- ► Francois, Honjo, Krishfield and Manganini, GBC 16:4, 2002
- Lutz, Dunbar, Caldeira. GBC. 16:3. 2002



Estimating Global POC Flux

- ► We applied Pace et al. (1987) to monthly SeaWiFS-derived global NPP estimates
- ▲ Constrained by:
 - ▲ Case Study 1: Thermocline
 - ightharpoonup 500 m where bottom < 2000 m
 - 800 m where bottom > 2000 m
 - ▲ Case Study 2: Global bathymetry



Annual bottom POC flux [g m-2 y-1] (1998 – 2001)

Interannual variation of global flux to bottom was ~1% (4 years)

Average annual bottom POC flux [g m-2 y-1] (1998 – 2001)

Global POC flux analysis

Net PP [Pg [*]]	Global (flux to bottom) 47.91	Deep water (flux to bottom) 38.92	Deep Water (flux to 800 m)	Margins (flux to bottom) 8.99	Margins (flux to 500 m)
Flux [Pg]	0.93	0.31	1.01	0.62	0.68
		33%	60%	67%	40%

Conclusions

- **→** Considering flux to thermocline:
 - ▲ Oceanic biological pump sequesters 60% of C in the deep ocean, 40% on margins
 - ▲ Carbon on margins could also move laterally into the deep ocean along isopycnals
 - ▲ This is a minimum estimate of flux on margins
- ▲ Note: using PP or Export Production gives about same answers (see also Lutz et al., 2002)

Conclusions

- ▲ POC reaching bottom
 - ▲ Largest flux over shelves, ridges, mounts
 - ▲ Margins: receive 60% of global flux to bottom (again, minimum estimate)

Estimating burial

▲ To estimate the amount of carbon buried in sediments, we assumed:

▲~30% POC burial efficiency in the deep sea (Jahnke, 1996; Dymond and Lyle, 1994)

A~10% on margins (Jahnke, personal comm.)

Global POC flux analysis

	Global (flux to bottom)	Deep water (flux to bottom)	Deep Water (flux to 800 m)	Margins (flux to bottom)	Margins (flux to 500 m)
Net PP [Pg [*]]	47.91	38.92		8.99	
Flux [Pg]	0.93	0.31	1.01	0.62	0.68
C buried [Pg]	0.15	0.09		0.06	

60%

40%

Conclusions

▲ Burial:

→ >40% global ocean annual buried POC flux is on margins

Example of Implications

- Chris Sabine's estimate of oceanic sink for anthropogenic CO2:
 - ▲ Assumption is that NPP and vertical POC flux don't change
- Gregg et al. (GRL 30:15, 2003):
 - ▲ suggested that deep ocean NPP decreased 2.8 Pg C per decade between the late 1980's and the early 2000's.
 - ▲ This would lead to a decrease of perhaps 0.007 Pg C y⁻¹ in the carbon sequestered to >800 m in the deep open ocean.
 - ▲ In contrast, just the year-to-year variation in POC reaching the sea floor over margins (±2%) is larger.
 - ▲ Even crude estimate of burial on shelves is ~0.06 Pg C y ⁻¹.

Major Conclusion

▲ Margins cannot be ignored in global ocean carbon models!

- ▲ Exponential flux relationship overestimates flux observed with sediment traps by x8-30
 - △ (Lutz, Dunbar, Caldeira. GBC 16:3. 2002)
 - ▲ Biggest problem between ~2-4 km depth
 - ▲ At greater depths, model approximates observations
- ▲ Implication: model underestimates regeneration

- **►** However:
 - ²³⁴Th shows traps underestimate by x2
 - ▲ Buesseler et al. SCOR WG. Submitted PIO
- **▲** Therefore:
 - ▲ Pace et al. (1987) model may not be that bad after all!

- ▲ Geographic variability in regeneration
 - ▲ We don't know much
 - ▲ Francois, Honjo, Krishfield, Manganini (2002):
 - ▲ Productive regions in low —latitudes may be more effective in POC export than high-latitude regions

Topics for future research

- ▲ Improve ocean productivity estimates
 - ▲ Understand issues with various schemes proposed
 - ▲ Find ways to avoid using CHL (or C:CHL)
 - **▲** Driving forces

Topics for future research

- ▲ Sediment fluxes:
 - We need better estimates of:
 - **▲** Trapping efficiency
 - ▲ Geographic variability in flux
 - Lexport efficiency as related to environmental forcing
 - **▲** Lateral transport
 - ▲ Biological production
 - **▲** Consumption
 - **▲** Zooplankton migration
 - **▲** Seasons

Topics for Future Research

- ▲ Remote sensing research:
 - ▲ Focus on understanding connections between:
 - ▲ "observables"
 - ▲ (Sea Spectral Reflectance, SST, Winds, Currents)
 - ▲ variability in the vertical flux and
 - **▲**regeneration profile

Recommendations

- ▲ Identify locations for oceanographic time series studies and include sediment flux/regeneration observations
- ▲ Integrate remote sensing when planning process and time series studies, develop strategies to scale findings to globe
- ▲ Use the OOI/Orion and IOOS/GOOS/GEOSS to advance OCCC strategic plans

Collective Action

- Community needs to show unity and coherence in pushing for research program
- ▲ Each individual needs to communicate to elected representatives in Congress and the Executive about importance of OCCC and investing in ocean research

