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The Oceanic Sink for Anthropogenic CO,:
Past, Present and Future

Key, Kitack Lee, John L. Bullls‘rer' Rik Wannmkhof C.S. Wong, Douglas

W.R. Wallace, Bronte Tilbrook, Frank J. Millero, Tsung-Hung Peng,
Alexander Kozyr, Tsueno Ono, Aida F. Rios, and Taro Takahashi

An Ocean Carbon and Climate Change (OCCC) Workshop

August 1-4, 2005 Woods Hole, MA
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4. Consider time scales and significance of carbon feedbacks

5. Preseni some intriguing preliminary findings from the
-~ CLIVAR/CO, Repeat Hydrography Program

August 1-4, 2005 Woods Hole, MA
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Atmospheric CO, was at 280+10 ppm for last 11,000 years
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Ocean Must Have Been CO, Source to Balance Global Budget



Today's Atm. CO, is ~100 ppm higher than Preindustrial
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We own Dr. C.D. Keeling a debt of gratitude for pioneering

this field..his presence will be missed.



1995 Net CO, Flux from Takahashi et al., 2002
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Takahashi data set now up Net Flux:

to 2 million data points -15 Pg C yr!




Several Independent Approaches are Converging on an
Estimate of the 1990s Anthropogenic CO, Uptake

Estimates of Oceanic Anthropogenic CO, Uptake in Pg C/yr.
Method Carbon Uptake Reference
(Pg Clyr)
Measurements of sea-air 2.1£0.5 Takahashi et al. (2002)
pCO, Difference
Inversion of atmospheric 1.8+ 1.0 Gurney et al. (2002)
CO, observations
Inversions based on ocean transport 20£04 Gloor et al. (2003)
models and observed DIC
Model simulations evaluated with 22+04 Matsumoto et al. (2004)
CFC’s and pre-bomb radiocarbon
OCMIP-2 Model simulations 24+03 Orr et al. (2004)
Based on measured atmospheric O, and 2.2+0.5 Keeling & Manning
CO; inventories corrected for (submitted)
ocean warming and stratification
GCM Model of Ocean Carbon 1.93 Wetzel et al. (2005)
CFC ages 20+04 McNeil et al. (2003)

Fluxes are normalized to 1990-1999 (except Keeling & Manning which is for 1993-2004)
and corrected for pre-industrial degassing flux of ~0.6 Pg C/yr.

These approaches do not tell us about long-term CO, storage



CO, is Stored in the Ocean as Dissolved Inorganic Carbo

30°W  60°W  90°W  120°W  150°W  180° 130°E  120°E  90°E 60°E 30°E 0°

7 8 9 10 3 5

R. Revelle, H. E. Suess, (ACO,/ADIC)
Tellus 9, 18 (1957) (70,/ DIC)




In the early 1990s the World Ocean Circulation Experiment (WOCE), the
Joint Global Ocean Flux Study (JGOFS), and the NOAA/OACES program
joined forces to conduct a new global survey of CO, in the oceans.
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>70,000 sample locations; DIC + 2 pymol kgL, TA + 4 pmol kg

http://cdiac.esd.ornl.gov/oceans/glodap/Glodap_home.htm
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Lower latitudes are more efficient at taking up atmospheric CO,



Column Inventory of anthropogenic CO, does not
reflect uptake efficiency



North Atlantic = 25% of inventory
with 15% of area

Mapped Inventory 106+17 Pg C



South of 50°S 9°/o of mven‘rory
with roughly the same area as the
North Atlantic

Mapped Inventory 106+17 Pg C



607% of mapped inventory found in Southern
Hemisphere in proportion to the ocean area

Mapped Inventory 106+17 Pg C
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Possible Reasons for Low Anthropogenic CO,
Inven’rory in the Hngh Latitude Southern Ocean

invalidating a basic assumpihion of AC* Technique;

— > Newly formed botitiom waters mix with old

anthropogenic CO; free waters diluting the signal
below the limit of detection;

> Short residence times and ice cover do not allow CO,
to-equilibrate:

> High Revelle Factor makes the Southern Ocean very
inefficient at taking up CO,.
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Atmospheric CO2 Concentration (ppm)
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There have already
been substantial
changes in surface
ocean chemistry &
with global warming

~ What role will
“the future ocean
play in the global
~ carbon cycle?

Modified from Feely et al., (2001)
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Models predict that on millennial time-scales 65-70% of the
emissions would end up m the ocean (no CaCO3 compensa’rlon)
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There is a Suggestion That Uptake may Decrease on Decadal
to Centennial Time Scales

The Global Carbon Budget [Pg C]. Positive values represent
atmospheric increase (or ocean/land sources), negative numbers
represent atmospheric decrease (sinks).

1800-1979 1980-1999

Atmospheric increase 116 + 4 65+1 | 36%
Emissions (f. fuel, cement) +156 + 20 +117+5 | 43%
Ocean Inventory -90+ 19 -37+8 | 29%
Net terrestrial +50 + 28 -15+9
Land-use change +82 to +162 +24 + 12
*Resid. terrestrial sink -32 to -112 -39 £ 18

Ocean uptake dropped from 447% in the first 180 years to

36% in the last 20 years




Carbon System Feedbacks:
direct effect of rising CO, on carbon system
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40% reduction in CaCO; export corresponds to

10 ppm reduction in atmospheric CO,




Carbon-Climate Feedbacks:
effects of climate change on carbon system

Cumulative ocean uptake of CO, (PgC) due to different climate-induced feedback effects.
Scenario and Climate Solubility Stratification  Biological Net
years Baseline Effect Effect Effect Effect
1% CO»/yr 554 -52 —117 +111 —58
for 100 years (-9.4%) (-21.1%) (+20.0%) (=10.5%)
*1S92a-like, 401 -56 —68 +108 -16
1765-2065 (—14.0%) (—17.0%) (+26.9%) (—4.0%)
‘IS92a, 376 —48 —41 +33 —-56
1850-2100 (—12.8%) (—10.9%) (+8.8%) (—14.9%)
‘WRES550, 530 68 15 +33 -50
1765-2100 (—12.8%) (—2.8%) (+6.2%) (—9.4%)
*WRE1000, 612 -58 —27 +36 —48
1765-2100 (-9.5%) (—4.4%) (+5.9%) (—7.8%)

“Sarmiento and Le Quéré (1996),”Sarmiento et al. (1998), “Matear and Hirst (1999), “Joos et al.
(1999a),“Plattner et al. (2001); Note: “Climate baseline” refers to a simulation with anthropogenic CO,
emissions but preindustrial ocean temperatures and circulation. “Effects” refer to uptake changes for
various climate feedbacks and are expressed relative to the climate baseline. The “net effect” is the uptake
change when all climate feedbacks are present (i.e., full climate change simulation, after Greenblatt and

Sarmiento, 2004).

models predict decreased uptake due to climate feedbacks



Must improve our understanding of carbon system feedbacks
if we expect to predict future atmospheric CO, levels

Carbon Cycle Change Climate Feedback direction
CO5% decrease Less efficient uptake positive
Calcification decrease | lower natural CO, production hegative
CaCO, dissolution-sed. | higher CO5?% increasing uptake hegative
CaCO; dissolution-water | higher COs2-/lower org. transport | Neg./pos.
Increasing SST Convert ocean HCO5 to CO, positive
Increased stratification | Reduced mixing and transport positive
Increased stratification | Lower productivity and uptake positive
Increased dust input Increased productivity-N fixers | negative
Ecosystem structure Lower or higher productivity Pos./neg.
CH, hydrate release Increased greenhouse forcing Positive
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CLIVAR/CO, Repeat Hydrography
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Obtaining the decadal anthropogenic CO, signal in the ocean
Multiple Linear Regression Approach

1) Fit older cruise DIC as a function of non-carbon tracers
2) Use non-carbon tracers from new cruise to predict DIC
3) Examine difference between measured DIC and predicted

DIC=a+bT+cS+dAOU + eNO,
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Intrinsic variability can be of the same order of magnitude
as the anthropogenic uptake signal.
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In some cases this may mask anthropogenic accumulation,
in others it may enhance the total accumulation.



Preliminary results suggest that North Atlantic accumulation
rate over the last decade may have been about half of the

North Pacific accumulation rate.
Aceulmlciion Accumulaiien
L iglal /1512 /e 2 S unal/se e

This appears to be a change from the historical operation of these basins.




Conclusions

. The WOCE/JGOFS data set provides information on global
carbon distributions that has not been possible in the past.

. These data have been used to generate estimates of ocean
anthropogenic CO, distributions.

. These results suggest that the global carbon cycle is
undergoing dramatic changes over time.

. We know from thermodynamics that ocean uptake
efficiency will decrease, but the real bottle neck is in
moving the CO, into the ocean interior, which is controlled
by circulation.

. Future research needs to focus on understanding carbon
system and carbon-climate feedbacks.

. The CLIVAR/CO, (OCCC) repeat section program will
monitor decadal scale changes in the ocean carbon cycle.




