«Woods Hole Oceanographic Institution

Ocean Carbon and Climate Change

The Oceanic Sink for Anthropogenic CO₂: Past, Present and Future

<u>Christopher L. Sabine</u>, Richard A. Feely, Nicolas Gruber, Robert M. Key, Kitack Lee, John L. Bullister, Rik Wanninkhof, C.S. Wong, Douglas W.R. Wallace, Bronte Tilbrook, Frank J. Millero, Tsung-Hung Peng, Alexander Kozyr, Tsueno Ono, Aida F. Rios, and Taro Takahashi

"The Ocean Carbon System: Recent Advances and Future Opportunities" An Ocean Carbon and Climate Change (OCCC) Workshop

August 1-4, 2005

Woods Hole, MA

Ocean Carbon and Climate Change

<u>Outline</u>

- 1. Briefly review preindustrial carbon system
- 2. Look at modern CO_2 fluxes and anthropogenic CO_2 uptake estimates
- 3. Examine distributions of anthropogenic CO_2 in ocean
- 4. Consider time scales and significance of carbon feedbacks
- 5. Present some intriguing preliminary findings from the CLIVAR/CO₂ Repeat Hydrography Program

August 1-4, 2005

Woods Hole, MA

Motivation: Understanding Long Term Carbon Cycle Changes

Atmospheric CO_2 was at 280±10 ppm for last 11,000 years

Preindustrial Global Carbon Budget

Ocean Must Have Been CO₂ Source to Balance Global Budget

Today's Atm. CO₂ is ~100 ppm higher than Preindustrial

1995 Net CO₂ Flux from Takahashi et al., 2002

Several Independent Approaches are Converging on an Estimate of the 1990s Anthropogenic CO₂ Uptake

Estimates of Oceanic Anthropogenic CO ₂ Uptake	in Pg C/yr.	
Method	Carbon Uptake $(Pa C/vr)$	Reference
	(Fg C/yI)	
Measurements of sea-air	2.1 ± 0.5	Takahashi <i>et al.</i> (2002)
pCO ₂ Difference		
Inversion of atmospheric	1.8 ± 1.0	Gurney <i>et al.</i> (2002)
CO ₂ observations		
Inversions based on ocean transport	2.0 ± 0.4	Gloor <i>et al.</i> (2003)
models and observed DIC		
Model simulations evaluated with	2.2 ± 0.4	Matsumoto <i>et al.</i> (2004)
CFC's and pre-bomb radiocarbon		
OCMIP-2 Model simulations	2.4 ± 0.3	Orr et al. (2004)
Based on measured atmospheric O_2 and	2.2 ± 0.5	Keeling & Manning
CO_2 inventories corrected for		(submitted)
ocean warming and stratification		
GCM Model of Ocean Carbon	1.93	Wetzel et al. (2005)
CFC ages	2.0 ± 0.4	McNeil et al. (2003)
Fluxes are normalized to 1990-1999 (except Keeli	ing & Manning which is	s for 1993-2004)

and corrected for pre-industrial degassing flux of ~0.6 Pg C/yr.

These approaches do not tell us about long-term CO₂ storage

CO2 is Stored in the Ocean as Dissolved Inorganic Carbon

R. Revelle, H.,E. Suess, Tellus 9, 18 (1957) $\frac{(\Delta fCO_2/\Delta DIC)}{(fCO_2/DIC)}$

In the early 1990s the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the NOAA/OACES program joined forces to conduct a new global survey of CO_2 in the oceans.

>70,000 sample locations; DIC ± 2 μmol kg⁻¹; TA ± 4 μmol kg⁻¹ http://cdiac.esd.ornl.gov/oceans/glodap/Glodap_home.htm

ΔDIC for a 10 ppm change in pCO₂ as a function of Revelle Factor

Lower latitudes are more efficient at taking up atmospheric CO_2

Column inventory of anthropogenic CO_2 that has accumulated in the ocean between 1800 and 1994 (mol m⁻²)

Column Inventory of anthropogenic CO₂ does not reflect uptake efficiency

Column inventory of anthropogenic CO_2 that has accumulated in the ocean between 1800 and 1994 (mol m⁻²)

North Atlantic = 25% of inventory with 15% of area

Mapped Inventory 106±17 Pg C

Column inventory of anthropogenic CO_2 that has accumulated in the ocean between 1800 and 1994 (mol m⁻²)

Mapped Inventory 106±17 Pg C

Column inventory of anthropogenic CO_2 that has accumulated in the ocean between 1800 and 1994 (mol m⁻²)

60% of mapped inventory found in Southern Hemisphere in proportion to the ocean area

Mapped Inventory 106±17 Pg C

The highest inventories are found in areas where water is sinking into the ocean interior taking with it the anthropogenic CO_2 accumulated at the surface.

Not found in Antarctic bottom waters

Possible Reasons for Low Anthropogenic CO₂ Inventory in the High Latitude Southern Ocean

- Inadequate data coverage;
- > Low vertical stratification results in substantial mixing invalidating a basic assumption of ΔC^* technique;
- Newly formed bottom waters mix with old anthropogenic CO₂ free waters diluting the signal below the limit of detection;
- Short residence times and ice cover do not allow CO₂ to equilibrate;
- High Revelle Factor makes the Southern Ocean very inefficient at taking up CO₂.

Because the ocean mixes slowly, half of the anthropogenic CO_2 stored in the ocean is found in the upper 10% of the ocean.

50% of anthropogenic CO_2 in the ocean is shallower than 400 m

Average penetration depth 1000 m

There have already been substantial changes in surface ocean chemistry & with global warming the physical forcing on the ocean is changing.

What role will the future ocean play in the global carbon cycle?

Modified from Feely et al., (2001)

Average Surface Water DIC Increase in 2000 ~ 1.2 µmol kg⁻¹ yr⁻¹

The ocean has changed from a net CO_2 source to a net sink

Models predict that on millennial time-scales 65-70% of the emissions would end up in the ocean (no $CaCO_3$ compensation)

There is a Suggestion That Uptake may Decrease on Decadal to Centennial Time Scales

The Global Carbon Budget [Pg C]. Positive values represent atmospheric increase (or ocean/land sources), negative numbers represent atmospheric decrease (sinks).

Ocean uptake dropped from 44% in the first 180 years to 36% in the last 20 years

Carbon System Feedbacks: direct effect of rising CO₂ on carbon system

Today's world

pCO₂: 280-380 ppmV

Gephyrocapsa oceanica

High-CO₂ world pCO₂: 580-720 ppmV

Emiliania huxleyi

Calcidiscus leptoporus

Riebesell et al. (2000), Nature; Langer et al. subm.

Carbon System Feedbacks: direct effect of rising CO₂ on carbon system

40% reduction in $CaCO_3$ export corresponds to 10 ppm reduction in atmospheric CO_2

Carbon-Climate Feedbacks: effects of climate change on carbon system

Cumulative ocean uptake of CO ₂ (PgC) due to different climate-induced feedback effects.						
Scenario and	Climate	Solubility	Stratification	Biological	Net	
years	Baseline	Effect	Effect	Effect	Effect	
^a 1% CO ₂ /yr	554	-52	-117	+111	-58	
for 100 years		(-9.4%)	(-21.1%)	(+20.0%)	(-10.5%)	
^b IS92a-like	401	-56	-68	+108	-16	
1765–2065	101	(-14.0%)	(-17.0%)	(+26.9%)	(-4.0%)	
					()	
°IS92a,	376	-48	-41	+33	-56	
1850-2100		(-12.8%)	(-10.9%)	(+8.8%)	(-14.9%)	
d						
^a WRE550,	530	-68	-15	+33	-50	
1765–2100		(-12.8%)	(-2.8%)	(+6.2%)	(-9.4%)	
	(12	50	27		40	
WKE1000,	612	-38	-27	+36	-48	
1765–2100		(-9.5%)	(-4.4%)	(+5.9%)	(-7.8%)	

^{*a*}Sarmiento and Le Quéré (1996), ^{*b*}Sarmiento et al. (1998), ^{*c*}Matear and Hirst (1999), ^{*d*}Joos et al. (1999a), ^{*e*}Plattner et al. (2001); *Note:* "Climate baseline" refers to a simulation with anthropogenic CO₂ emissions but preindustrial ocean temperatures and circulation. "Effects" refer to uptake changes for various climate feedbacks and are expressed relative to the climate baseline. The "net effect" is the uptake change when all climate feedbacks are present (i.e., full climate change simulation, after Greenblatt and Sarmiento, 2004).

models predict decreased uptake due to climate feedbacks

Must improve our understanding of carbon system feedbacks if we expect to predict future atmospheric CO_2 levels

Carbon Cycle Change	Climate Feedback	direction
CO32- decrease	Less efficient uptake	positive
Calcification decrease	lower natural CO ₂ production	negative
$CaCO_3$ dissolution-sed.	higher CO32 ²⁻ increasing uptake	negative
CaCO ₃ dissolution-water	higher CO ₃ ²⁻ /lower org. transport	Neg./pos.
Increasing SST	Convert ocean HCO_3^- to CO_2	positive
Increased stratification	Reduced mixing and transport	positive
Increased stratification	Lower productivity and uptake	positive
Increased dust input	Increased productivity-N fixers	negative
Ecosystem structure	Lower or higher productivity	Pos./neg.
CH ₄ hydrate release	Increased greenhouse forcing	Positive

So Where We go From Here?

Ocean Carbon and Climate Change

An Implementation Strategy for U.S. Ocean Carbon Research

Prepared for the U.S. Carbon Cycle Science Scientific Steering Group and Inter-agency Working Group by the Carbon Cycle Science Ocean Interim Implementation Group

Scott C. Doney chair and editor

Implementation Elements

Ocean Carbon Observing System Repeat hydrographic survey VOS pCO2 surveys Time-series measurements N. A. coastal observing network Remote sensing North Atlantic and North Pacific **Process Studies** Upper water column processes Mesopelagic processes Continental margin biogeochemistry Air-sea gas exchange Southern Ocean Pilot Studies Synthesis and Numerical Modeling Enabling Activities Sensor and platform development Data mgmnt. and data availability Workshops and educational outreach

CLIVAR/CO₂ Repeat Hydrography

With the WOCE/JGOFS survey as a baseline, we can begin to evaluate changes in ocean carbon over time. This will allow us to avoid many of the assumptions required for the initial inventory estimate.

CLIVAR/CO₂ Repeat Hydrography

Achievements: The U.S. CLIVAR/CO₂ Repeat Hydrography Program has completed 6 of 19 cruises and is on schedule. For further details see: http://ushydro.ucsd.edu/

Obtaining the decadal anthropogenic CO₂ signal in the ocean Multiple Linear Regression Approach

- 1) Fit older cruise DIC as a function of non-carbon tracers
- 2) Use non-carbon tracers from new cruise to predict DIC
- 3) Examine difference between measured DIC and predicted

 $DIC = a + bT + cS + dAOU + eNO_3$

 $\Delta C_{anthro} = \Delta C_{total} - \Delta C_{org} - \Delta C_{alk}$ $\Delta C_{anthro} = DIC_{m} - DIC_{MLR} - (117/170)^* (AOU_{m} - AOU_{MLR}) - 0.5^* (ALK_{m} - ALK_{MLR})$

CO₂ Accumulation Rate on Isopycnal Surfaces along 30°N Based on P2 2004 - 1994 Comparison

CO₂ Accumulation Rate on Isopycnal Surfaces along 66°W Based on A22 2003 - 1997 Comparison

Intrinsic variability can be of the same order of magnitude as the anthropogenic uptake signal.

In some cases this may mask anthropogenic accumulation, in others it may enhance the total accumulation. <u>Preliminary</u> results suggest that North Atlantic accumulation rate over the last decade may have been about half of the North Pacific accumulation rate.

This appears to be a change from the historical operation of these basins.

Conclusions

- 1. The WOCE/JGOFS data set provides information on global carbon distributions that has not been possible in the past.
- 2. These data have been used to generate estimates of ocean anthropogenic CO_2 distributions.
- 3. These results suggest that the global carbon cycle is undergoing dramatic changes over time.
- 4. We know from thermodynamics that ocean uptake efficiency will decrease, but the real bottle neck is in moving the CO_2 into the ocean interior, which is controlled by circulation.
- 5. Future research needs to focus on understanding carbon system and carbon-climate feedbacks.
- 6. The $CLIVAR/CO_2$ (OCCC) repeat section program will monitor decadal scale changes in the ocean carbon cycle.