Rising pCO₂

and oligotrophic ocean biology: winners and losers in the central gyres

Dave Hutchins University of Southern California Approaches to understanding rising pCO₂ impacts on ocean biology

1. Laboratory experiments using cultures of major algal functional groups

2. Shipboard continuous culture experiments using natural phytoplankton communities in the North Atlantic spring bloom, the Bering Sea, and the Ross Sea.

3. Interactions between changing pCO₂ and other global change co-variables, including temperature, nutrients, light, and Fe.

Lab experiments using dominant groups of oligotrophic phytoplankton

Prokaryotes:

Synechococcus and Prochlorococci

N₂-fixing Trichodesmium

Unicellular N₂-fixing cyanobacteria (*Crocosphaera*)

<u>Eukaryotes</u>:

Coccolithophore (E. hux)

Diatoms

Interactions between CO₂ and temperature: A factorial experimental design

- Control: Present day temperature and pCO₂

- High pCO₂: Present day temperature and 750 ppm CO₂
- High Temperature: +3-5°C and present day pCO₂
- Greenhouse: +3-5°C and 750 ppm CO₂

Combined pCO₂ and temperature effects on growth rates of picocyanobacteria

(Fu et al. 2007, J. Phycol. 43)

Photosynthesis versus irradiance curves: Different responses of Synechococcus and Prochlorococcus to elevated pCO₂ and temperature (Fu et al. 2007, J. Phycol. 43)

-- Synechococcus CCMP1334 photosynthesis, growth and elemental ratios are all responsive to changing pCO₂ and temperature

--*Prochlorococcus* CCMP1986 physiology is relatively unaffected by these variables

Individual picocyanobacteria groups will respond in very different ways to increasing pCO₂ and temperature- beware of overgeneralizing!

How does *Trichodesmium* growth and nitrogen fixation respond to changing pCO₂?

Trichodesmium erythraeum strain GBR cultured at a range of pCO₂: 150, 380, 750, 1250 and 1500 ppm

CO₂ limitation of *Trichodesmium*

Last glacial maximum pCO₂ (~190 ppm) Present day pCO₂ (380 ppm) Year 2100 pCO₂ (~750 ppm)

1. N₂ fixation rates increase by 63% between 380 and 750 ppm pCO₂

2. CO₂ fixation rates increase by 54% between 380 and 750 ppm pCO₂

3. Specific growth rates increase by 37% between 380 and 750 ppm pCO₂

4. Trichodesmium was unable to grow at all at a pCO_2 of 150 ppm

5. N:P (and C:P) ratios increase by 35% between 380 ppm and 1250 ppm CO₂

(Hutchins et al. 2007, L&O 52(4): 1293-1304)

pCO₂ and P co-limitation of *Trichodesmium* N₂ fixation

Adding <u>either</u> P or CO_2 increases N₂ fixation and growth rates of P-limited cultures at present day pCO_2

Control High High Greenhouse temp CO₂

(Hutchins et al. 2007, L&O 52)

The unicellular N₂-fixing cyanobacterium Crocosphaera

Interactions between pCO₂ and Fe availability

Treatments:

Fe-replete, 380 ppm CO₂
Fe-replete, 750 ppm CO₂
Fe-limited, 380 ppm CO₂
Fe-limited, 750 ppm CO₂

Fu et al. in prep

pCO₂ effects on N₂ fixation rates of Fe-replete and Fe-limited *Crocosphaera*

Fu et al. in prep

Crocosphaera

N₂ fixation rates

Cellular Fe quota

Fu et al. in prep

Crocosphaera:

 pCO_2 \downarrow N_2 fixation \downarrow Fe quota

Biogeochemical Implications

- Global marine N_2 fixation could increase dramatically (~50%?) with doubled pCO₂ over the next 100 years.
- CO₂-mediated increases in N:P ratios may drive oligotrophic regimes further towards P limitation. Elevated Fe requirements may drive diazotrophs further towards Fe limitation as well.
- Rising CO₂ thus directly impacts the N cycle by increasing new N supply from N₂ fixation, and thereby also indirectly controls both P and Fe biogeochemistry.

Interactive effects of light, temperature and pCO₂ on calcification by a Sargasso Sea *E. hux.* isolate

Feng et al. in press, European Journal of Phycology

The primary control on calcification in this strain is light intensity pCO_2 exerts a secondary effect, but only under saturating light conditions North Atlantic Spring Bloom CO_2 /temperature experiment: coccolithophores and DMSP

Feng et al. in prep.

North Atlantic Bloom temperature experiment: PIC production

PIC production rates

Control High High Greenhouse CO₂ temp

Feng et al. in prep.

Biogenic silica:POC ratio: Warmer temperatures shift communities away from diatoms in the North Atlantic Spring Bloom

Feng and Hutchins in prep.

"Greenhouse" conditions preferentially stimulate the growth of coccolithophores, while paradoxically greatly reducing calcification

Light and temperature interactive effects can be at least as important as rising pCO₂ alone for coccolithophore dominance and calcification

Acknowledgements

Collaborators

F. Fu, M. Mulholland, M. Warner, S. Sanudo-Wilhelmy, J. DiTullio, P. Lee, U. Passow, I. Benner

Students and postdocs Y. Feng, C. Hare, S. Handy, N. Garcia, J. Rose, K. Leblanc

Funding NSF OCE Biological and Chemical Oceanography NSF Office of Polar Programs

© Ocean Carbon & Biogeochemistry

Proposal for a Workshop on Environmental Change and Biological Adaptation in the Ocean Dave Hutchins Donal Manahan

- What questions are best addressed by an integrative approach combining oceanography and evolutionary biology to address biological responses to rapid environmental change in the ocean?
- How can studies of present-day organisms and communities be used to predict long-term adaptations and biological responses to rapid regime shifts?
- Can accurate models be developed to predict future effects of multiple environmental changes on organismal, population, and ecosystem-level adaptations?

Light/CO₂ interactions in *Trichodesmium*

Ross Sea Phaeocystis antarctica CO₂/Fe experiment: Higher Zn and Cd quotas at lower pCO₂

Carbon quota $(fg cell^{-1})$

Nitrogen quota (fg cell⁻¹)

Phosphorus quota (fg cell⁻¹)

Fu et al in prep

Effects of changing pCO_2 on the Co quota of the unicellular N₂-fixing cyanobacterium *Crocosphaera*

Fu et al in prep

CO₂ fixation versus light, P-replete and P-limited GBR and IMS cultures

Hutchins et al. 2007, L&O