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Abstract Paleoclimate data assimilation has recently emerged as a promising technique to estimate past
climate states. Here we test two of the underlying assumptions of paleoclimate data assimilation as applied so
far: (1) climate proxies can be modeled as linear, univariate recorders of temperature and (2) structural errors
in GCMs can be neglected. To investigate these two points and related uncertainties, we perform a series of
synthetic, paleoclimate data assimilation-based reconstructions where ‘‘pseudo’’ proxies are generated with
physically based proxy system models (PSMs) for coral d18O, tree ring width, and ice core d18O using two
isotope-enabled atmospheric general circulation models. For (1), we find that linear-univariate models effi-
ciently capture the GCM’s climate in ice cores and corals and do not lead to large losses in reconstruction skill.
However, this does not hold for tree ring width, especially in regions where the trees’ response is dominated
by moisture supply; we quantify how the breakdown of this assumption lowers reconstruction skill for each
proxy class. For (2), we find that climate model biases can introduce errors that greatly reduce reconstruction
skill, with or without perfect proxy system models. We explore possible strategies for mitigating structural
modeling errors in GCMs and discuss implications for paleoclimate reanalyses.

1. Introduction

The instrumental climate record is relatively brief and spatially incomplete. Through the use of proxies for
past climate, paleoclimate reconstructions can dramatically extend the record of historical climate variabili-
ty. This extension puts present and future climate changes in context and allows for the study of climate
phenomena over long time scales, potentially improving predictions of future global change. Climate field
reconstructions (CFRs) seek to estimate space-time climate states based on noisy and sparse paleoclimate
proxy data. Most CFR techniques employ an inverse approach, directly relating climate fields (e.g., precipita-
tion, temperature) to proxy observations (e.g., d18O in ice cores or corals) via linear, statistical relationships
[e.g., Mann et al., 1998, 1999; Luterbacher et al., 2004; Moberg et al., 2005; Mann et al., 2008, 2009; Kaufman
et al., 2009; Barriopedro et al., 2011; Tingley and Huybers, 2013; Emile-Geay et al., 2013; Guillot et al., 2015;
Wang et al., 2015]. However, extracting robust climate information from paleo-observations via such rela-
tionships is nontrivial: data from proxy sites do not offer uniform spatial coverage, can differ sharply in qual-
ity, and the availability of such data dramatically decreases back in time [Wang et al., 2014]. Further, proxy
records are in general nonlinear, nonunique, and noisy transforms of the input climate [Tingley et al., 2012]
and many are also time-uncertain. Thus, inverse approaches result in important losses of information.

Data assimilation (DA) provides a complimentary alternative reconstruction approach (for an exposition of
the advantages of DA in a paleoclimate context, see Steiger et al. [2014]). A key feature of DA-based recon-
structions is that they blend dynamical information from climate models with proxy observations to esti-
mate past climate. This blending considers error estimates in both the models and the proxies and provides
an optimal estimate of past climates given the models and the proxy data. Importantly, DA differs from tra-
ditional climate field reconstruction methods in that it need not rely on linear, statistical relationships
between proxies and climate.

In practice, however, most data assimilation approaches have employed strictly linear temperature-proxy
models, whereby temperature and proxy signal are linearly related via calibrations over the instrumental
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period [e.g., Goosse et al., 2006, 2010; Widmann et al., 2010; Steiger et al., 2014]. One central aim of this paper
is to scrutinize the implications of this assumption for climate reconstruction purposes. Like Bayesian hierar-
chical models used for climate reconstruction [e.g., Tolwinski-Ward et al., 2014], DA-based reconstructions
can alternatively employ nonlinear, physically based proxy system models (PSMs) [Evans et al., 2013] that
map between climate states or climate model variables and proxy observations. Using these PSMs allows
for a more physically-grounded climate reconstruction. The second aim of this paper is to consider the
errors in global climate models (GCMs) alone, and evaluate the effects of GCM structural biases on recon-
structions with and without embedded PSMs.

We first investigate the utility of PSMs for use in paleoclimate data assimilation [Steiger et al., 2014; Hakim
et al., 2016]. We explore this within a synthetic, pseudoproxy framework [see Smerdon, 2012, for a review]
because it allows for a controlled test bed for both the PSMs and the reconstruction technique. Typically,
pseudoproxies are generated by simply adding noise to temperature series, but here we generate pseudo-
proxies using several PSMs [Dee et al., 2015]. PSMs translate relevant dynamical and isotope variables to
modeled proxy space for a direct comparison between GCM output and observations, thereby alleviating
the need for a calibration. Thus far, only Evans et al. [2014] have used PSM-generated proxies in pseudo-
proxy reconstructions; using a tree ring width model only, the authors found that the PSM-based recon-
structions differed substantially from a standard ‘‘temperature plus noise’’ pseudoproxy model. Our study
builds on this work by including PSMs for oxygen isotopes in corals and ice cores in addition to tree ring
width. Importantly, this study uses PSMs for both the production of the pseudoproxies and their estimation
in the DA reconstruction process; this differs from Evans et al. [2014] where a PSM for tree ring width was
only used for the production of the pseudoproxies. Through a series of experiments reconstructing both
surface temperature and geopotential height at 500 hPa, the PSM-pseudoproxy framework serves as a test
bed for investigating assumptions concerning our understanding of proxy-temperature relationships, and
how errors in these assumptions trickle down to the reconstructed fields. We compare baseline PSM-based
reconstructions using the full, nonlinear PSM-mapping (FULL-PSM) with reconstructions using statistical
relationships that are simply linear in temperature (LU-PSM).

Second, we are led to consider the competing influence of structural modeling error [Frigg et al., 2014;
Bradley et al., 2014], accounting for uncertainty in GCMs. That is, since the climate models (used to describe
relationships within and among climate fields) are imperfect representations of the true climate, is it worse
to use a simplified, linear representation of proxy-climate relationships or an uncertain representation of cli-
mate (which ultimately propagates forward through PSMs)? For this second question, we reconstruct a
CMIP-class climate simulation using an Earth system model of intermediate complexity as an approximation
for real-world reconstructions. We investigate whether the biases inherent in climate models prohibit the
effective use of proxy system models in climate reconstructions.

This study is structured as follows: section 2 describes the paleoclimate state estimation framework, as well
as our experimental design. Section 3 explores the impacts of the linearity assumption as well as the
impacts of structural modeling error on reconstructed global temperature. Finally, broader implications and
extensions of this work are discussed in section 4.

2. Experimental Framework

2.1. Data Assimilation Approach
The essential feature of DA is that it optimally combines observations (within this context, proxy data) with
models. In the context of this study, a climate model provides an initial, or prior, state estimate that one can
update in a Bayesian sense using the observations. This update also takes account of an estimate of the
errors in both the observations and the prior. The prior contains the climate model variables of interest, and
the updated prior, called the posterior, is the best estimate of the climate state given the observations and
the error estimates. The update equations of DA [e.g., Kalnay, 2003] (applied in optimality for linear and
Gaussian approximations) are given by

xa 5 xb1K½y2HðxbÞ� ; (1)

where K can be written as
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K 5 hxb;HðxbÞi½hHðxbÞ;HðxbÞi1R�21 ; (2)

with h�; �i representing a covariance expectation. The prior (or ‘‘background’’) estimate of the state vector is
xb and xa is the posterior (or ‘‘analysis’’) state vector. Observations (or proxies) are contained in vector y. The
true value of the observations is estimated by the prior through HðxbÞ, which is, in general, a nonlinear
vector-valued observation operator that maps xb from the state space to the observation space. Within a
paleoclimate reconstruction context, this is the PSM. Matrix K, the Kalman gain, optimally weighs y2HðxbÞ
(the innovation), and transforms it into state space. Matrix R is the error covariance matrix for the observa-
tions and is assumed to be diagonal. The DA update process involves computing equations (1) and (2) to
arrive at the posterior state; within the context of climate reconstruction, the posterior state is the recon-
structed state for a given time. Space-time reconstructions are obtained by iteratively estimating the poste-
rior state for each year of the reconstruction.

The specific DA implementation used in this study follows closely that of Steiger et al. [2014]. Briefly, it uses
an off-line approach, wherein the prior ensemble, xb, consists of annually averaged climate states drawn
from a climate model simulation; the ensemble is not integrated forward in time because of the massive
computational constraints involved and because online DA for paleoclimate reconstructions appears to pro-
vide little improvement in skill over off-line DA, at least for atmospheric variables [Matsikaris et al., 2015]. The
most important difference from Steiger et al. [2014] is that we use PSMs for generating y and for computing
HðxbÞ (in most cases). This provides a more realistic reconstruction framework than that typically employed
in pseudoproxy experiments. We also note that the particular time-averaged DA method employed here is
formally valid when HðxbÞ is linear [Huntley and Hakim, 2010]. Because the ‘‘full’’ versions of the tree ring,
coral, and ice core PSMs used in this study are actually nonlinear, we are therefore making an approximation
in using this DA method for the experiments that include full PSMs. Therefore, the results for these experi-
ments may have reduced skill relative to what may be possible with a fully nonlinear DA approach.

2.2. Pseudoproxy Network
Our pseudoproxy network is broadly representative of the availability of annually resolved tree, coral and
ice core records in the PAGES2k and Ocean2k databases [PAGES2K Consortium, 2013; Tierney et al., 2015].
We have added 32 coral record locations to the existing PAGES2k Phase 1 network, as this original network
contained only 13 coral sites. The additional coral sites are based on published data, matching the coral net-
work described in Comboul et al. [2014]. The network includes coral aragonite d18O, tree ring width, and ice
core d18O records only. We focus on these three proxy types alone due to richness of existing data, age

Figure 1. PRYSM Simulated Multi-Proxy System Model Network, PAGES2k Phase 1 1 Tier1 Corals. Pseudoproxy network design: proxy locations
and types for FULL-PSM and LU-PSM.
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control, demonstrated sensitivity to climate variables of interest, and the existence of available PSMs for
each proxy type.

Proxy data types and locations are shown in Figure 1. Most of the pseudoproxy network (467/544 total
records) is comprised of tree ring width (TRW) locations. The resulting pseudoproxy network achieves fairly
wide coverage; note however that most of the tree ring data are confined to Northern Hemisphere land
masses and that extra-tropical oceans are not sampled at all.

2.3. Climate Model Simulations
To provide climate state vectors for the DA prior (see equation (1)), and to provide climate fields for the
PSM-generated network, we primarily use the isotope-enabled GCM SPEEDY-IER [Dee et al., 2014].
SPEEDY-IER is an intermediate complexity atmospheric GCM (IC-AGCM), and constitutes an efficient
option for long paleoclimate integrations. Despite its simplicity, the IC-AGCM computes climatic and water
isotope fields that are comparable with higher-order AGCMs at a fraction of the cost. A simulation of
SPEEDY-IER was forced with sea surface temperatures from the last-millennium simulation of the CCSM4
coupled model [Landrum et al., 2013], spanning the years 1000–2004 from that simulation. A second water
isotope-enabled simulation forced with historical SST boundary conditions spanning 1871–2011 from
ECHAM5-wiso was employed for the tests of structural biases. ECHAM5-wiso is a higher-order, higher
resolution (run here at �18 resolution) AGCM than SPEEDY-IER, and the computational expense restrict-
ed the simulation to a relatively shorter time interval.

We are limited to these two GCM simulations in this study: we require embedded water isotope physics to run
the PSMs, and a large prior (e.g., a last-millennium simulation) for the DA. While a number of water isotope-
enabled GCMs have been published (see Stable Water Isotope Inter-comparison Group projects SWING and
SWING2, <http://www.giss.nasa.gov/staff/gschmidt/SWING2.html>), these GCMs are quite computationally
expensive, and none have performed a publicly available last-millennium simulation with water isotopes.

2.4. PSM-Generated Pseudoproxies
We generate synthetic proxy fields via process (forward) models for each proxy type [see Evans et al., 2013 for a
review], which transform the simulated climate signal (e.g., temperature and precipitation) to synthetic proxy
observations. Each PSM includes three submodels, each of which mimics a separate transformation of the original
input signal as it would occur in nature: a sensor model, which describes any physical, geochemical or biological
processes altering the climate signal; an archive model, which accounts for any processes that affect the emplace-
ment of the signal in the proxy medium; and an observation model, which accounts for dating uncertainties and
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Figure 2. From climate signal to proxy: water isotope ratios and the ice core PSM. The GCM 1 PSM framework simulates the proxy signal
from environmental inputs. The figure shows an example for water isotope ratios in ice core annual layers: modeled ice core d18O for
Quelccaya, Peru. The signal starts as modeled T, P from the climate model simulation. The isotope-enabled GCM water isotope fields are
used to drive the PSM’s sensor and archive models which mimic diffusion and compaction processes in the core.
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analytical errors in the measurements made on the archive [Dee et al., 2015]. Example output for a forward model
of ice core d18O, showing the breakdown and output for each submodel, is given in Figure 2.

Proxy data are lossy transforms of the original climate signal (i.e., processes inherent to the proxy system
can filter out and subsequently result in considerable loss of the desired climate information) [Tolwinski-
Ward et al., 2014]. The submodel (sensor, archive, and observation) framework of PSMs helps to quantify the
information loss at each stage of the climate signal’s evolution through the proxy system. For example, Fig-
ure 2 illustrates how the original climate signal (temperature and precipitation) and the water isotope fields
are transformed by the ice core’s archive model, which accounts for compaction and diffusion. Therefore,
this proxy system modeling attempts to mimic the many climatic and/or biological processes that occur in
real proxies at seasonal to interannual time scales. While the PSMs employed here take monthly climate
inputs, they output single values in proxy units for a given calendar year, just as would be measured in
most annually-resolved proxies.

Proxy system models are driven by monthly output from water isotope-enabled climate models for each of the
locations in the above-described network. Each proxy type employs its own PSM. We used VS-Lite [Tolwinski-
Ward et al., 2010] to generate tree ring width records for all of the tree proxy locations in the network using
GCM temperature and precipitation fields; this model accounts for the seasonal dependence on tree-growth via
simple parameterizations of temperature and moisture threshold responses at monthly scales. While a number
of other variables have been used to reconstruct temperature from trees (e.g., maximum latewood density), we
are not aware of a publicly available forward model for these additional variables, and so do not consider them
here. The coral forward model follows the parameterization described in Thompson et al. [2011] and depends
on both sea surface temperature and salinity anomalies; both the ice core and coral records were modeled
using the water isotope-enabled model fields coupled with a synthesis of previously published models for water
isotopes in high-resolution proxy data (PRYSM) [Dee et al., 2015]. The ice core model takes into account precipi-
tation accumulation, local temperature, and incorporates dynamical information from the water isotope physics
fields (d18O of precipitation) of SPEEDY-IER and ECHAM5-wiso. Seasonal controls on the simulated d18O of
ice are accounted for via precipitation-weighting of the water isotopes stored in each annual layer of ice.

2.5. Reconstruction Experiments
The first of the questions we address is: how are reconstructions affected by assuming proxies are linear, univari-
ate responders to temperature? For this question, we conduct a baseline experiment, called FULL-PSM, in which
we reconstruct climate fields using PSM-derived pseudoproxies for both the proxies y and the prior estimate of
the proxies HðxbÞ (equation 1); this would be equivalent in the real reconstruction problem to saying that we
know the precise processes that lead to each proxy measurement, and these processes are fully represented by
the PSM. Then we test how well a linear temperature-proxy approximation ofHðxbÞ, called here LU-PSM for ‘‘lin-
ear univariate,’’ performs relative to the baseline experiment; this linear model is simply ŷ5b11b2 � T1�, where
ŷ is a vector of PSM-derived pseudoproxy values, bi are coefficients, T is the local surface temperature, � is a
Gaussian white noise process with zero mean (� � Nð0;r2Þ) and the fit is established over the years of the prior.
We use this linear model to substitute b11b2 � T forHðxbÞ in equation (2). The error variance residuals from the
linear fit are then used to define the diagonal elements of R (we assume off-diagonal elements are zero).

For these experiments, we use the SPEEDY-IER simulation and reconstruct the period 1251–1755. The prior
consists of the 500 total years surrounding this period, 1000–1250 and 1756–2004. The reconstructed spatial vari-
ables are 2 m air surface temperature and 500 hPa geopotential height, or Z500. These experiments were per-
formed with all the pseudoproxies (ice cores, corals, and tree rings) and each proxy individually to see which
proxies were affected most by the linearization. We repeated all of the reconstructions 100 times in a Monte Carlo
fashion, randomly sampling 75% of the proxies on each iteration. We added different noise realizations to the
proxies for each iteration to approximate small measurement errors (errors of 0.1 & for the isotope-based pseu-
doproxies and 1% errors for tree ring width measurements); the specific values of these noise realizations were
different for each iteration while the statistics of the realizations were the same. We note that the error estimates
shown in the figures are based on a combination of this Monte Carlo process and the posterior ensemble spread.

The second question we address is: do the biases inherent in climate models strongly affect the use of proxy
system models in climate reconstructions? To answer this, we use the simplified SPEEDY-IER as approxima-
tion to the more realistic ECHAM5-wiso. In other words, we claim that SPEEDY-IER is to ECHAM5-wiso

what ECHAM5-wiso or any other CMIP5-class model is to nature (the levels of simplification are comparable).
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We thus used the PSMs to generate both the proxies y and the prior estimate of the proxies HðxbÞ, but the
input fields for y come from the ECHAM5-wiso simulation while the input fields forHðxbÞ come from SPEEDY-
IER. The prior for these experiments consists of 500 randomly drawn years from the SPEEDY-IER simulation
and we reconstruct the entire 1871–2011 period of the ECHAM5-wiso simulation. The same Monte Carlo
approach employed in the first set of reconstructions was used for this second experiment.

3. Results

3.1. Linear, Univariate PSMs
Reconstructions and associated skill values for both FULL-PSM and LU-PSM experiments (as described in
section 2.5) are given in Figures 3, 4, and 5. Figure 3 shows the global mean temperature reconstructions
for both experiments. We see that the two reconstructions are largely comparable, and suggest that the lin-
ear approximation performs similarly to the FULL-PSM case. As measures of skill we report the correlation
coefficient (R) and coefficient of efficiency (CE), which is defined as Nash and Sutcliffe [1970]:

CE512

Xn

i51

ðxi2x̂i Þ2

Xn

i51

ðxi2xi Þ2
(3)

where x is the ‘‘true’’ time series, �x is the mean of the true time series, and x̂ is the reconstruction time series.
CE is a scaled measure of the mean-squared error, and rewards adequate estimation of the phase,

Figure 3. Global mean temperature reconstructions for LU-PSM and FULL-PSM experiments. (a) Global mean surface temperature recon-
struction for linearized network LU-PSM. (b) Global mean surface temperature reconstruction for PSM-generated network FULL-PSM. In
both figures, the red (Figure 3a)/blue (Figure 3b) line shows the reconstruction mean, and the black line is the true model temperature (the
target field). Color shading indicates the 62r range of the MC iterations. Skill scores (R, CE) are for the reconstructed global mean time series.
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amplitude, and mean value of the field. The correlation coefficient, R, gives a measure of the covariability in
terms of phasing between the reconstructed variables and the true variables. CE is considered the more
stringent metric, and is limited to a value less than or equal to R2. For reference, a CE of 1 indicates a perfect
reconstruction, while positive CE values are generally indicative of a skillful reconstruction. For the global
mean temperature reconstruction, R 5 0.86, CE 5 0.47 for the LU-PSM experiment, and R 5 0.84, CE 5 0.69
for the FULL-PSM experiment. Thus, marked improvements in reconstruction skill are observed as per the
more stringent CE metric with the FULL-PSM.

Exploring the improvement in the CE score in more detail, Figure 4 compares the global skill maps for R
(Figures 4a–4d) and CE (Figures 4e–4h) for both surface temperature and Z500. This figure tells a similar story
to the global mean temperature reconstructions in Figure 3, in that both FULL-PSM and LU-PSM perform
similarly for all proxies together, though with notable exceptions in areas that contain high-density group-
ings of tree rings such as over North America. The FULL-PSM shows large improvements over LU-PSM;
these results hold for both temperature and Z500, though each have different spatial patterns of skill. The
distributions of these skill metrics are summarized in Figure 5 via box plots, and confirm that for all cases,
the FULL-PSM experiment does improve the overall spatial skill of the reconstruction.

We further investigate the spatial variability in CE scores between the two methods by computing difference
maps of CE for the all-proxy network (FULL-PSM - LU-PSM), as well as difference maps for individual proxy
experiments. Figure 6 shows the difference maps for reconstruction skill for the full proxy network and by indi-
vidual proxy type for surface temperature and Z500. This allows us to assess the importance of the FULL versus
LU methodology in different proxy classes. Figure 6b highlights the fact that with the linear-univariate model,
climate information can be lost when controls other than annual temperature are important.

When all proxy types are included (Figure 6a), the largest improvements using the FULL-PSMs occur in
areas with high concentration of tree ring width records. This is a result of the fact that the tree ring width
model, VS-lite, is poorly approximated by a linear fit with temperature; indeed, VS-lite is a nonlinear, nonsta-
tionary model that allows for both temperature and moisture to interact in their effects on tree ring growth.
We note that the large difference in skill across the tropics in Figure 6b is not because the VS-lite-based
pseudo tree rings are uniquely suited to reconstructing the tropics; temperature observations at annual
time scales in the tree ring locations can provide satisfactory tropical skill [e.g., Wang et al., 2014]. Rather,
the particularly poor linear temperature approximation is the reason for the large differences in skill.

Figure 7 shows the range of the regression slopes (b2 described in section 2.5) for the LU-PSM experiment
by proxy type. The small range in the coral and ice core data demonstrates that compared to tree ring
width, these proxies have very consistent linear relationships with temperature. For the ice core network,
because the relationship between temperature and d18OICE is locally linear in SPEEDY-IER (as seen in
observations of ice cores and local temperature) [Jouzel et al., 1997], the FULL-PSM offers little improve-
ment on a linear fit. However, this locally linear response to temperature may vary amongst isotope-
enabled models, especially given the intermediate complexity of SPEEDY-IER.

Interestingly, the FULL-PSM for corals does add some skill to the reconstruction locally in the western
Pacific, but actually causes a very slight reduction in skill across much of the tropics (Figure 6c). From the
first covariance term of equation (2), we can interpret K as ‘‘spreading’’ the information contained in the
observations through the covariance between the prior and the prior-estimated observations. This implies
that, other things being equal, larger values of covðxb;HðxbÞÞ will weight the innovation more heavily; thus
this new information not contained in the prior has a bigger influence. Figure 8 shows the mean correlation
length scale between the two different pseudoproxy coral types (HðxbÞ) and the prior variables (xb). The
mean correlation length scale is found by computing point correlation maps for the coral locations, binning
these correlations by distance, and finally computing the mean of each bin. From Figure 8 we see that the
LU-PSM estimates of the corals have consistently higher correlations with surface temperature and geopo-
tential height. Thus the linear fit with temperature is effectively extracting a better climate signal from the
perspective of the reconstruction methodology: these coral proxy estimates covary more strongly with 2 m
air temperature and Z500. Certainly some information about the corals is lost in this process, but this infor-
mation turns out not to be as useful for the reconstruction.

To summarize and answer the question: how are reconstructions affected by assuming proxies are linear, univari-
ate responders to temperature?, we find that for proxy systems that exhibit a generally linear response to
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temperature, the LU-PSM experiment performs just as well reconstructing past temperature as the
FULL-PSM representation. However, we note that as discussed in section 2.1, the particular assumptions
of the DA method used here may underestimate the potential skill of a FULL-PSM-like experiment that
one could achieve with a fully nonlinear DA method (e.g., a particle filter). As expected, nonlinear, multi-
variate proxy system models offer improved reconstruction skill when the proxy response is clearly

Figure 4. Spatial reconstruction skill for LU-PSM and FULL-PSM experiments. (a) R statistic, surface temperature, LU-PSM. (b) R statistic,
FULL-PSM. (c) R statistic, Z500, LU-PSM. (d) R statistic, Z500, FULL-PSM. (e) CE statistic, surface temperature, LU-PSM. (f) CE statistic,
FULL-PSM. (g) CE statistic, Z500, LU-PSM. (h) CE statistic, Z500, FULL-PSM. Proxy sites/types are superimposed on all maps.
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nonlinear and/or multivariate. In the case of tree ring width, which harbors dual sensitivity to temperature
and moisture, as well as threshold effects in both, using a FULL-PSM representation yields a large
improvement in reconstruction skill. Put differently, approximating temperature-proxy relationships with

Figure 5. Box plot summary of the distribution of all spatial values for skill scores, LU-PSM versus FULL-PSM. Range of R and CE values at
all model grid cells for (a) global mean surface temperature and (b) geopotential height at 500 hPa.
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a linear, univariate model causes a considerable loss in the amount of retrievable climate information
when this assumption is violated.

3.2. Structural Modeling Error
We now tackle our second motivating question and assess the impacts of structural modeling error (SME) in
GCMs. Climate models do not provide a perfect representation of nature, and thus their use in the DA

Figure 6. Reconstruction skill sensitivity to imposed linearity in proxy systems: difference maps (CE) for [FULL-PSM - LU-PSM]. Improve-
ment in CE for (a) full network, (b) tree ring width network only, (c) coral network only, and (d) ice core network only. Proxy sites/types
superimposed on all maps.
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framework as inputs for the PSMs
introduces uncertainties in the recon-
struction process. In this context, struc-
tural model error pertains to the
differences between GCM(s) and
nature (via both structural and para-
metric uncertainty), and not variability
among different GCMs.

To explicitly test the impacts of GCM
SME, we use a different GCM
(ECHAM5-wiso) [Werner et al., 2011]
and assign it to represent the ‘‘truth’’
(nature), while SPEEDY-IER gener-
ates the background climate state that
is used to reconstruct the true state
from noisy pseudoproxies. Referring
back to equation (1), ECHAM5-wiso-
generated pseudoproxies are used as
y, or the ‘‘real’’ proxy observations, and
SPEEDY-IER-generated pseudoprox-
ies are HðxbÞ, the ‘‘estimated’’ proxy.
The experiment simulates the case
where the prior is not drawn from the
‘‘true’’ distribution of climate state vec-

tors, but instead an imperfect approximation of that distribution. The present work is the first to embed
multiple PSMs in the DA framework, so we conducted this experiment to broaden awareness of uncertain-
ties that may limit the usefulness of the method.

Figure 9 shows box plot summaries of the reconstructions from section 3.1 together with the SME experiment.
From this comparison, we see that the imposition of SME to the FULL-PSM reconstruction causes a large skill
reduction in both R and CE. These results suggest that if the DA prior is not drawn from the true distribution,
SMEs carry forward through the PSMs and markedly reduce reconstruction skill. Therefore, structural biases
housed in GCMs may prove an important limiting factor in using PSMs for climate reconstructions.

We thus performed two companion experiments to investigate how the impacts of SME may be mitigated.
The first approach is to simply revert to the linear mapping between climate and proxy as done in parts of
section 3.1. Using the LU-PSM method could prevent the introduction and subsequent propagation of

Figure 7. Regression parameters for the LU-PSM experiment. (left) Corals, (mid-
dle) TRW, and (right) ice cores. See description for regression parameters (b) in
section 2.5.

Figure 8. Correlation length scale. Mean correlation length scales for the FULL-PSM (purple) and LU-PSM (orange) corals and the
reconstructed variables, (a) surface temperature and (b) geopotential height.
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large structural errors via the PSMs because the proxy estimates, HðxbÞ, are calibrated to the true state. The
second approach to mitigating SME is to apply a bias-correction to the outputs of SPEEDY-IER to more
closely match ECHAM5-wiso; these outputs are the inputs to the PSMs, and so we would expect the recon-
struction to improve if the PSM had comparable inputs to the true state. (The bias-corrections were made
by correcting the mean and standard deviation of SPEEDY-IER’s monthly temperature, sea surface tem-
perature, sea surface salinity, and water isotope fields at individual spatial points to match those of
ECHAM5-wiso; for the precipitation fields, the bias-correction involved fitting a two-parameter gamma dis-
tribution to the monthly ECHAM5-wiso precipitation and applying that fit to SPEEDY-IER.)

Figure 10 shows the temperature reconstruction results of the two companion experiments together with
the initial SME experiment. The figure contrasts the initial SME experiment (Figure 10a) with the two SME-
mitigated experiments (Figures 10b–10g). Figures 10c, 10d, 10f, and 10g show the difference in skill (for
both R and CE) between the SME-mitigating experiments and the initial SME experiment. Positive values
(red) indicate that the SME-mitigating experiments improve the skill. It is evident that the temperature
reconstructions are clearly improved by both SME mitigating strategies.

Our results applying a simple bias-correction to the SPEEDY-IER climate fields suggests that to mitigate the
existence of SME while taking advantage of fully nonlinear/multivariate PSMs, one can draw upon the extensive
literature on GCM bias-correction and potentially retain the benefits provided by the nonlinear PSMs. For exam-
ple, recent studies have made significant gains using medical imaging techniques to modify erroneous GCM
features towards observed structures [Levy et al., 2013, 2014]. These and other corrective approaches could help
mitigate SME, hence boosting the utility of PSMs within the DA framework. Statistical bias-corrections are not a
panacea, however, and improvements to GCM resolution and physics should remain a priority.

Thus, to answer our second question, do the biases inherent in climate models prohibit the effective use of
proxy system models in climate reconstructions?: structural model biases introduce uncertainties propagated
by PSMs in our experimental framework, and these uncertainties systematically reduce reconstruction skill.

Figure 9. Reconstruction skill sensitivity to structural modeling error (SME). The two box plots compare the skill metrics ((left) CE and
(right) R) for each of the experiments in this study: FULL-PSM, LU-PSM, and the FULL-PSM with imposed SME. Red dots indicate outliers
beyond the [61.5�IQR] range.
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The reduction in skill due to SME is also larger than that induced by using linear-univariate approximations
to the proxy system models (Figure 9). However, the reduction in skill due to SME alone can be mitigated
using linear mapping where proxy data is calibrated against the true prior. Further, applying a bias-
correction to the GCM fields can partially mitigate SME for application with the FULL-PSM implementation.
In general, because model biases outweigh information loss due to proxy system simplification, a strategy
for coping with SME is critical, even in the ideal case where PSMs perfectly represent the natural filtering of
proxy systems.

Figure 10. Reconstruction skill sensitivity to structural model errors: ECHAM5-wiso and SPEEDY-IER. (a) Global mean temperature reconstruction, initial experiment (FULL-
PSM 1 SME), (b) global mean temperature reconstruction using Experiment 1: linear-univariate mapping as a bias-correction (LU-BIASCORR), (c) difference in R, LU-BIASCORR experiment
minus FULL-PSM1SME experiment, (d) as in Figure 10c but for CE, showing improvement in reconstruction when LU-BIASCORR is used to offset the effects of SME. (e) Global mean tem-
perature reconstruction using Experiment 2: GCM-bias-correction prior to use as GCM-inputs (GCM-BIASCORR), (f) difference in R, GCM-BIASCORR experiment minus FULL-PSM 1 SME
experiment, (g) as in Figure 10f but for CE, showing improvement in reconstruction when GCM-BIASCORR is used to offset the effects of SME.
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4. Discussion

This study investigated the potential for embedding process-based models of proxy systems (PSMs) in a
paleoclimate DA framework. We explored key assumptions surrounding the implementation of PSMs using
DA to reconstruct climate over the past several centuries. In particular, our study scrutinized the impacts of
two key assumptions of this framework.

First, we compared two experiments, one which used a linear, univariate representation (LU-PSM) and one which
used more complex models (FULL-PSM) for proxy systems, to evaluate the impact on temperature reconstruction
skill due to the assumption of a linear relationship between proxies and temperature. If a simple linear model to
estimate all proxy data will suffice, it could be argued that building PSMs into our modeling framework is unneces-
sary. Indeed, we have shown that for some proxy types (coral and ice core d18O), assuming a linear, univariate
mapping between climate and proxy is probably robust. However, as shown in section 3.1, a very accurate FULL-

PSM will likely yield superior DA results compared to those based on empirical linear LU-PSMs. For tree ring width
proxies in particular, we demonstrated that reconstruction skill using a nonlinear, multivariate model increases
markedly when the proxies are sensitive to variables other than temperature. For tree rings (a major indicator of
hydroclimate variability in western North America) and potentially other proxies not considered here, PSMs may
improve reconstruction skill considerably when the proxy response is clearly nonlinear and/or multivariate.

Second, we explored the effects of structural modeling error. This test assumed that the DA prior is not
drawn from the true distribution of climate states, acknowledging the fact that GCMs are an imperfect rep-
resentation of nature. Because GCM structural errors propagate through the PSMs, these biases are found
to adversely and systematically affect reconstruction skill. In fact, these reductions in skill exceed those
incurred when assuming a simple linear-univariate model between proxy and temperature. This caveat sug-
gests a need for caution when including PSMs in a climate reconstruction framework. As shown in section
3.2, at least two strategies are possible for mitigating the detrimental effects of model biases: (1) the use of
a linear mapping between climate and proxy (calibrated to observations) and (2) employing a bias-
correction to the GCM fields prior to their use in PSMs. In general, our results suggest that DA-based recon-
structions rest more critically on the accuracy of GCMs than that of PSMs, and we call for a renewed focus
on reducing GCM biases [Flato et al., 2013].

PSMs move us closer to higher-order, physically motivated representations of proxy systems; however, the non-
linear PSM networks designed in this study are only a first pass. In nature, many of these systems are highly
complex and difficult to accurately model. As discussed, our results suggest that reconstruction skill improves
for some proxy systems using nonlinear PSMs within DA, but these results may be dependent on the pseudo-
proxy experimental design. Factors such as GCM complexity and structural model errors, water isotope physics
scheme, proxy network distribution (type and spatial coverage), or the structural design of each PSM all contrib-
ute to a modeling framework which may not be representative of nature. Thus, ongoing and future work
towards real-proxy reconstructions must validate both the PSMs and the GCMs against observations.

This paper provides a stepping stone toward a fully operational paleoclimate reanalysis at annual scales,
building upon the work of Annan et al. [2005], Dirren and Hakim [2005], Goosse et al. [2006], Bhend et al.
[2012], Steiger et al. [2014], Tardif et al. [2014], and many others. By exploring some of the technical details
of embedding nonlinear proxy system models in a data assimilation framework, we showed that these
methods have the potential to enhance the utility of paleoclimate observations for constraining climate
models. However, this hinges critically on a strategy for mitigating structural biases introduced by GCMs,
and on the existence of well-specified PSMs. We leave a complete investigation of structural, dating, and
parametric uncertainties in PSMs for future study.
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