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Abstract. We present a compilation of 127 time series
δ13C records from Cibicides wuellerstorfi spanning the last
deglaciation (20–6 ka) which is well-suited for reconstruct-
ing large-scale carbon cycle changes, especially for com-
parison with isotope-enabled carbon cycle models. The age
models for the δ13C records are derived from regional plank-
tic radiocarbon compilations (Stern and Lisiecki, 2014). The
δ13C records were stacked in nine different regions and then
combined using volume-weighted averages to create inter-
mediate, deep, and global δ13C stacks. These benthic δ13C
stacks are used to reconstruct changes in the size of the ter-
restrial biosphere and deep ocean carbon storage. The tim-
ing of change in global mean δ13C is interpreted to indicate
terrestrial biosphere expansion from 19–6 ka. The δ13C gra-
dient between the intermediate and deep ocean, which we
interpret as a proxy for deep ocean carbon storage, matches
the pattern of atmospheric CO2 change observed in ice core
records. The presence of signals associated with the terres-
trial biosphere and atmospheric CO2 indicates that the com-
piled δ13C records have sufficient spatial coverage and time
resolution to accurately reconstruct large-scale carbon cycle
changes during the glacial termination.

1 Introduction

On glacial–interglacial timescales, carbon cycle changes re-
distribute the amount of carbon stored in the deep ocean,
atmosphere, and terrestrial biosphere (e.g., Broecker, 1982;
Siegenthaler et al., 2005). For example, as atmospheric
CO2 increased across the deglaciation, atmospheric δ13C de-
creased, likely due to the ventilation of respired 13C-depleted

carbon from the deep ocean (e.g., Schmitt et al., 2012; Eggle-
ston et al., 2016). However, identifying the biogeochemi-
cal mechanisms associated with these carbon transfers is
complicated by a variety of carbon cycle feedbacks (e.g.,
Archer et al., 2000; Sigman and Boyle, 2000; Peacock et al.,
2006; Toggweiler et al., 2006; Kohfeld and Ridgwell, 2009;
Brovkin et al., 2012; Menviel et al., 2012; Galbraith and Jac-
card, 2015; Buchanan et al., 2016). This study seeks to im-
prove our understanding of glacial–interglacial carbon cycle
changes by reconstructing changes in mean ocean δ13C and
its vertical gradient and comparing the results with changes
in the terrestrial biosphere and atmospheric CO2.

The δ13C of benthic foraminiferal calcite is a well-
established carbon cycle proxy, which records the δ13C sig-
nature of dissolved inorganic carbon (DIC) in seawater at
seafloor depths (e.g., Woodruff and Savin, 1985; Zahn et al.,
1986; Lutze and Thiel, 1989; Duplessy et al., 1988; Mack-
ensen, 2008; Gottschalk et al., 2016; Schmittner et al., 2017).
Averages of benthic foraminiferal δ13C time series, called
stacks, can improve the signal-to-noise ratio of regional or
global seawater changes (e.g., Lisiecki et al., 2008; Lisiecki,
2014). Global mean benthic δ13C change is likely caused
by changes in terrestrial organic carbon storage (Shackleton,
1977; Curry et al., 1988; Duplessy et al., 1988; Ciais et al.,
2012; Peterson et al., 2014), while vertical δ13C gradients
may record changes in deep ocean carbon storage and atmo-
spheric CO2 (Oppo and Fairbanks, 1990; Flower et al., 2000;
Hodell et al., 2003b; Lisiecki, 2010). The vertical δ13C gra-
dient between the surface (high δ13C) and deep ocean (low
δ13C) primarily results from the accumulation of low-δ13C-
respired organic carbon in deep water, which temporarily se-
questers it from the atmosphere. Conversely, vertical mix-
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ing of the ocean will tend to ventilate deep ocean carbon
to the surface ocean and atmosphere while simultaneously
decreasing the vertical δ13C gradient. Therefore, the verti-
cal δ13C gradient likely records changes in deep ocean car-
bon storage, which is an important factor controlling glacial–
interglacial changes in atmospheric CO2 (e.g., Schmitt et al.,
2012; Eggleston et al., 2016).

Here we compile and analyze 127 high-resolution benthic
δ13C records from the Atlantic, Pacific, and Indian oceans
spanning the last deglaciation to investigate changes in both
the ocean and terrestrial biosphere components of the global
carbon cycle. Benthic δ13C records are combined into re-
gional stacks, which are then used to construct time series
of volume-weighted global mean δ13C and the vertical δ13C
gradient between intermediate and deep waters.

We analyze these stacks to test the following hypotheses:

1. The deglacial pattern of global mean ocean δ13C change
is a proxy for changes in the size of the terrestrial bio-
sphere. If so, global mean δ13C should continue to in-
crease after atmospheric CO2 levels plateau at 11 ka due
to the slower response times for ice sheet retreat and
ecosystem change (e.g., Hoogakker et al., 2016; Davies-
Barnard et al., 2017). We compare the reconstructed
global mean δ13C change with several carbon cycle
model estimates of terrestrial biosphere change. Addi-
tionally, we evaluate whether deep Pacific δ13C corre-
lates with global mean δ13C change as previously as-
sumed (Shackleton et al., 1983; Curry and Oppo, 1997;
Lisiecki et al., 2008). This study provides the first op-
portunity to compare time series of deep Pacific δ13C
with a volume-weighted global mean δ13C stack.

2. Changes in the vertical δ13C gradient should closely re-
semble time series of atmospheric CO2 if the deglacial
CO2 increase is caused by a decrease in deep ocean car-
bon storage. This hypothesis is supported by findings on
orbital timescales using a smaller number of sites (Oppo
and Fairbanks, 1990; Flower et al., 2000; Hodell et al.,
2003b; Lisiecki, 2010), but the link between the verti-
cal δ13C gradient and CO2 has not yet been evaluated
at millennial timescales or using a global data compi-
lation. Observing such a link would improve our un-
derstanding of deglacial atmospheric CO2 increase and,
furthermore, demonstrate that the data compilation pre-
sented here has adequate spatial and temporal resolu-
tion with sufficiently precise age models to reconstruct
millennial-scale changes in the global carbon cycle.

2 Background

2.1 Benthic δ13C reconstructions

Measurements of δ13C from the calcite tests of epiben-
thic foraminifera Cibicides wuellerstorfi and related species

(Schweizer et al., 2009) are commonly used to trace the spa-
tial distribution of nutrients and deep water masses as well as
changes in ocean carbon cycling (e.g., Curry et al., 1988; Du-
plessy et al., 1988; Curry and Oppo, 2005; Schmittner et al.,
2017). Benthic δ13C is also slightly influenced (< 15 %) by
changes in carbonate ion concentration of sea water (Schmit-
tner et al., 2017). Additionally, the Cibicides species C. kul-
lenbergi and C. mundulus, often measured in deep South At-
lantic cores, appear to record more depleted δ13C values than
C. wuellerstorfi (Gottschalk et al., 2016).

Mean δ13C has been estimated for the Last Glacial Maxi-
mum (LGM, 20 ka) and Late Holocene (6–0 ka) using global
compilations of Cibicides wuellerstorfi δ13C records (e.g.,
Shackleton, 1977; Duplessy et al., 1988; Curry et al., 1988;
Boyle, 1992; Matsumoto and Lynch-Stieglitz, 1999; Curry
and Oppo, 2005; Herguera et al., 2010; Oliver et al., 2010;
Hesse et al., 2011; Peterson et al., 2014; Gebbie et al.,
2015). These time slice studies include as many as 500 core
sites, but generally undersample portions of the ocean with
poor carbonate preservation, low primary productivity, and
low sedimentation rates (i.e., the Southern Ocean south of
55◦ S, the Indian Ocean, and the Pacific Ocean). In contrast,
some portions of the Atlantic, especially the North Atlantic,
are relatively well-sampled with abundant, well-preserved C.
wuellerstorfi. Therefore, whole-ocean mean δ13C change is
less well-constrained than Atlantic δ13C.

Because deglacial carbon cycle changes occurred on mil-
lennial to centennial timescales (Marcott et al., 2014), ob-
serving these changes in the ocean requires a global compi-
lation of high-resolution benthic δ13C time series on a con-
sistent age model across the glacial termination. Previous
global compilations of δ13C time series focus on orbital-
scale responses because their age models are not precise
enough to analyze the relative timing of carbon cycle changes
during the deglaciation (e.g., Lisiecki et al., 2008). For ex-
ample, Oliver et al. (2010) caution that their global δ13C
data synthesis, which includes 258 records from many ben-
thic and planktic foraminifera species, should not be used
to analyze δ13C changes on timescales of less than 10 kyr
due to age model uncertainty and the inclusion of low-
resolution records. Instead, studies of δ13C change across
the last glacial termination often use local or regional depth
transects that contain high-resolution δ13C records with good
age control (e.g., Sarnthein et al., 1994; Thornalley et al.,
2010; Hoffman and Lund, 2012; Tessin and Lund, 2013;
Lund et al., 2015; Oppo et al., 2015; Sikes et al., 2016).
In modeling studies, transient simulations are typically com-
pared to a small number of individual benthic δ13C records
or regional syntheses, presumably due to the limitations of
available global δ13C compilations (e.g., Köhler et al., 2005,
2010; Brovkin et al., 2007).

Clim. Past, 14, 1229–1252, 2018 www.clim-past.net/14/1229/2018/



C. D. Peterson and L. E. Lisiecki: Deglacial benthic carbon isotope stacks 1231

2.2 Terrestrial biosphere and mean ocean δ13C

A portion of the additional carbon released from the deep
ocean since the LGM was taken up by the terrestrial bio-
sphere. The transfer of carbon between the terrestrial bio-
sphere and the deep ocean affects the global mean value of
benthic δ13C because the mean δ13C signature of the ter-
restrial biosphere is significantly more negative (approxi-
mately −25 ‰) than mean ocean δ13C (approximately 0 ‰)
(Shackleton, 1977). The change in global mean benthic
δ13C between the LGM and the Holocene is estimated to
be 0.32 ‰± 0.20 ‰ (Peterson et al., 2014; Gebbie et al.,
2015), but the timing of mean benthic δ13C change across
the deglaciation is not well known.

The amount of terrestrial carbon storage change (soils and
vegetation) can be reconstructed in many ways, including
terrestrial vegetation proxies and archives (e.g., pollen, pa-
leovegetation); carbon cycle models (e.g., box models, in-
verse methods, dynamic global vegetation models, biomiza-
tion methods, etc.); and proxies such as benthic δ13C, triple
oxygen isotopes (Landais et al., 2007), and atmospheric car-
bonyl sulfide (Aydin et al., 2016). These methods produce
estimates of change in terrestrial carbon storage between the
LGM and Holocene varying from 200–1900 PgC due to un-
certainties and assumptions associated with each method (see
discussion and citations within Peterson et al., 2014).

Due to uncertainties in the total magnitude of change, here
we focus on comparing the timing of changes in terrestrial
carbon storage and global mean benthic δ13C. Models simu-
late rapid increases in terrestrial carbon storage from approx-
imately 19–10 ka, followed by more gradual changes from
10–0 ka (Kaplan et al., 2002; Joos et al., 2004; Köhler et al.,
2005). More recently, the potential effects of changes in
poorly constrained carbon reservoirs (e.g., beneath ice sheets
and on continental shelves) were evaluated using deglacial
simulations of biogeophysical and land carbon changes from
the HadCM3 general circulation model (GCM). The model
simulated a rapid increase in terrestrial carbon storage from
20–14 ka, different responses between 14–11 ka depending
on the model scenario, and then steady, gradual change from
11–4 ka (Davies-Barnard et al., 2017).

Estimates of global mean benthic δ13C are also used to
remove global changes from individual δ13C records to iden-
tify patterns of local or regional change, e.g., related to ocean
circulation. Because estimates of global mean δ13C have only
been available for the LGM and Holocene, some studies use
deep Pacific δ13C time series as a proxy for global mean
δ13C change (Shackleton et al., 1983; Curry and Oppo, 1997;
Lisiecki et al., 2008). Given the large volume and carbon
storage capacity of the deep Pacific, its δ13C change should
be similar in magnitude and timing to the mean ocean δ13C
change; however, no study has yet confirmed this relation-
ship. For example, low sedimentation rates and poor carbon-
ate preservation in the deep Pacific may limit how well deep
Pacific δ13C time series resolve changes in mean ocean δ13C.

Additionally, large changes in Atlantic or Indian Ocean δ13C
could alter the timing of global mean δ13C relative to the Pa-
cific. By constructing a global benthic δ13C stack, we can
now directly compare deep Pacific δ13C with global mean
δ13C change across the deglaciation.

2.3 Vertical gradients in benthic δ13C

A vertical gradient in the δ13C of DIC between surface-to-
intermediate waters and deep water results from a combi-
nation of physical, chemical, and biological processes. The
air–sea gas exchange of CO2 between the atmosphere and
surface ocean generates a temperature-dependent fraction-
ation (Lynch-Stieglitz et al., 1995). Biological productivity
in the surface ocean preferentially incorporates 12C into or-
ganic molecules, leaving 13C-enriched DIC in surface wa-
ters. Conversely, deep water becomes depleted in 13C due to
remineralization of sinking organic carbon with a δ13C signa-
ture of approximately −25 ‰. The accumulation of respired
organic carbon in the deep ocean gradually increases deep
water’s DIC concentration while decreasing its δ13C value.
Thus, sinking organic carbon simultaneously creates vertical
gradients in both δ13C and DIC, creating low δ13C and high
DIC in the deep ocean and high δ13C and low DIC in the sur-
face ocean. However, deep water δ13C is also affected by the
transport of relatively high-δ13C North Atlantic Deep Water
into the deep Atlantic, where it mixes with low-δ13C waters
from the Southern Ocean (Talley, 2013).

Numerous δ13C records from the well-characterized At-
lantic Ocean demonstrate an enhanced vertical δ13C gradi-
ent between intermediate and deep water during the LGM
(e.g., Curry and Lohmann, 1982a; Curry et al., 1988; Dup-
lessy et al., 1988; Sarnthein et al., 1994; Hodell et al., 2003b;
Curry and Oppo, 2005; Marchitto and Broecker, 2006; Her-
guera et al., 2010). The less well-sampled Pacific and Indian
oceans also show signs of enhanced stratification at the LGM
based on stronger vertical δ13C gradients and other nutrient
and ventilation proxies (e.g., Kallel et al., 1988; Matsumoto
and Lynch-Stieglitz, 1999; Matsumoto et al., 2002; Herguera
et al., 2010; Lund et al., 2011b; Allen et al., 2015; Sikes et al.,
2016).

Multiple causes have been proposed for stronger vertical
δ13C gradients during the LGM, including increased sur-
face productivity and export, increased ocean stratification,
and changes in preformed δ13C in regions of deep water
formation (e.g., Matsumoto et al., 2002; Curry and Oppo,
2005; Marchitto and Broecker, 2006; Lynch-Stieglitz et al.,
2007; Marinov et al., 2008a, b; Herguera et al., 2010; Hesse
et al., 2011; Lund et al., 2011a, b; Allen et al., 2015; Geb-
bie et al., 2015; Schmittner and Somes, 2016; Gloege et al.,
2017; Menviel et al., 2017). Therefore, the large vertical
δ13C gradient at the LGM could indicate a strong biological
pump and/or weak vertical mixing, either of which would in-
crease deep ocean carbon storage. Although studies do not
agree about the relative importance of different mechanisms
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Figure 1. Locations of 127 core sites compiled for this study, color coded by LGM δ13C estimates at each core site. Markers indicate
locations of cores in the nine regions: INA is the intermediate North Atlantic; UDNA is the upper deep North Atlantic; LDNA is the lower
deep North Atlantic; ISA is the intermediate South Atlantic; DSA is the deep South Atlantic; II is the intermediate Indian; DI is the deep
Indian; IP is the intermediate Pacific; DP is the deep Pacific.

in creating this vertical gradient, the consensus is that the en-
hanced vertical δ13C gradient at the LGM is consistent with
greater deep ocean carbon storage and that this carbon was
transferred to the atmosphere and terrestrial biosphere during
the glacial termination. Multiple processes likely contribute
to the deglacial pCO2 rise (Bauska et al., 2016), including
ocean temperature increase, enhanced Southern Ocean mix-
ing rates and the role of sea ice (e.g., Fraçnois et al., 1997;
Crosta and Shemesh, 2002; Gildor et al., 2002; Hodell et al.,
2003b; Paillard and Parrenin, 2004), decreased alkalinity and
carbon inventories (Yu et al., 2014; Kerr et al., 2017), re-
duced biological pump (Buchanan et al., 2016), enhanced
global ocean circulation (Buchanan et al., 2016), and coral
reef growth (e.g., Vecsei and Berger, 2004).

On orbital timescales, changes in the intermediate-to-
deep vertical δ13C gradient closely match atmospheric CO2,
with weaker vertical δ13C gradients corresponding to higher
CO2 levels (Oppo and Fairbanks, 1990; Flower et al., 2000;
Hodell et al., 2003b; Köhler et al., 2010; Lisiecki, 2010).
This relationship suggests that many of the processes af-
fecting CO2 also alter the vertical δ13C gradient. Here we
evaluate the relationship between atmospheric CO2 and ver-
tical δ13C change at millennial resolution across the deglacia-
tion. It is beyond the scope of this study to evaluate how
much of the change in CO2 and the vertical δ13C gradient
at the LGM is associated with specific processes, such as
changes in the biological pump (Archer et al., 2003; Köh-
ler et al., 2005; Brovkin et al., 2007; Galbraith and Jaccard,
2015), deep water formation (McManus et al., 2004; Curry
and Oppo, 2005), and/or Southern Ocean stratification (Lund
et al., 2011b; Burke and Robinson, 2012).

3 Data

This study presents a compilation of 127 previously pub-
lished benthic δ13C time series of Cibicides wuellerstorfi
in per mil relative to Vienna PeeDee Belemnite (V.P.D.B.;
Fig. 1; Table A1 in the Appendix). Each record in the compi-
lation spans the time range 20–6 ka. Analysis does not ex-
tend after 6 ka because cores from several data-sparse re-
gions were either of a too low resolution or missing sedi-
ment from 6–0 ka. We only include δ13C records with mean
sample spacing better than 3 kyr, and 87 % have a mean sam-
ple spacing of less than 2 kyr. We excluded any records with
sample gaps of 4 kyr or larger and excluded any cores af-
fected by the phytodetritus effect (“Mackensen effect”) as as-
sessed by the original authors and the criteria from Peterson
et al. (2014). We included one C. kullenbergi record from
the deep South Atlantic (MD07-3076Q; Waelbroeck et al.,
2011), which may record a more negative δ13C value than C.
wuellerstorfi at the LGM (Gottschalk et al., 2016). Addition-
ally, we use some cores with samples labeled “C. spp” that
may include some C. kullenbergi (Table A1).

4 Methods

4.1 Age models

For nearly all cores we use the age models of Stern and
Lisiecki (2014) based on regional benthic δ18O alignments
and seven regional age models. Each of the seven regions has
an age model based on planktic 14C measurements from mul-
tiple cores; 14C dates are combined across cores by assum-
ing that benthic δ18O is synchronous within each region (but
not necessarily between regions). The first step of this pro-
cess was generating an initial radiocarbon age model for each

Clim. Past, 14, 1229–1252, 2018 www.clim-past.net/14/1229/2018/



C. D. Peterson and L. E. Lisiecki: Deglacial benthic carbon isotope stacks 1233

of the 61 cores by using that core’s radiocarbon dates, the
Bayesian age modeling software Bacon (Blaauw and Chris-
ten, 2011), the Marine13 calibration (Reimer et al., 2013),
and constant 405 14C-yr reservoir ages. Bacon was used to
estimate 14C-based ages at specified depths throughout each
core, including Monte Carlo uncertainty estimates that in-
crease with distance from the 14C measurements. To identify
the core-specific depths for which 14C-based ages would be
combined, each core’s benthic δ18O record was aligned to
an Atlantic or Pacific target core using the alignment soft-
ware Match (Lisiecki and Lisiecki, 2002). Creating regional
age models maximizes the total number of 14C dates which
contribute to each age model. For example, the intermediate
Pacific age model is derived from 14 sediment cores that in-
clude a total of 160 radiocarbon dates. The final age model
for each core in Stern and Lisiecki (2014) was produced by
converting from a (transitional) target age model based on
benthic δ18O alignment to a regional composite radiocarbon
age model.

Our compilation also includes δ13C records from 10 South
Atlantic cores that were not included in Stern and Lisiecki
(2014) and for which we used the core’s published radiocar-
bon age models (Sortor and Lund, 2011; Hoffman and Lund,
2012; Tessin and Lund, 2013; Lund et al., 2015). These cores
are denoted with asterisks in Table A1. The bulk of data com-
pilation work for this study occurred in 2010–2015, and more
recently published data are not included.

Stern and Lisiecki (2014) estimate 95 % confidence inter-
vals for each regional age model using 10 000 Monte Carlo
age samples for each core from Bacon. Age uncertainty es-
timates for each region include the effects of any errors in
benthic δ18O alignment because alignment errors would in-
crease scatter in the compiled radiocarbon dates (by align-
ing portions of cores with different ages) and, thus, increase
the observed spread in age estimates. For the time range of
6–20 kyr used in our δ13C compilation, the 95 % confidence
interval widths of the regional age models range from 0.5–
2.0 kyr. Although Match does not quantify alignment uncer-
tainty, alignment uncertainties have been estimated using a
similar algorithm, called HMM-Match (Lin et al., 2014). For
age models generated either by δ18O alignment or radiocar-
bon dating, the amount of age uncertainty depends on the
time resolution of the δ18O or 14C data, respectively. A com-
parison of 15 low-latitude Pacific cores found that 14C-based
age uncertainty is comparable to, if not greater than, the un-
certainty associated with δ18O alignments by HMM-Match
(Khider et al., 2017).

4.2 Stacking

After compiling all 127 records of their previously pub-
lished age models, we use spatial patterns in benthic δ13C
to define nine ocean regions, for example, based on different
LGM δ13C values for intermediate and deep sites (Fig. 2). In
the North Atlantic, we separate the intermediate North At-

lantic (INA, 0.5–2 km) from the upper deep North Atlantic
(UDNA, 2–4 km) and the lower deep North Atlantic (LDNA,
> 4 km). Because the South Atlantic has fewer records than
the North Atlantic (Table 1) and a different vertical δ13C
structure (Fig. 2), we define the intermediate South Atlantic
(ISA) as 0.5–2.5 km, and the deep South Atlantic (DSA) as
> 2.5 km. Although a zonal gradient is evident in the inter-
mediate South Atlantic (Fig. 1), as also observed by Peterson
et al. (2014), we combine all ISA records into a single region
because only three sites are available in the east. We sepa-
rate the Indo-Pacific into four regions: the intermediate In-
dian (II, 0.5–2 km), intermediate Pacific (IP, 0.5–2 km), deep
Indian (DI,> 2 km), and deep Pacific (DP,> 2 km). The lon-
gitude boundaries between the Atlantic, Indian, and Pacific
basins are the same as in Peterson et al. (2014). Most regions
contain at least six sites; however, the intermediate and deep
Indian regions each contain only two sites.

Although sea level rises globally by about 130–134 m
(Lambeck et al., 2014; Clark et al., 2009) across the deglacia-
tion, the volumetric change associated with deglacial sea
level rise is small, less than 3 %. Therefore, we use mod-
ern water depths and volumes for all sites at all time steps.
This preserves the spatial dimensions of the regions and pre-
vents cores near region boundaries from switching between
regions during the deglaciation.

To create regional stacks, we interpolated all benthic δ13C
records to an even 1 kyr spacing and averaged all records
within each region (Fig. 2; Table A1). The δ13C time se-
ries for sites KNR159-5-90GGC and KNR159-5-22GGC do
not include 20 and 6 ka, respectively (Lund et al., 2015); at
these times, the relevant sites were excluded from the re-
gional average (Fig. 2 and the animation in the Supplement).
Intermediate, deep, and global mean δ13C stacks (Figs. 3, 4)
are calculated by averaging the regional stacks using volume
weighting as a percent of total volume over a depth range of
0.5–5 km (Table 1). Thus, we represent regions proportional
to their volume rather than over-representing well-sampled
regions.

4.3 Stack limitations and uncertainty

Although our global stack includes benthic δ13C records
from the Atlantic, Indian, and Pacific oceans, it does not
include data from the Southern Ocean, Arctic Ocean, or
shallow inland seas. Additionally, our compilation only in-
cludes benthic δ13C records from below 0.5 km. Although
planktic δ13C data suggest that mixed layer δ13C values
may closely track atmospheric δ13C change (Eggleston et al.,
2016; Hertzberg et al., 2016), we refrain from interpreting or
making assumptions about δ13C above 0.5 km. It is beyond
the scope of the current study to quantify stack uncertainty
associated with portions of the ocean which lack C. wueller-
storfi δ13C time series.

Uncertainty estimates for δ13C from C. wuellerstorfi range
from 0.1 ‰ (Marchal and Curry, 2008) to 0.22 ‰ (exper-
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Figure 2. The three-dimensional structure of δ13C in the Indian and Pacific oceans (a, c) and Atlantic (b, d) shown as zonally collapsed
cross sections (latitude vs. modern water depth) with the same marker scheme as in Fig. 1. Dotted lines indicate region boundaries. Colors
show the δ13C value at each site for the LGM (20 ka, a, b) and Holocene (6 ka, c, d). Note that latitudes on the x axis are oriented so the
Southern Ocean is in the center of the figure. Additional time slices (in 1 kyr intervals from 20–6 ka) and an animation of deglacial δ13C
changes can be found in the Supplement.

iments “LW” and “CW” in Schmittner et al., 2017). Ac-
counting for the carbonate ion concentration of seawater can
improve the accuracy of benthic δ13C (Schmittner et al.,
2017), but estimates of carbonate ion changes throughout
the deglaciation are scarce. In the absence of carbonate ion
data, a linear regression can be used to convert between C.
wuellerstorfi δ13C and DIC δ13C (regressions LW6 and CW6
in Schmittner et al., 2017). However, because our study fo-
cuses on the timing of δ13C change rather than its amplitude,
we present all δ13C data using the values originally measured
in foraminiferal calcite.

Interpolating the δ13C records to an even 1 kyr spacing in-
troduces an additional source of uncertainty in the data. Al-
though combining information from multiple records inher-

ently risks distorting the true ocean state, this risk is counter-
balanced by the potential for improved signal-to-noise ratio
when estimating regional and global signals. In the Supple-
ment, we provide the original, uninterpolated records for all
127 sites, which could be used for comparison with transient
deglacial ocean circulation experiments. Because age model
uncertainties are approximately 1–2 kyr (Stern and Lisiecki,
2014) and some of the δ13C records analyzed have sample
spacings of 2–3 kyr, our interpretation focuses on δ13C fea-
tures with timescales of about 2 kyr or greater. For example,
we do not expect to reconstruct abrupt changes associated
with the onset of the Bølling-Allerød or with centennial-scale
CO2 change (Marcott et al., 2014).
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Table 1. Regional stack information. The total volume represented by the global stack of all nine regions (spanning 0.5–5 km and excluding
shallow inland seas, the Southern Ocean, and the Arctic Ocean) is 77.7 % of the whole ocean. The volume of each region is listed as a percent
of the global stack volume (rather than whole ocean volume). For each stack we list its δ13C value at the LGM (20 ka), Holocene (6 ka), and
the Holocene δ13C minus LGM δ13C difference. The 95 % confidence interval for the global mean δ13C change is provided in parentheses.
The full time series for each stack is provided in the Supplement.

Region name Sites in stack %Volume δ13CHol (‰) δ13CLGM (‰) 1δ13CHol−LGM (‰)

INA 18 5.0 1.06 1.24 −0.18
ISA 14 7.9 1.02 0.65 0.37
II 2 8.0 0.16 0.01 0.15
IP 6 24.3 0.31 −0.02 0.32
Intermediateb 35 45.2 0.57c 0.30c 0.26c

UDNA 49 5.4 0.92 0.44 0.48
LDNA 10 1.5 0.75 0.04 0.71
DSA 19 6.2 0.55 −0.24 0.79
DI 2 9.5 0.15 −0.46 0.61
DP 7 32.2 0.17 −0.16 0.33
Deepb 82 54.8 0.33c

−0.10c 0.42c

Globald 127 77.7a 0.39c 0.03c 0.36c (95 % CI: 0.24 to 0.50)

a Volume of all regions as a proportion of whole-ocean volume. b Atlantic and Pacific Ocean regions, excluding the Indian Ocean regions.
c Volume-weighted δ13C values. d Atlantic, Indian, and Pacific Ocean regions.

Figure 3. Regional stacks for the (a) Atlantic and (b) Indian and Pacific oceans. Note the x and y axes are identically scaled. INA is the
intermediate North Atlantic; UDNA is the upper deep North Atlantic; LDNA is the lower deep North Atlantic; ISA is the intermediate South
Atlantic; DSA is the deep South Atlantic; II is the intermediate Indian; DI is the deep Indian; IP is the intermediate Pacific; DP is the deep
Pacific.

We estimate stack uncertainty using Monte Carlo simu-
lations that account for the effects of measurement uncer-
tainty and intra-region δ13C variability. Specifically, we gen-
erate nominal 95 % confidence intervals for the stacks using
10 000 bootstrapped iterations that randomly resample δ13C
records from each region. During the resampling process, we
also simulate δ13C measurement uncertainty in each record
by adding Gaussian white noise with a standard deviation
of 0.20 ‰ (Gebbie et al., 2015). Multiple runs of our Monte
Carlo simulations, each with 10 000 iterations, produce dif-

ferences in the global benthic δ13C stack on the order of
0.02 ‰ at the LGM (20–19 ka) and less during the Holocene.

4.4 Comparison to atmospheric CO2

To compare the δ13C data to atmospheric CO2 changes from
20–6 ka, we calculate a vertical δ13C gradient (1δ13CI−D)
as the difference between the volume-weighted intermedi-
ate and deep regional stacks from the Atlantic and Pacific.
The Indian Ocean regional stacks are excluded from this
vertical gradient calculation because each Indian region in-
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Figure 4. Volume-weighted stacks. (a) The volume-weighted global stack is calculated based on all nine regional stacks. However, the
intermediate and deep stacks shown here only include Atlantic and Pacific data due to the small amount of Indian data. A comparison of
these stacks with ones which include the Indian stacks is provided in Fig. S1. (b) Stack uncertainty as characterized by the 95 % confidence
interval half-width of each stack.

cludes only two sites, making the Indian regional stacks
more susceptible to noise. A global vertical δ13C gradient
that includes the Atlantic, Indian, and Pacific oceans (AIP
1δ13CI−D) is provided in the Supplement and in the Ap-
pendix (Fig. S1, Table A2). Additionally, we evaluate an al-
ternate gradient, 1δ13C(INA/2)−DP, defined as the difference
between half the intermediate North Atlantic stack and the
deep Pacific stack; Lisiecki (2010) found that this gradient
optimized correlation with CO2 from 0–800 ka.

We interpolate a composite ice core CO2 record (Köh-
ler et al., 2017) to the same 1 kyr resolution as our benthic
δ13C stacks and calculate correlation coefficients between
CO2 and the vertical gradient of δ13C. Additionally, we ex-
amine the potential for differences in the timing of CO2 and
δ13C change that could be caused by lags in the climate sys-
tem or age model uncertainty. We evaluate different potential
lags by interpolating the CO2 record with different time off-
sets, ranging from +1000 to −1000 years in increments of
100 years. For example, a 100-year lag in CO2 relative to
the vertical δ13C gradient would be represented by compar-
ing δ13C values at 6, 7, . . . 20 ka with CO2 values at 5.9, 6.9,
. . . , and 19.9 ka. Conversely, a CO2 lead of 100 years would
be suggested if the correlation between the two is maximized
for CO2 values at 6.1, 7.1, . . . , 20.1 ka.

Testing the significance of correlations between δ13C and
CO2 is complicated by the fact that both time series are au-
tocorrelated, i.e., each data point is highly correlated with
the value immediately before or after. To reduce the impact
of autocorrelation, we pre-whiten the data by taking the dif-
ference between successive 1 kyr samples before calculating
the linear correlation and its statistical significance. Our final
assessment of the statistical significance of the correlations
accounts for the reduction in the number of degrees of free-

dom in the data associated with pre-whitening and allowing
time lags between δ13C and CO2 observations.

5 Results

5.1 Comparison to LGM and Holocene reconstructions

Although our compilation of δ13C time series includes fewer
core sites than some previous studies of LGM δ13C, it pre-
serves the large-scale features of these glacial reconstruc-
tions, such as enhanced vertical and meridional Atlantic δ13C
gradients (Fig. 2; e.g., Curry and Oppo, 2005; Peterson et al.,
2014). Vertical δ13C gradients at the LGM are strongest in
the glacial North Atlantic, closely followed by the glacial
South Atlantic (Peterson et al., 2014). The most depleted
δ13C values in the compilation are from the high-latitude
deep South Atlantic during the LGM, possibly due to inclu-
sion of data from C. kullenbergi (Gottschalk et al., 2016).
Indo-Pacific δ13C values for the LGM are similar to equato-
rial deep South Atlantic records of the same depth and more
depleted than North Atlantic δ13C values. However, our com-
pilation lacks Indo-Pacific sites deeper than 3.5 km.

At 6 ka the δ13C values in this compilation generally re-
semble the Holocene compilation of Peterson et al. (2014).
Minor differences could result from Peterson et al. (2014)
using Holocene data from 6–0 ka and including more sites
from the North Pacific sites and from 0.5–1.5 km depth.

5.2 Regional stacks

We create nine regional δ13C stacks from 20–6 ka (Fig. 3,
Table 1). Six of the regional δ13C stacks increase steadily
from approximately 20–18 to 6 ka (LDNA, DSA, II, IP, DI,
DP). Small deviations in the trends of the Indian δ13C stacks
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are interpreted as noise because these stacks each contain
only two δ13C records. Three Atlantic regions (INA, ISA,
UDNA) show a decrease in δ13C from approximately 19–
15 ka, followed by an increase from 14–6 ka, as described
in previous studies (e.g., Hodell et al., 2008; Hodell et al.,
2010; Thornalley et al., 2010; Lund et al., 2011a; Tessin and
Lund, 2013; Oppo et al., 2015). The UDNA δ13C stack has a
δ13C value between the ISA and LDNA from 20–17 ka, ap-
proximately matches the LDNA at 16 ka, and then resembles
the ISA stack from 14–6 ka. LDNA δ13C is slightly greater
than DSA δ13C except at 10 ka when the two stacks briefly
converge. The DI and DSA δ13C values are generally similar
across the deglaciation except that the DSA δ13C begins in-
creasing at 18 ka while the DI δ13C increase begins at 16 ka.
The intermediate-depth δ13C stacks in the Indian and Pacific
oceans are very similar for most of the time interval.

Across the deglaciation, the vertical δ13C gradient weak-
ens in the Atlantic, most noticeably in the North Atlantic
where the INA-LDNA gradient decreases from 1.20 ‰ at
20 ka to 0.31 ‰ at 6 ka. Vertical gradients in the Indian and
Pacific oceans show much less change. The largest spread in
δ13C values is observed from 20–18 ka, when the interme-
diate North Atlantic and deep South Atlantic regions differ
by 1.50 ‰, a difference which decreases to 0.40 ‰ by 10 ka.
The maximum difference between regions at 6 ka is 0.91 ‰
between the intermediate North Atlantic and the deep Indian.

5.3 Volume-weighted stacks and global
mean δ13C stack

A global mean δ13C stack is constructed by volume weight-
ing all nine regional stacks. However, we construct two ver-
sions of the intermediate and deep δ13C stacks, with and
without the Indian stacks, because the Indian regions each
contain only two records. Both versions of the intermediate
and deep stacks show similar trends, but we focus our anal-
ysis on the version that uses only the Atlantic and Pacific
regions, which should be less susceptible to noise (Fig. 4,
Table 1). Results for the intermediate and deep δ13C stacks
that include the Indian Ocean are provided in the Supplement
and in the Appendix (Fig. S1, Table A2).

The volume-weighted intermediate, deep, and global mean
δ13C stacks increase across the deglaciation, but the mag-
nitude of change is larger for the deep stack (0.46 ‰) than
the intermediate stack (0.24 ‰) (Table 1, Fig. 4). We de-
fine the vertical δ13C gradient, 1δ13CI−D, as the difference
between the volume-weighted intermediate and deep stacks
that exclude the data-sparse Indian regions. This gradient has
a maximum of 0.41 ‰ at 18 ka and decreases to 0.24 ‰ by
6 ka.

The volume-weighted global δ13C stack holds nearly
steady from 20 to 19 ka at approximately 0.00 ‰ (95 % CI:
−0.13 to 0.12 ‰ at 19 ka) and then increases from 18–6 ka,
reaching a value of 0.39 ‰ (95 % CI: 0.24 to 0.49 ‰) at 6 ka.
The change from 20 to 6 ka in the global stack is 0.36 ‰

(95 % CI: 0.24 to 0.50 ‰), which agrees to within uncer-
tainty with the LGM-to-Holocene δ13C change of 0.38 ‰
(95 % CI: 0.30 to 0.46 ‰) estimated for 0.5–5 km by Peter-
son et al. (2014). Recall that the mean δ13C estimate from
our global stack is not quite a whole-ocean δ13C estimate be-
cause we do not include data from the surface (< 0.5 km),
Southern Ocean (> 65◦ S), or bottom waters (> 5 km). Es-
timates of whole-ocean δ13C change are slightly smaller at
0.34 ‰ (95 % CI: 0.15 to 0.53 ‰; Peterson et al., 2014) and
0.32 ‰ (95 % CI: 0.12 to 0.52 ‰; Gebbie et al., 2015) be-
cause the surface ocean (0–0.5 km) has less deglacial change
(Eggleston et al., 2016; Hertzberg et al., 2016).

6 Discussion

6.1 Terrestrial carbon storage and global mean
benthic δ13C

The long-standing explanation for mean benthic δ13C change
across the deglaciation is an increase in the size of the terres-
trial biosphere (Shackleton, 1977; Curry et al., 1988; Dup-
lessy et al., 1988). Here we compare the timing of changes in
our global mean δ13C stack (i.e., a monotonic increase from
19–6 ka, Fig. 4b) with model simulations and other terrestrial
biosphere reconstructions.

A carbon isotope-enabled transient model from Lund-
Potsdam-Jena Dynamic Global Vegetation Model (LPJ-
DGVM) simulated a mean ocean δ13C increase beginning
at 21 ka, with the most rapid changes occurring from 17–
10.5 ka (Kaplan et al., 2002). In these experiments, the ter-
restrial biosphere began expanding around 18–16.5 ka (Joos
et al., 2004; Köhler et al., 2005) and rapidly increased from
17–9 ka, with 70 % of terrestrial carbon storage change oc-
curring before the Holocene (11.5 ka; Kaplan et al., 2002).
Similarly, 67 % of the change in our global δ13C stack occurs
between 19–11 ka while the remaining 33 % occurs from 11–
6 ka.

Simulations from HadCM3 estimated that 45 %–70 % of
terrestrial biosphere expansion occurred between 18–14 ka
(Davies-Barnard et al., 2017). Dramatically different trends
were observed from 14–6 ka in simulations with different as-
sumptions about carbon storage under glacial ice sheets and
on continental shelves. The simulation that most closely re-
sembles our global mean δ13C stack is the simulation that
releases carbon from under ice sheets to the atmosphere and
does not accumulate carbon on exposed continental shelves
(Fig. 5). This simulation is also the only one which agrees
with terrestrial carbon storage change estimates of 440 PgC
based on whole-ocean mean δ13C change (e.g., Peterson
et al., 2014).

Holocene simulations using a global pollen synthesis, the
biomization method, and models of climate and vegetation
(HadCM3, FAMOUS, and BIOME4) suggest that the global
average area for most carbon-rich megabiomes (i.e., ex-
cluding grasslands and dry shrubland) increased from 10–
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Figure 5. Four HadCM3 simulations of terrestrial carbon storage change (biosphere and soils) to the pre-industrial (blue, Davies-Barnard
et al., 2017) compared to our volume-weighted global benthic δ13C stack (orange). Global mean δ13C change most closely resembles the
simulation that releases carbon from under ice sheets to the atmosphere and does not store carbon on continental shelves (solid blue). The
two y axes are scaled to illustrate the similarity in the pattern of change across the deglaciation but are not meant to imply that the magnitude
of change is equivalent.

Table 2. Correlation coefficients and p values between pre-whitened records. Pre-whitening reduces the impact of autocorrelation in the
time series. Calculated p values account for the reduced degrees of freedom in pre-whitened and time-lagged correlations. Non-zero CO2
time shifts indicate the lead/lag adjustment that maximizes the correlation between atmospheric CO2 Köhler et al. (2017) and the δ13C stack
or gradient.

Record 1 Record 2 CO2 time shift (years) Pre-whitened r2 Pre-whitened p value

Global mean δ13C stack Deep Pacific δ13C stack 0 0.46 0.05
CO2 Deep Pacific δ13C stack 0 0.57 0.02
CO2 Global δ13C stack 0 0.28 0.16
CO2 Global δ13C stack −600 0.39 0.09
CO2 1δ13CI−D 0 −0.51 0.03
CO2 1δ13CI−D −400 −0.66 0.006
CO2 1δ13C(INA/2)−DP 0 −0.69 0.003
CO2 1δ13C(INA/2)−DP −400 −0.78 0.0006

2 ka and net primary productivity increased from 8–2 ka
(Hoogakker et al., 2016). This is consistent with our obser-
vation that the global mean benthic δ13C trend continued
until at least 6 ka. Dramatic land use changes from agricul-
tural practices, another potential mechanism for terrestrial
carbon change, did not begin until 4.5 ka (Ruddiman and El-
lis, 2009). More detailed evaluation of Holocene terrestrial
carbon storage changes will require improved spatial cover-
age for δ13C records from 6–0 ka.

6.2 Deep Pacific and global mean δ13C

Previous studies have assumed deep Pacific δ13C can be
used as a proxy for global mean δ13C because the deep Pa-
cific constitutes about 30 % of the ocean volume and is not
strongly affected by shifting water mass boundaries (e.g.,
Shackleton et al., 1983; Curry and Oppo, 1997; Lisiecki

et al., 2008). From 20–6 ka, the global mean and deep Pacific
δ13C stacks show similar patterns of change (Fig. 6) and fall
along a tight regression line

δ13Cglobal = 1.04± 0.06‰× δ13CDP+ 0.19± 0.01‰ (1)

The two time series are highly correlated (r2
= 0.99), which

is not surprising because the large volume of the deep Pa-
cific exerts a strong influence on the global mean δ13C stack.
When the stacks are pre-whitened to account for autocorre-
lation (Table 2), their correlation is weaker (r2

= 0.46) but
statistically significant (p = 0.05).

Alternatively, a carbon cycle box model simulated a strong
correlation between deep Pacific δ13C and CO2 across sev-
eral glacial cycles (r2

= 0.96; Köhler et al., 2010). The corre-
lation between CO2 and our deep Pacific δ13C stack is statis-
tically significant after pre-whitening (r2

= 0.57, p = 0.02),
but global mean δ13C and CO2 are not (r2

= 0.28, p = 0.16).
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Figure 6. (a) Time series of global mean ocean δ13C stack and deep Pacific δ13C stacks. (b) Half-width 95 % confidence intervals for the
global mean stack and deep Pacific stack. (c) Deep Pacific δ13C stack vs. global mean δ13C stack. Each point is the δ13C value for one
time slice with 95 % confidence intervals (vertical and horizontal error bars). Time across the deglaciation progresses toward the upper right
corner. The best-fit linear regression is plotted as a solid line with 95 % confidence interval (dashed lines).

Our compilation of Pacific records is likely insufficient to
determine whether deep Pacific δ13C correlates better with
global mean δ13C or atmospheric CO2. This issue could be
better resolved using a δ13C compilation spanning multiple
glacial cycles and including more deep Pacific sites.

6.3 Vertical δ13C gradient and atmospheric CO2

The vertical δ13C gradient (1δ13CI−D) in our compilation
resembles the inverse of CO2 change across the deglaciation
(Fig. 7), as would be expected if they are both strongly in-
fluenced by changes in deep ocean carbon storage (Flower
et al., 2000; Oppo and Horowitz, 2000; Hodell et al., 2003b).
Alternatively, one orbital-scale study found a stronger cor-
relation with CO2 using the gradient between the deep
Pacific and half the INA δ13C stack (1δ13C(INA/2)−DP),
Lisiecki (2010). Both vertical δ13C gradients (1δ13CI−D and

1δ13C(INA/2)−DP) decrease from 18–11 ka over the same
time interval that atmospheric CO2 increases. In contrast, the
global mean δ13C stack increases at a relatively steady pace
from 19–6 ka. Thus, the δ13C gradients record a distinctly
different signal than global mean δ13C.

The δ13C gradients decrease most rapidly across two time
steps, 18–17 and 12–11 ka. The first change at 18 ka is ap-
proximately synchronous with the start of atmospheric CO2
rise (Marcott et al., 2014; Köhler et al., 2017) and a de-
crease of 0.3 ‰ in the δ13C of atmospheric CO2 (Eggleston
et al., 2016). In the Southern Ocean at 18 ka, proxy records
indicate a decrease in aeolian dust deposition accompanied
by lower marine productivity (Martínez-Garcia et al., 2009)
and a decrease in winter sea ice cover, which likely reduced
vertical stratification (Ferrari et al., 2014). The second rapid
change in the vertical δ13C gradients at 12 ka approximately
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Figure 7. Comparison of atmospheric CO2 with (a) the vertical δ13C gradient (excluding the data-sparse Indian Ocean regions) and
(b) 1δ13C(INA/2)−DP. Both gradients have a statistically significant correlation with atmospheric CO2 records (red circles, Köhler et al.,
2017). The y axes for (a) and (b) are scaled differently because1δ13C(INA/2)−DP scales the intermediate North Atlantic stack by half before
subtracting the deep Pacific stack while the δ13C gradient is the difference between the intermediate and deep stacks (Atlantic and Pacific
oceans only).

coincides with rapidly increasing atmospheric CO2 from 13–
11.5 ka and a decrease of 0.1 ‰ in the δ13C of atmospheric
CO2.

From 11 to 6 ka, atmospheric CO2 remains nearly constant
with a small (approximately 10 ppm) decrease from 11–8 ka.
The vertical δ13C gradients are also relatively steady from
11–6 ka, with a slight increase in both gradients from 9–8 ka.
The small decrease in atmospheric CO2 beginning at 11 ka
(Marcott et al., 2014) has been variously attributed to growth
of the terrestrial biosphere, sea level rise, and an increase in
gas exchange through reduced sea ice cover (Kaplan et al.,
2002; Joos et al., 2004; Köhler and Fischer, 2004; Köhler
et al., 2005, 2010).

Although CO2 correlates strongly with both 1δ13CI−D
(r2
=−0.96) and 1δ13C(INA/2)−DP (r2

=−0.98), we must
pre-whiten these time series to remove autocorrelation be-
fore assessing the statistical significance of their correlation.
At the 95 % confidence level, atmospheric CO2 significantly
correlates with both 1δ13CI−D (r2

=−0.51; p = 0.03) and
1δ13C(INA/2)−DP (r2

=−0.69; p < 0.01) (Fig. S1, Table 2).
Better correlation with1δ13C(INA/2)−DP could be because of
better age control and higher resolution δ13C records in the
INA region than the other intermediate regions. Determining

whether the 1δ13C(INA/2)−DP gradient or the global vertical
δ13C gradient correlates better with atmospheric CO2 will re-
quire data with better spatial coverage and/or a longer time
span.

Because our comparison of the vertical δ13C gradient and
CO2 could be affected by lags within the carbon cycle or
age model uncertainty, we additionally investigate whether
the correlations between CO2 and the vertical δ13C gradi-
ent would be improved by age model shifts (Table 2). The
correlation between CO2 is maximized when 1δ13CI−D or
1δ13C(INA/2)−DP lags CO2 by 400 years (Table 2), which is
within the age uncertainty of the sediment core age models.
Thus, changes in atmospheric CO2 and vertical δ13C gradi-
ents appear synchronous to within age model uncertainty.

Processes that potentially explain atmospheric CO2
change during glacial cycles include the efficiency of the
biological pump (Martínez-Garcia et al., 2009; Galbraith
and Jaccard, 2015), circulation changes (Ferrari et al., 2014;
Schmittner and Lund, 2015; Lacerra et al., 2017; Menviel
et al., 2017; Sikes et al., 2017; Wagner and Hendy, 2017),
or a combination of multiple processes (Bauska et al., 2016;
Skinner et al., 2017). Different processes could influence the
carbon cycle on different timescales (Bauska et al., 2016;
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Kohfeld and Chase, 2017) and/or in different regions (e.g.,
Gu et al., 2017) and complicate interpretations of which pro-
cesses are most responsible for atmospheric CO2 change.
However, because both productivity and circulation change
would affect the vertical δ13C gradient while changing atmo-
spheric CO2, we interpret our results as supporting the im-
portance of the deep ocean as a reservoir for storing glacial
carbon related to either or both processes. Furthermore, these
results support the use of vertical δ13C gradients as a proxy
for glacial–interglacial CO2 change on both orbital and mil-
lennial timescales (Lisiecki, 2010).

7 Conclusions

We present regional δ13C stacks and volume-weighted inter-
mediate, deep, and global mean δ13C stacks from a compi-
lation of 127 benthic C. wuellerstorfi δ13C records, which
span 20 to 6 kyr with a mean age resolution better than 2 kyr.
Age models are based on δ18O alignments to regional stacks
with radiocarbon dating and age model uncertainties of ap-
proximately 1–2 kyr. Our compilation shows spatial patterns
in benthic δ13C that are similar to higher resolution recon-
structions of the Holocene and Last Glacial Maximum. The
volume-weighted mean δ13C change estimated from these
127 records is 0.36 ‰ (95 % CI: 0.24 to 0.50 ‰), similar to
the estimate of Peterson et al. (2014) for 0.5–5 km based on
480 records.

Importantly, this global compilation of benthic δ13C time
series also allows us to evaluate the timing of change in the
mean and vertical gradient of δ13C and compare them with

other carbon cycle changes. The volume-weighted global
δ13C stack increases from 19 to 6 ka and likely reflects terres-
trial biosphere growth, in agreement with model simulations
(Kaplan et al., 2002; Joos et al., 2004; Davies-Barnard et al.,
2017). To constrain the timing of the end of terrestrial bio-
sphere expansion, future work should focus on extending the
global stack through the Late Holocene. Furthermore, δ13C
changes from 20 to 6 ka suggest that a deep Pacific δ13C stack
approximates global mean δ13C with an offset of 0.19 ‰.
Vertical δ13C gradients between intermediate and deep wa-
ter (1δ13CI−D) and between the intermediate North Atlantic
and deep Pacific (1δ13C(INA/2)−DP) are interpreted as prox-
ies for change in deep ocean carbon storage. Millennial-scale
features in 1δ13CI−D and 1δ13C(INA/2)−DP are significantly
correlated with atmospheric CO2 changes from 20–6 ka.

Based on these analyses, we conclude that the four-
dimensional compilation of globally distributed δ13C time
series presented here provides useful constraints for global
carbon cycle reconstructions and for comparison with
deglacial simulations from isotope-enabled Earth system
models.

Data availability. The original data and publication citations
along with this data synthesis are made available in the Supplement
and at PANGAEA.

www.clim-past.net/14/1229/2018/ Clim. Past, 14, 1229–1252, 2018



1242 C. D. Peterson and L. E. Lisiecki: Deglacial benthic carbon isotope stacks

Appendix A

Table A1. Supplemental table of the name, location, region, and reference for each record in this δ13C synthesis. Asterisks mark cores
for which we use the cited authors’ radiocarbon age model instead of using the regional age model from Stern and Lisiecki (2014). Data
repository links for each δ13C record are provided in Table S1 in the Supplement.

Core name Latitude Longitude Water depth (m) Region Reference

GIK16006-1 29.3 −11.5 796 INA Sarnthein (1994j)
GIK15666-6 34.9 −7.1 803 INA Sarnthein (1994g)
GIK16017 21.3 −17.8 812 INA Sarnthein (2004b)
GeoB6718 52.2 −12.8 900 INA Dorschel et al. (2005)
OCE205-103GGC 26.1 −78.1 965 INA Curry et al. (1999)
ODP982 57.5 −15.9 1134 INA Venz et al. (1999)
M35003-4 12.1 −61.2 1299 INA Hüls (1999)
GeoB4240 28.9 −13.2 1358 INA Freudenthal et al. (2002a)
GIK23419 54.9 −19.8 1491 INA Jung and Sarnthein (2003g)
GIK16030 21.2 −18.1 1500 INA Sarnthein (1994k)
GIK16004 29.9 −10.7 1512 INA Sarnthein (1994i)
ODP984 61 −24 1650 INA Raymo et al. (2004)
V28-127 11.7 −80.1 1750 INA Oppo and Fairbanks (1990)
GIK11944-2 35.6 −8.1 1765 INA Weinelt and Sarnthein (2003)
DSDP502 11.5 −79.4 1800 INA Demenocal et al. (1992)
V28-14 64.8 −29.7 1855 INA Curry et al. (1988j)
GIK23519 64.8 −29.6 1893 INA Millo et al. (2006)
ODP983 60.4 −23.6 1984 INA McIntyre et al. (1999) and Raymo et al. (2004)
GIK15669 34.9 −7.8 2022 UDNA Sarnthein (2004a)
GIK12379-3 23.1 −17.8 2136 UDNA Sarnthein (1994c)
NA87-22 55.5 −14.7 2161 UDNA Duplessy (1997)
ODP980 55.5 −14.7 2168 UDNA Oppo et al. (2006)
GIK23414-9 53.5 −20.3 2196 UDNA Jung and Sarnthein (2003c)
CH73-139 54.7 −16.4 2209 UDNA Duplessy (1982)
ODP658C 20.8 −18.6 2274 UDNA Sarnthein and Tiedemann (1989)
GeoB7920-2 20.8 −18.6 2278 UDNA Tjallingii (2008)
GIK17051 56.2 −31.9 2295 UDNA Sarnthein (2004b)
GeoB4216 30.6 −12.4 2324 UDNA Freudenthal et al. (2002b)
GeoB9508-5 14.5 −17.9 2384 UDNA Mulitza (2009)
V23-81 54.3 −16.8 2393 UDNA Jansen and Veum (1990)
GIK15672 34.9 −8.1 2460 UDNA Sarnthein (1994h)
MD95-2040 40.6 −9.9 2465 UDNA Schönfeld et al. (2003a)
GIK23415-9 53.2 −19.2 2472 UDNA Weinelt (2004)
SU90-03 40.1 −32 2475 UDNA Cortijo et al. (1999)
GIK17055-1 48.2 −27.1 2558 UDNA Winn and Sarnthein (1991)
GIK12392-1 25.2 −16.9 2573 UDNA Sarnthein (1994d)
GIK12347-2 15.8 −17.9 2576 UDNA Sarnthein (1994b)
V29-202 61 −21 2658 UDNA Oppo and Lehman (1995)
KF13 37.6 −31.8 2690 UDNA Richter (2001)
GIK12328-5 21.2 −18.6 2778 UDNA Sarnthein (1994a)
HM52-43 63.5 −0.7 2781 UDNA Fronval and Jansen (1997)
GIK17050 55.5 −27.9 2795 UDNA Jung and Sarnthein (2003b)
KNR110-82 4.3 −43.5 2816 UDNA Curry et al. (1988c)
GIK23418-8 52.6 −20.3 2841 UDNA Jung and Sarnthein (2003f)
EN066-38 4.9 −20.5 2937 UDNA Curry and Lohmann (1983a)
GIK15612-2 44.4 −26.5 3050 UDNA Sarnthein (1994f)
KNR110-75 4.3 −43.4 3063 UDNA Curry et al. (1988c)
CHN82-24 43.5 −30.7 3070 UDNA Curry et al. (1988b)
V30-49 18.4 −21.1 3093 UDNA Curry et al. (1988m)

Clim. Past, 14, 1229–1252, 2018 www.clim-past.net/14/1229/2018/



C. D. Peterson and L. E. Lisiecki: Deglacial benthic carbon isotope stacks 1243

Table A1. Continued.

Core name Latitude Longitude Water depth (m) Region Reference

MD99-2334 37.8 −10.2 3146 UDNA Skinner and Shackleton (2004)
EN066-16 5.5 −21.1 3160 UDNA Curry and Lohmann (1983b)
KNR110-71 4.4 −43.7 3164 UDNA Curry et al. (1988h)
V22-197 14.2 −18.6 3167 UDNA Curry et al. (1988k)
GeoB9526 12.4 −18.1 3223 UDNA Zarriess and Mackensen (2011)
GIK17049-6 55.3 −26.7 3331 UDNA Jung and Sarnthein (2003a)
MD95-2039 40.6 −10.4 3381 UDNA Schönfeld et al. (2003b)
EN066-44 5.3 −21.7 3423 UDNA Curry and Lohmann (1983f)
KNR110-66 4.6 −43.4 3547 UDNA Curry et al. (1988g)
GIK23416-4 51.6 −20 3616 UDNA Jung and Sarnthein (2003d)
EN066-21 4.2 −20.6 3792 UDNA Curry and Lohmann (1983c)
KNR110-91 4.8 −43.3 3810 UDNA Curry et al. (1988i)
V25-59 1.4 −33.5 3824 UDNA Curry et al. (1988l)
GIK16415 9.6 −19.1 3841 UDNA Sarnthein (1994l)
GIK23417-1 50.7 −19.4 3850 UDNA Jung and Sarnthein (2003e)
IODP-U1308 49.9 −24.2 3900 UDNA Hodell et al. (2008)
SU90-39 52.5 −22 3955 UDNA Labeyrie (1996)
KNR110-50 4.9 −43.2 3995 UDNA Curry et al. (1988d)
ODP928 5.5 −43.8 4012 LDNA Curry and Oppo (2005)
EW9209-1JPC 5.9 −44.2 4056 LDNA Curry and Oppo (1997)
EN066-36 4.3 −20.2 4095 LDNA Curry and Lohmann (1983e)
GIK16402 14.4 −20.5 4202 LDNA Sarnthein (2004b)
KNR110-58 4.8 −43 4341 LDNA Curry et al. (1988f)
GIK13521 3 −22 4504 LDNA Sarnthein (1994e)
KNR110-55 4.9 −42.9 4556 LDNA Curry et al. (1988e)
GeoB1101 1.7 −10.9 4588 LDNA Bickert et al. (2003a)
EN066-26 3.1 −20 4745 LDNA Curry and Lohmann (1983d)
EN066-32 2.5 −19.7 4998 LDNA Curry and Lohmann (1983g)
GeoB3104 −3.7 −37.7 767 ISA Arz et al. (1999)
BT4 −4 10 1000 ISA Curry et al. (1988a)
KNR159-5-90GGC∗ −27.35 −46.63 1105 ISA Lund et al. (2015)
KNR159-5-36GGC −27.27 −46.47 1268 ISA Lund et al. (2015)
RC16-119 −27.7 −46.5 1567 ISA Oppo and Horowitz (2000)
KNR159-5-17JPC∗ −27.7 −46.49 1627 ISA Lund et al. (2015)
KNR159-5-78GGC∗ −27.48 −46.33 1829 ISA Lund et al. (2015)
V24-253 −26.9 −44.7 2069 ISA Oppo and Horowitz (2000)
KNR159-5-33GGC∗ −27.57 −46.18 2082 ISA Lund et al. (2015)
ODP1088 −41.1 13.6 2082 ISA Hodell et al. (2003a)
KNR159-5-42JPC∗ −27.76 −46.63 2296 ISA Lund et al. (2015)
CHN115-70 −29.9 −35.6 2340 ISA Curry and Lohmann (1982b)
RC16-84 −26.7 −43.3 2438 ISA Oppo and Horowitz (2000)
MD96-2080 −36.3 19.5 2488 ISA Rau et al. (2002)
KNR159-5-30GGC∗ −28.13 −46.07 2500 DSA Lund et al. (2015)
V29-135 −19.7 8.88 2675 DSA Sarnthein (1997)
KNR159-5-63GGC∗ −28.36 −45.84 2732 DSA Lund et al. (2015)
KNR159-5-20JPC∗ −28.64 −45.54 2951 DSA Lund et al. (2015)
GeoB1710 −23.4 11.7 2987 DSA Schmiedl and Mackensen (1997)
GeoB1112 −5.8 −10.8 3125 DSA Bickert et al. (2003b)
RC13-228 −22.3 11.2 3204 DSA Curry (2004)
GeoB1214 −24.7 7.2 3210 DSA Bickert et al. (2003c)
KNR159-5-125GGC∗ −29.53 −45.08 3589 DSA Lund et al. (2015)
ODP1090 −42.9 8.9 3702 DSA Hodell et al. (2003b)
V30-40 0.2 −23.2 3706 DSA Oppo and Fairbanks (1987)
MD07-3076 −44.2 −14.2 3770 DSA Waelbroeck et al. (2011)
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Table A1. Continued.

Core name Latitude Longitude Water depth (m) Region Reference

PS2498 −44.2 −14.2 3783 DSA Mackensen et al. (2001b)
KNR159-5-22GGC∗ −29.78 −45.58 3924 DSA Lund et al. (2015)
GeoB1117 −3.8 −14.9 3984 DSA Bickert et al. (2001)
GeoB1041 −3.5 −7.6 4033 DSA Bickert et al. (2009a)
GeoB1211 −24.5 7.5 4089 DSA Bickert et al. (2009b)
ODP1089 −40.9 9.9 4621 DSA Hodell et al. (2003b)
GeoB1118 −3.6 −16.4 4675 DSA Bickert et al. (2009a)
MD01-2378 −13.1 121.8 1783 II Holbourn et al. (2005)
GeoB3004 14.6 52.9 1803 II Schmiedl and Leuschner (2005)
Orgon4-KS8 23.5 59.2 2900 DI Sirocko et al. (2000a)
SO42-74KL 14.3 57.3 3212 DI Sirocko et al. (2000b)
FR97-GC12 −23.6 153.8 990 IP Bostock et al. (2004)
MD97-2120 −45.5 174.9 1210 IP Pahnke and Zahn (2005)
V19-27 −0.5 −82.1 1373 IP Mix et al. (1991)
MD97-2151 8.7 109.9 1598 IP Chen (2003)
GIK17961-2 8.5 112.3 1795 IP Wang et al. (1999)
EW9504-05 32.5 −118.1 1818 IP Stott et al. (2000)
V24-109 0.4 158.8 2367 DP Shackleton et al. (1992)
NGC102 32.3 157.9 2612 DP Ohkushi et al. (2003)
ODP1143 9.4 113.3 2772 DP Tian et al. (2002)
ODP807A 3.6 156.6 2804 DP Zhang et al. (2007)
RC13-110 −0.1 −95.7 3231 DP Imbrie et al. (1992)
ODP846 −3.1 −90.8 3296 DP Mix et al. (1995)
RC13-114 −1.7 −103.6 3436 DP Marchitto et al. (2005)

Table A2. Correlation coefficients and p values between records. The upper rows use the raw data, and the bottom rows use pre-whitened
data to account for autocorrelated time series. AIP gradients include Atlantic, Indian, and Pacific regions, and AP gradients include only
Atlantic and Pacific regions. To investigate possible leads/lags between records, we shift the atmospheric CO2 record in 100-year increments
relative to the δ13C stacks and, for brevity, list only the best correlations. All p values account for reduction in degrees of freedom due to
pre-whitening and/or time shifting.

Record 1 Record 2 CO2 time shift (years) r2

CO2 AIP 1δ13CI−D 0 −0.96
CO2 AIP 1δ13CI−D +700 −0.99

CO2 AP 1δ13CI−D 0 −0.96
CO2 AP 1δ13CI−D −100 −0.97

CO2 1δ13C(INA/2)−DP 0 −0.98
CO2 1δ13C(INA/2)−DP −400 −0.99

CO2 Global δ13C stack 0 0.94
CO2 Global δ13C stack +800 0.97

Record 1 Record 2 CO2 time shift (years) Pre-whitened r2 Pre-whitened p value

CO2 AIP 1δ13CI−D 0 −0.27 0.18
CO2 AIP 1δ13CI−D +800 −0.63 0.01

CO2 AP 1δ13CI−D 0 −0.51 0.03
CO2 AP 1δ13CI−D −400 −0.66 0.006

CO2 1δ13C(INA/2)−DP 0 −0.69 0.003
CO2 1δ13C(INA/2)−DP −400 −0.78 0.006

CO2 Global δ13C stack 0 0.28 0.16
CO2 Global δ13C stack −600 0.39 0.09
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