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ABSTRACT

The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales, affecting

the freshwater content (FWC) of the Arctic Ocean. This study explores the role of eddies in the Ekman-

driven gyre variability. Following the transformed Eulerian-mean paradigm, the authors develop a theory

that links the FWC variability to the stability of the large-scale gyre, defined as the inverse of its equili-

bration time. The theory, verified with eddy-resolving numerical simulations, demonstrates that the gyre

stability is explicitly controlled by the mesoscale eddy diffusivity. An accurate representation of the

halocline dynamics requires the eddy diffusivity of 300 6 200 m2 s21, which is lower than what is used in

most low-resolution climate models. In particular, on interannual and longer time scales the eddy fluxes

and the Ekman pumping provide equally important contributions to the FWC variability. However, only

large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturba-

tions being an order of magnitude less efficient. Lastly, the authors introduce a novel FWC tendency

diagnostic—the Gyre Index—that can be conveniently calculated using observations located only along

the gyre boundaries. Its strong predictive capabilities, assessed in the eddy-resolving model forced by

stochastic winds, suggest that the Gyre Index would be of use in interpreting FWC evolution in obser-

vations as well as in numerical models.

1. Introduction

The observed increase of the Arctic freshwater con-

tent over the past two decades has been related partially

to a deepening of the halocline and partially to water

mass freshening (Rabe et al. 2014). In particular, a sig-

nificant contribution to the overall Arctic freshening

came from the Beaufort Gyre; here, the freshwater

content (FWC) increased by about 30% over the past

decade (Haine et al. 2015).

Observational evidence suggests that the halocline

dynamics of the Beaufort Gyre are to a large extent

governed by the anticyclonic atmospheric winds that

drive the large-scale gyre circulation—and to a lesser

extent due to the availability of Arctic freshwater

sources (Proshutinsky et al. 2009). The surface stress

results largely from the sea ice drag and quantification of

the oceanic response is subject to our uncertainties in

the sea ice–ocean momentum exchange (Martin et al.

2014; Giles et al. 2012).

Modeling and observational studies demonstrate a

direct relation between the freshwater content and the

Ekman pumping (Proshutinsky et al. 2002, 2009; Stewart

and Haine 2013; Timmermans et al. 2011, 2014). Thus,

Stewart and Haine (2013) show that a reduction in the
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strength of anticyclonic winds can lead to a re-

distribution of FWC within the Arctic Ocean and to

changes in the exchange between theNorthAtlantic and

Pacific Oceans. The basic gyre dynamics are conven-

tionally described in the following way: the surface Ek-

man transport converges surface fresh waters and

deepens the halocline, thus storing freshwater in the

gyre (e.g., Proshutinsky et al. 2009). This argument,

however, does not explain how a steady state can be

achieved, as it does not specify a mechanism opposing

the continuous halocline deepening due to the Ekman

pumping.

The importance of the opposing mechanism can be

clearly illustrated from the point of view of the large-

scale gyre stability in its integral sense. By stability, we

imply that there exists a statistical equilibrium state of

the gyre (averaged over small-scale features; e.g., in-

ternal waves and eddies) and that any deviations from

this equilibriumwould decay on a finite time scale. Since

the gyre is a persistent, large-scale feature of the Arctic

Ocean, it is reasonable to assume that it is a stable, ex-

ternally driven system. Using basic concepts of dynam-

ical systems theory (e.g., Tabor 1989), the linear stability

assumption implies that near its equilibrium, perturba-

tions of the gyre state a obey a basic equation of forced

exponential decay:

da

dt
52

a

T
1w . (1)

We will formally derive Eq. (1) in this manuscript (see

section 6), providing physical interpretation for its var-

iables, but at this point one can conceptually think of

a and w as measures of the bulk halocline deepening (or

FWC) and Ekman pumping correspondingly. The gyre

stability is defined as the inverse of its equilibration time

scale T, and here we assume that the large-scale gyre

circulation is always stable (i.e., T . 0). The damping

term (2a/T) represents a linearization of a process op-

posing the Ekman pumping near its equilibrium.

Here, it is important to distinguish the concepts of

large-scale gyre stability in terms of a statistically aver-

aged equilibrium, and this state’s hydrodynamic stability

characteristics. By gyre stability, we refer to the equili-

bration (exponential decay) of large-scale anomalies

of a statistically averaged circulation that does not

contain information about individual small-scale eddies.

In contrast, baroclinic instabilities lead to the expo-

nential growth of individual small-scale perturbations.

Thus, the gyre can be stable in a statistically averaged

sense and at the same time hydrodynamically unstable

at small scales. Our proposed hypothesis implies that

the stability of the large-scale gyre depends on the

cumulative action of small-scale eddies, individually

generated through baroclinic instabilities.

Based on a basic, dimensional analysis, the halocline

deepening (units of meters) should depend not only on

Ekman pumping (units of meters per second) but also

on the adjustment time scale (units of seconds). For

example, according to Eq. (1), a 5 wT for a system in

steady state or subject to a slowly evolving forcing.

Moreover, the amplitude of the gyre variability in re-

sponse to time-dependent Ekman pumping would also

be directly proportional to T (i.e., reduced stability

would imply a larger variance for the same forcing).

Since the gyre stability is directly related to the nature

of the processes that counteract the Ekman pumping, it

is essential to determine what these processes are, how

they depend on external forcing, and how they affect

the gyre variability.

Whilemuch of the scientific effort has been devoted to

the exploration of the impact of Ekman pumping (e.g.,

Proshutinsky et al. 2002; Yang 2009; McPhee 2012;

Timmermans et al. 2014; Cole et al. 2014), factors con-

trolling the gyre stability are poorly understood. A re-

cently proposed hypothesis points to mesoscale eddy

transport being a sufficient mechanism to oppose the

Ekman pumping (Davis et al. 2014; Marshall 2015;

Lique et al. 2015; Manucharyan and Spall 2016, here-

inafter MS16; Yang et al. 2016). The eddies are gener-

ated via baroclinic instabilities of the large-scale gyre

circulation that releases available potential energy as-

sociated with the halocline deepening. The eddy buoy-

ancy fluxes (or layer thickness fluxes) throughout this

process act to adiabatically flatten the halocline, thus

opposing the deepening due to the Ekman pumping

(schematically shown in Fig. 1).

FIG. 1. Schematic view of the Beaufort Gyre circulation depict-

ing a balance between Ekman pumping and eddy-induced vertical

velocity. The Ekman vertical velocity penetrates through the entire

water column. Surface convergence of the Ekman transport is

balanced by the corresponding bottom divergence with the mean

circulation being closed via coastal upwelling.
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The mesoscale eddies discussed here are associated

with baroclinic instabilities of a large-scale halocline

slope and hence predominantly carry the energy of the

first baroclinic mode. The majority of the observational

analysis in theArctic Ocean, however, has been devoted

to intense, localized vortices (Manley andHunkins 1985;

Timmermans et al. 2008; Dmitrenko et al. 2008;

Watanabe 2011; Zhao et al. 2014) that can form at

boundary currents (Watanabe 2013; Spall et al. 2008;

Spall 2013) and at surface ocean fronts (Manucharyan

and Timmermans 2013). Although observational anal-

ysis for the role of halocline-origin eddies in the interior

salinity budget is currently lacking, this is likely due to a

lack of data sufficient to calculate energy conversion

rates and eddy salt fluxes in the basin interior.

Taking into account the eddy transport mechanism,

Davis et al. (2014) have used a low-resolution, shallow-

water model (with eddies parameterized as horizontal

diffusion) to explore seasonal gyre dynamics. Yang et al.

(2016) explored the potential vorticity budget of the

gyre and reached the conclusion that eddies are neces-

sary to close it. Previous studies have suggested that

there are links between the dynamics governing the

Antarctic Circumpolar Current (ACC; Marshall and

Radko 2003) and gyres with azimuthally symmetric

circulations: Su et al. (2014) in the Weddell Gyre,

Marshall et al. (2002) in laboratory experiments, and

Marshall (2015) in the Beaufort Gyre. The stratification in

these regions is determined from a leading-order balance

between mesoscale eddy transport and Ekman pumping.

A recent study by MS16 demonstrated that the in-

stabilities associated with the observed halocline slope are

indeed generating sufficient mesoscale activity to cumu-

latively counteract the Ekman pumping. They also de-

veloped a set of analytical scaling laws that predict the gyre

adjustment time scale, halocline depth, and maximum

freshwater flux out of the gyre and explicitly relate these

key gyre characteristics to the mesoscale eddy dynamics.

In light of this newly developed understanding, it is

imperative to explore the role of mesoscale eddies in

determining the stability of the gyre and its transient

dynamics. Here, we present a basic theory of the wind-

driven Beaufort Gyre variability. The manuscript is or-

ganized in the following way: In section 2, we briefly

review the transformed Eulerian-mean framework that is

used throughout our analysis. In section 3, we describe an

idealized Beaufort Gyre model that we use for our pro-

cess studies. In section 4, we diagnose a key eddy field

characteristic, the eddy diffusivity, and assess its sensi-

tivity to forcing. In section 5, we demonstrate how me-

soscale eddies affect the gyre stability and equilibration.

In section 6, we quantify the FWC response to periodic

and spatially inhomogeneousEkman pumping. In section 7,

we introduce a new Gyre Index (GI) that includes the

effects of both Ekman pumping and mesoscale eddies in

order to rationalize FWC variability.We summarize and

discuss implications in section 8.

2. Theoretical background

We briefly describe the mathematical formulation of

the transformed Eulerian-mean framework (TEM;

Andrews and McIntyre 1976; Vallis 2006; Marshall and

Radko 2003) that is used in our analysis. Within this

framework the eddy buoyancy fluxes can be represented

via an additional eddy-induced streamfunction. This

allows one to view the ensemble-mean buoyancy as

being advected by the residual between the Eulerian

mean and the eddy-driven circulations.

a. TEM framework

The Reynolds averaged buoyancy equation is written

in cylindrical coordinates as

b
t
1 yb

r
1wb

z
1 (y0b0

r)1 (w0b0
z)5 S , (2)

where b denotes the buoyancy, (y, w) are the Eulerian-

mean radial and vertical velocities in the (r, z) co-

ordinates, and S represents buoyancy sources and sinks.

The bar here represents an average either in the azi-

muthal direction or in an ensemble-mean sense; we only

consider axisymmetric solutions here. Next, the eddy

buoyancy fluxes are assumed to be predominantly aligned

with isopycnals in the interior of the ocean—the so-called

adiabatic limit (Vallis 2006). In this limit the flux di-

vergences can be represented as an additional advection

of mean gradients by the eddy streamfunction such that

b
t
1 (y1 y*)b

r
1 (w1w*)b

z
5S , (3)

where the eddy advection velocities can be defined from

an eddy streamfunction c* as

c*52
w0b0

b
r

5
y0b0

b
z

, and (4)

u*52c
z
*, w*5

1

r
(rc*)r . (5)

The adiabatic assumption breaks down near boundary

layers that have significant diabatic fluxes due to buoy-

ancy forcing and/or enhanced mixing. Near such

boundaries the processes obey different dynamics that

we do not attempt to represent here.

Thus, the ensemble-mean buoyancy is advected by a

residual circulation ~c[c1c* that exists in order to

balance the buoyancy sources and sinks. This formalism
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clarifies that in the interior of the ocean, where the di-

abatic fluxes are small, a steady state implies that the

residual circulation has to vanish, that is, ~c5 0.

At this point, in order to make analytical progress in

understanding the buoyancy variability, it is necessary to

introduce a closure for the eddy-driven streamfunction

and to determine the Eulerian-mean streamfunction.

b. Eulerian-mean streamfunction

Theazimuthally averagedazimuthalmomentumequation

canbe simplified for thegyredynamics. First,we assume that

contributions from the Reynolds stresses are negligible for

large-scale flows. Second, the inertial term can also be

neglected for time scales sufficiently larger than f21, where f

is theCoriolis parameter. In addition, the azimuthal pressure

gradient term vanishes as a result of azimuthal averaging.

Taking this into account, a simplified formof themomentum

equation represents the steady Ekman dynamics:

f y52t
z
/r

0
, (6)

where t is the azimuthal stress and r0 5 1023kgm23 is

the reference ocean density. In the ocean interior, the

vertical shear in stress is negligible, allowing one to

obtain an expression for the Eulerian streamfunction by

vertically integrating the momentum equation from the

surface to any depth below the surface Ekman layer:

c5
t

r
0
f
, and (7)

y52c
z
, w5

1

r
ðrc)

r
. (8)

From now on t 5 t(r, t) denotes the radially and time-

dependent azimuthal surface stress—an external forcing

for the gyre. Thus, the large-scale, Eulerian-mean flow is

entirely determined by the surface stress distribution

and does not depend on the buoyancy field or the me-

soscale eddy activity. Note that this relation can be sig-

nificantly affected by the presence of topography.

c. Mesoscale eddy parameterization

Mesoscale eddies emerge due to an instability of the

baroclinic flowand their amplitude is related to the stability

characteristics of the flow. Here, we implement a Gent–

McWilliams type mesoscale eddy parameterization (Gent

andMcwilliams 1990) that assumes a downgradient nature

for the eddy buoyancy fluxes (or layer thickness fluxes):

y0b0 52Kb
r
. (9)

The eddy diffusivity K 5 K(s) can in general depend on

the magnitude of the isopycnal slope s 5 jbr/bzj, thus

varying in space and time. Past studies suggested power-

lawdependencies (K; sn21). Powers n5 1 orn5 2 (Gent

and Mcwilliams 1990; Visbeck et al. 1997) are commonly

used in low-resolution ocean models, while MS16 suggest

that n 5 3 might be more appropriate for the Beaufort

Gyre. Since observations are not sufficient to differentiate

between these parameterizations, we continue the analy-

sis assuming a general power-law dependence:

c*5Ks5 ksn , (10)

where now k (having units of meters squared per sec-

ond) is a constant that we will refer to as eddy efficiency

to distinguish it from time- and space-dependent eddy

diffusivity K.

d. Steady state

In the absence of surface buoyancy forcing or strong

vertical mixing, the steady-state residual ocean circula-

tion has to vanish (Marshall and Radko 2003; Su et al.

2014), implying that

~c5
t

r
0
f
1 k

 
2
b
r

b
z

!n

5 0. (11)

Surface stress at a particular location sets only the hal-

ocline slope, not its depth. The halocline slope defines

the baroclinically unstable azimuthal currents (via the

thermal wind relation) that generate eddies to locally

oppose the Ekman pumping.

Note that the Beaufort Gyre surface stress is on aver-

age anticyclonic (t, 0), and hence the halocline is deeper

in the interior, the isopycnal slope br/bz , 0, and c*. 0.

Given a surface stress profile, the halocline deepening

across the gyre can be determined by integrating Eq. (11):

Dh5

ðR
0

�
2t(r)

r
0
f k

�1/n
dr . (12)

Equation (12) is identical to the expression for the ACC

depth in a theory developed by Marshall and Radko

(2003). Assuming the power n 5 2, and considering a

special case of uniform Ekman pumping [corresponding

to t(r)52t̂r/R], the halocline deepens by

Dh5
2

3
R

�
t̂

r
0
f k

�1/2

. (13)

3. Idealized Beaufort Gyre model

We implement an idealized model of the Beaufort

Gyre as was developed in MS16. It consists of a
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cylindrical ocean basin (diameter 1200km, depth 800m)

driven by an anticyclonic surface stress t(r). The prim-

itive equations are solved using the Massachusetts

Institute of Technology General Circulation Model

(MITgcm;Marshall et al. 1997b,a; Adcroft et al. 2016) in

its three-dimensional, hydrostatic configuration, with a

4-km horizontal resolution that is sufficient to permit

Rossby deformation scale eddies. The deformation ra-

dius is about 20 km in our simulations (see more details

in appendix A of MS16). For simplicity, the present

configuration uses a flat bottom basin; MS16 included a

continental slope.

Here, we focus on how surface stress and mesoscale

eddies influence the isopycnal distribution in the Beau-

fort Gyre and hence the surface buoyancy forcing is

neglected. Within our idealized gyre model, we

prescribe a fixed-buoyancy boundary condition at the

coastal boundaries (via fast restoring to a given profile)

and no-flux conditions at the surface and bottom. The

boundary conditions aim to represent the unresolved

dynamics that occur over the shallow shelves as well as

the water mass exchanges with other basins. We note,

however, that these coastal dynamics can in general

depend on the surface stress, which causes upwelling

and boundary mixing (Woodgate et al. 2005; Pickart

et al 2013).

The implemented, fixed-buoyancy boundary condi-

tions imply that there exists an infinite reservoir of sur-

face freshwater and bottom salty waters that the gyre is

allowed to draw upon. The infinite water mass reservoir

represents dynamics only on sufficiently long time scales

that allow for the continental shelf water masses to be

replenished. Our idealized study does not include the

processes of water mass formation and exchange at the

boundaries, instead focusing on the long-term, wind-

driven halocline dynamics in the interior of the gyre.

Nevertheless, once the understanding of internal gyre

dynamics is gained, the use of simplifying boundary

conditions in the numerical model (and in analytical

analysis) can be relaxed to include more realistic

boundary processes.

Spinup simulations were initialized with a hori-

zontally uniform stratification (50-m initial halocline

depth) forced by a uniform constant in time Ekman

pumping (corresponding to a linear surface stress

profile t0 52t̂r/R). The mean state simulations were

spun up for at least 50 yr to ensure equilibrium.

The following wind stress amplitudes were used:

t̂5 f0:005; 0:01; 0:015; 0:03; 0:05; 0:075gNm22; we con-

sider t̂5 0:015 Nm22 as a reference run representative of

the present-day Beaufort Gyre. Perturbation experiments

that are described in the following sections use spatially

inhomogeneous and time-dependent Ekman pumping.

Following the growth of mesoscale eddies; this ideal-

ized Beaufort Gyre model achieves a statistically steady

state that coincides with a vanishing residual circulation

(Fig. 2). Thus, mesoscale eddies provide a mechanism to

arrest the deepening of the halocline. We argue below

that eddies are also key to the temporal response of the

halocline to surface stress perturbations.

4. Mesoscale eddy diffusivity

The theoretical predictions of the gyre state rely on

the relevance of the mesoscale eddy parameterization

that uses an a priori unknown parameter k that is di-

rectly related to the mean state eddy diffusivity K0. To

ensure consistency, we diagnose the eddy diffusivity

using several different methods based on our theoretical

predictions.

We start with a direct estimate of diffusivity using the

eddy buoyancy fluxes [see Eq. (9)] of the equilibrated

gyre simulation for a reference run:

K
0
*(r, z)52

y0b0

b
r

, (14)

where the overbar represents both temporal and azi-

muthal averaging and primes are the deviations from

this mean. The eddy diffusivity for a reference Beaufort

Gyre simulation that has a relatively weak forcing

(t0 ; 0.015Nm22) ranges between 100 and 500m2 s21

(Fig. 3a). With the exception of the near-coastal

boundary layer, the diffusivity increases toward the gyre

edges where the halocline slope (and hence the baro-

clinicity of the currents) is higher, which is consistent with

FIG. 2. Time series of the gyre-integrated eddy kinetic energy

(blue) and a corresponding residual circulation (red). The residual

circulation was calculated using diagnosed thickness fluxes in

buoyancy coordinates (see appendix B in MS16) and averaged

radially between 450 and 550 km over the halocline layer bounded

by salinities 30 and 32.5. Note that the amplitude of ~c is signifi-

cantly reduced as the gyre spins up.
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our eddy parameterization [Eq. (10)]. The halocline ap-

pears rather thick in the figure because of the spatial and

temporal averaging of the thickness variations repre-

sented by the mesoscale eddies. The halocline is typically

50m thick locally in space and time.

Using analytical predictions [Eq. (13)], we can also

infer the mesoscale eddy diffusivity necessary to support

the simulated halocline deepening as

KDh
0 (t̂)5

2

3

t̂

r
0
f

R

Dh(t̂)
, (15)

wherewe assumed an eddy parameterization powern5 2

(i.e., K 5 ks) as in Visbeck et al. (1997) and a charac-

teristic slope was taken near the edge of the gyre

s5 [t̂/(r0 fk)]
1/n 5 1.5Dh/R. Both Eqs. (14) and (15)

produce similar eddy diffusivity estimates (Fig. 3b); they

also show a similar sensitivity to surface stress forcing.

These inferred eddy diffusivities should be thought of as

bulk values representative of the gyre as a whole; the

instantaneous values can differ depending on location

and time. Note that because s ; Dh/R ; t1/2, the defi-

nition of K in Eq. (15) is consistent with our assumed

parameterization K ; s.

According to Visbeck et al. (1997), the coefficient k5
cNl2, where c 5 0.015 is an empirical constant, N is the

stratification parameter (N ’ 130f in our simulations),

and l is the width of the baroclinic zone. Taking esti-

mates for the diffusivity K 5 300m2 s21 and the slope

s5 1024, we find k 5 3 3 106m2 s21, which implies that

l ’ 150km, using the same value for the empirical con-

stant c as in Visbeck et al. (1997). Note that the esti-

mated size of the baroclinic zone l is less than the gyre

radius. This is qualitatively consistent with the numeri-

cal experiments showing intense eddy generation near

the edges of the gyre and not near its center where the

halocline slope is negligibly small.

The eddy diffusivity K increases with the surface

stress following a nearly linear relationship (Fig. 3b)

with the rate of increase of about 170m2 s21 per

0.01Nm22 increase in t̂. This linear increase implies that

the eddy saturation regime would be reached for strong

forcing, that is, for a sufficiently strong surface stress the

halocline slope would approach a critical value because

Ks 5 t/(r0 f ) and K ; t. A corresponding halocline

deepening is saturated at about Dh ’ 150m. The eddy

saturation phenomenon has been extensively discussed

in the ACC, where the baroclinic transport is only

weakly sensitive to changes in the strength of the surface

westerlies (e.g., Hallberg and Gnanadesikan 2001;

Meredith et al. 2004; Munday et al. 2013). In contrast,

because of the relatively weak forcing, the Beaufort

Gyre is far from the eddy saturation limit and is highly

sensitive to the surface stress (MS16). Thus, significant

gyre variability should be expected in response to tran-

sient forcing.

5. Transient TEM equations

Now that we have developed a basic understanding of

the mesoscale eddy response to forcing and confirmed

the appropriateness of the eddy parameterization, we

FIG. 3. (a) Spatial distribution of the equilibrium eddy diffusivity

K0*52y0b0/br [Eq. (14)] as diagnosed from the eddy-resolving

model for the reference run (t̂ 5 0.015Nm22). Contours show

equally spaced mean state isohalines with a salinity increment of

0.25. In weakly stratified regions shown in white, the calculation of

eddy diffusivity is not appropriate as the buoyancy gradient is close

to zero there. The isopycnal slope in the top 50m is reversed due to

a presence of vertical mixing. (b) Dependence of various defini-

tions of the eddy diffusivity K on the magnitude of the surface

stress.KT
0 [black circles, Eq. (29)] andKDh

0 [red diamonds, Eq. (15)]

are inferred from the diagnosed gyre adjustment time and themean

halocline depth, respectively; K0* [blue triangles, Eq. (14)] are di-

agnosed from the model (averaged between 400 and 450 km within

the halocline layer). A linear fit to all the data points corresponds to

K0 5 2420[t̂/(r0 f )] 1 230m2 s21 (black dashed line).
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proceed to explore the implications for the transient

gyre dynamics. Combining the expressions for the

Eulerian and the parameterized eddy streamfunctions,

the evolution equation for buoyancy is

b
t
1

1

r
ð~cr)

r
b
z
1 ~c

z
b
r
5 S, and (16)

~c5
t

r
0
f
1 k

 
2
b
r

b
z

!n

. (17)

This nonlinear equation is relevant to the interior of the

gyre and is subject to the appropriate boundary and

initial conditions:

bj
r5R

5 b
0
(z), b

r
j
r50

5 0, and (18)

b
z
j
z50,H

5 0, bj
t50

5 b
0
. (19)

Scaling analysis

It is insightful to consider a scaling analysis for the

gyre dynamics. On one hand, the system approaches

equilibrium on an eddy diffusion time scale defined as

T ; R2/K, where eddy diffusivity K ; k(h/R)n21 de-

pends on the unknown halocline depth. Diffusive scaling

implies that a deeper halocline would have larger eddy

diffusivity and would thus equilibrate faster. On the

other hand, the isopycnal depth h together with the

Ekman pumping velocity define a vertical advection

time scale T ; h/we, where we ; t̂/(r0 fR) is the Ekman

pumping. Since the dominant balance is achieved be-

tween the vertical Ekman pumping of freshwater and its

horizontal diffusion due to eddy transport, the two

mechanisms have to operate on a similar time scale.

Following MS16, the two time scales can be equated to

obtain a scaling for the halocline depth and the adjust-

ment time scale:

Dh;R

�
t̂

r
0
f k

�1/n

, and (20)

T;
R2

k

�
t̂

r
0
f k

�(12n)/n

. (21)

The expressions above imply that stronger pumping

would lead to a deeper halocline with a faster adjust-

ment time scale (a more stable gyre). In addition, both

scaling laws explicitly depend on the eddy efficiency; for

smaller k, the halocline would be deeper and the ad-

justment time scale longer (a less stable gyre). MS16

show that these scaling laws hold for a wide range of

surface stress forcing, and we confirm Eqs. (20) and (21)

for the case of no topography under consideration here

(Fig. 4).

Depending on the choice of the power n, there can be

major qualitative differences in the gyre sensitivity to

forcing. Thus, n 5 1, equivalent to a constant eddy dif-

fusivity, results in an equilibration time scale that is in-

dependent of the surface forcing and a halocline depth

that scales linearly with the surface stress (implying there

is no eddy saturation). This provides a poor representa-

tion of the simulated gyre dynamics. Differences between

n 5 2 and n 5 3 would manifest only for a sufficiently

wide range of forcing magnitudes. For the range of

forcing relevant to theArctic Ocean (t& 0.1Nm22), n5
2 and n5 3 produce similar results (Fig. 4). Note, that the

power n is not a priori constrained to be an integer.

6. Gyre equilibration and stability

In this section, we derive analytical time-dependent

solutions for the halocline depth.

a. Linear dynamics near equilibrium

We assume that for a given mean surface stress t0(r)

there exists a steady state corresponding to a long-term

time average (i.e., over time scales much longer than the

gyre spinup time). We then assume that Ekman pump-

ing perturbations lead to sufficiently small buoyancy

perturbations for which a linearization of the full non-

linear equation set [Eq. (16)] is appropriate. In other

words, we explore the transient gyre dynamics where

isopycnal depth perturbations can be considered small

compared to their time-averaged state.

FIG. 4. Equilibrium halocline deepening across the gyre (red y

axis) and its e-folding adjustment time scale diagnosed from the

spinup simulations (black y axis) plotted as functions of the mean

surface stress forcing (linear surface stress profile was used

t(r)52t̂r/R). Theoretical scaling predictions are shown in solid

lines for the power n 5 3 and in dashed lines for n 5 2 [see Eqs.

(20)–(21)]. Each symbol is diagnosed from a numerical model run

with different surface stress.
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The linearized equations for the evolution of halocline

depth anomalies h (see derivation in appendix A) result

in a diffusion equation forced by Ekman pumping:

h
t
5

1

r
ðnK

0
rh

r
)
r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Eddy diffusion

1
1

r

�
r
2t

r
0
f

�
r|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Ekman pumping

. (22)

Here, t is the surface stress perturbation from its mean

value t0, and K0(r) is a background eddy diffusivity set

by the mean isopycnal slope as

K
0
5 ksn21

0 5 k

�
2t

0
(r)

r
0
f k

�(n21)/n

. (23)

The first term on the right-hand side of Eq. (22) acts to

diffuse the isopycnal depth perturbations with a space-

dependent diffusivity equal to nK0; the prefactor n ap-

pears for a linear problem because of the a power-law

dependence of eddy diffusivity on the slope (see ap-

pendix A). This representation of mesoscale eddies as

thickness diffusivity is analogous to the expression in,

for example, Gent and Mcwilliams (1990) and Su et al.

(2014). The second term is the perturbation in Ekman

pumpingwe that acts as a forcing for the isopycnal depth:

w
e
5 curl

�
2t

r
0
f

�
5

1

r

�
r
2t

r
0
f

�
r

. (24)

Thus, consistent with the mean state dynamics, it is an

imbalance between the eddy diffusion and Ekman

pumping that drives the halocline depth perturbations.

b. Gyre adjustment time scale

One of themost important quantities that describe the

gyre dynamics is its stability, that is, the adjustment time

scale associated with the exponential decay of pertur-

bations. In this section, we explore the impact of eddies

on this adjustment.

Given any radial profile of the anticyclonic mean

surface stress [t0(r)] one can calculate the background

diffusivity K0(r) [from Eq. (23)] and the eigenfunctions

hi*with corresponding eigenvalues T21
i . 0 for the eddy

diffusion operator:

1

r
[rK

0
(r)h

ir
*]

r
52

h
i
*

T
i

. (25)

Here, homogeneous boundary conditions h(R) 5 0 and

hr(0) 5 0 should be used (see appendix A). Since this

diffusion operator is self-adjoint [for an r-weighted

norm and K0(r) . 0], any halocline depth perturbation

can be decomposed into contributions from its orthog-

onal eigenmodes [h(r)i*] as

h5 �
‘

i51

a
i
(t)h

i
*, (26)

where we sort the eigenfunctions corresponding to their

eigenvalues starting from the smallest (their indices

correspond to the number of zero crossings). Thus, the

first eigenfunction corresponds to a large-scale halocline

deepening, whereas higher eigenmodes are more oscil-

latory in space and correspond to higher eigenvalues,

discussed more below.

In an unforced case (i.e., Ekman pumping perturba-

tions we 5 0), the amplitudes ai(t) would evolve in-

dependently from each other according to a simple

exponential decay law:

da
i

dt
52

a
i

T
i

. (27)

This result confirms our a priori assumption about the

gyre being a stable system [see Eq. (1) and related dis-

cussions]. Eigenvalues represent the inverse of the decay

time scales Ti for each eigenmode. For a general per-

turbation that may consist of many different modes, the

gyre would equilibrate on a time scale corresponding to

the longest one among all the possible modes:

T
0
5

1

nl

R2

K
0
(R)

. (28)

Here, l is a positive dimensionless constant that arises

as a solution of the discussed eigenvalue problem. Note

that the eigenvalues depend on boundary conditions;

however, for diffusion operators they grow rapidly

(roughly quadratically) with the number of zero cross-

ings of the corresponding eigenfunction. This implies

that the spinup time scale observed in the numerical

model corresponds to a decay of the large-scale gyre

mode, whereas small-scale spatial perturbations in the

halocline depth would decay much faster.

For a linear surface stress profile used in our reference

gyre simulation (t0; r), we obtain l5 f5.7, 4.7, 4.3g for
powers n 5 f1, 2, 3g, respectively. While the expression

for the gyre adjustment time [Eq. (28)] is consistent with

the scaling laws [Eq. (21)], here we determined the

multiplicative prefactor (nl)21’ 0.1, which turns out to

be an order of magnitude smaller than 1.

Using the gyre adjustment time scale diagnosed from

the spinup time series (Fig. 4 black circles), we can infer

an appropriate eddy diffusivity that can generate such a

time scale as

KT
0 (t̂)5

1

ln

R2

T
0
(t̂)

, (29)
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where n 5 2 and a corresponding l 5 4.7 are used [see

Eq. (28)]. Using the diagnosed equilibration time scaleT0

(Fig. 4), we calculate the corresponding eddy diffusivity

based onEq. (29) above and plot in Fig. 3b (black circles).

This diffusivity estimate is consistent with the one in-

ferred from the bulk halocline deepening [Eq. (15)] as

well as with the one directly diagnosed from the eddy

buoyancy fluxes [Eq. (14)]. A good agreement between

the three independent methods (Fig. 3b) provides strong

support for the validity of our theory that draws direct

connections between eddy diffusivity, halocline depth,

and gyre stability or equilibration time scale.

7. FWC response to Ekman pumping

Defined as a linear measure of column salinity with

respect to a reference salinity Sref, the amount of

freshwater (FW) can be approximated as

FW[

ð0
2H

2
S(z)2 S

ref

S
ref

dz’
DS

S
ref

h , (30)

where the integration is to a depth H of a reference

isohaline. The FW is proportional to the halocline depth

h and to the bulk vertical salinity difference DS and thus

can be altered either via water mass modification or via

changes in halocline depth. Note that the presence of

vertical mixing cannot significantly affect FWC unless it

diffuses salt up from below the reference salinity.Mixing

can become important in cases with weak forcing when

the halocline becomes thin (Spall 2013).

Using the approximation of Eq. (30), it can be de-

duced that the FWC, defined as an area-integrated

amount of freshwater, is proportional to the volume V

of water above the halocline:

FWC’
DS

S
ref

V, where V5 2p

ðR
0

rh dr . (31)

Building on the linear relationship between FWC andV,

verified in the numerical model (see Fig. 5), we continue

our exploration of the forced freshwater volume dy-

namics. In diagnosing V from the numerical model, we

defined the halocline depth h via the location of the

32.25 isohaline; the relative top-to-bottom salinity dif-

ference DS/Sref ’ 5/34 is essentially prescribed through

boundary conditions. In general, the temporal evolution

of FWC would also depend on water mass modifications

that affect surface and middepth salinities.

a. Spatially inhomogeneous Ekman pumping

Here, we address the following question: Among all

the possible Ekman pumping distributions, which one is

most efficient in changing the FWC? We thus consider

the evolution of halocline volume V under spatially in-

homogeneous Ekman pumping.

Projecting Eq. (22) onto the ith eigenmode, we obtain

that each amplitude ai(t) is forced by the Ekman

pumping projection wi onto a corresponding ei-

genfunction hi*(plotted in Fig. 6a), such that

da
i

dt
h
i
*52

a
i

T
i

h
i
*1w

i
. (32)

An area integral of Eq. (32) results in an evolution

equation for the corresponding halocline volume Vi:

dV
i

dt
52

V
i

T
i

1W
E
, (33)

whereWE is the area-integrated Ekman pumping, that is,

the Ekman transport. The equation above demonstrates

the stability of the gyre in terms of the decay of its hal-

ocline volume anomalies, which supports our a priori

stability assumption [see Eq. (1) and discussions thereof].

Since we are considering Ekman pumping perturba-

tions that have the same Ekman transport, a steady-state

volume anomaly is directly proportional to the corre-

sponding time scaleVi5WETi [Eq. (33)]. In turn, the time

scales Ti reduce rapidly in magnitude with their index:

T
i

T
0

� 1 for i$ 1. (34)

For example, for the eigenfunctions plotted in Fig. 6,

T1/T0 5 0.23 and T2/T05 0.1, implying thatV0 is at least

an order of magnitude larger. Thus, the most dominant

contribution to freshwater content would be due to the

Ekman pumping pattern of the gravest eigenmode

FIG. 5. Freshwater volume and freshwater content plotted

against each for the spinup time series of different numericalmodel

experiments. Dashed line shows a slope of DS/Sref supporting

Eq. (31).
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(i.e., gyre-scale anticyclonic surface stress pattern as shown

in Fig. 6a, red). Eddy diffusion is efficient in damping the

response to spatially inhomogeneous Ekman pumping.

This occurs because highly oscillatory eigenmodes induce

large halocline slopes (see Fig. 6a), which quickly produce

strong mesoscale transport that acts to damp them.

We now test this theoretical prediction within the eddy-

resolving gyremodel.Wehave perturbed the gyre from its

equilibrium state by increasing the Ekman pumping with

patterns corresponding to the first three eigenmodes (ra-

dial distributions as in Fig. 6a). Ekman transport pertur-

bation amplitudes are 25% compared to the equilibrated

state transport. Note that all three perturbations have the

same value of the area-averagedEkman pumping, and yet

the theory predicts that the corresponding FWC re-

sponses should be dramatically different.

The numerical model, in agreement with the theory,

shows that the FWC increases substantially more for the

large-scale Ekman pumping pattern (Fig. 6b, red) and

virtually does not increase for the spatially in-

homogeneous pumping (Fig. 6b, blue and black). This

confirms that only large-scale Ekman pumping can ef-

ficiently contribute to changes in FWC.

By moving beyond the steady-state solutions consid-

ered earlier, the transient dynamics reveal which Ekman

pumping modes provide the most efficient forcing.

Nonlinearity (not accounted for in our transient theory)

might be important in determining the halocline depth

anomalies that are large in amplitude, especially near

the center of the domain (Fig. 6a). However, changes

near the center of the domain do not substantially con-

tribute to FWC as it is weighted by area, meaning that

changes are more important at the edges.

b. Periodic Ekman pumping

Here, we explore the response of FWC to periodic

Ekman pumping. Modes with smaller-scale spatial var-

iability are dampedmore efficiently by eddies [Eq. (33)],

such that the overall halocline volume anomaly is largely

determined by the volume of the first eigenmode:

V5 �
‘

i50

V
i
’V

0
. (35)

The volume anomalies thus obey a simple equation of a

damped-driven system that approaches equilibrium

with an e-folding time scale T0:

dV

dt
52

V

T
0

1W
E
sinvt . (36)

A similar equation and role of eddies was found for

transient dynamics of the thermohaline circulation by

Spall (2015). Note that here we consider the gyre forced

by the most efficient large-scale Ekman pumping pattern

(i.e., we 5w0h0*). In general, WE would be the transport

associated only with the Ekman pumping projection onto

the first eigenfunction w0 as the portions of the transport

associated with larger eigenvalue projections would in-

significantly contribute to changes in volume.

Solving the equation above, we find that the halocline

volume, after an initial adjustment, approaches a simple

periodic solution lagged with respect to the forcing by a

phase f:

V

W
E
T
0

5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 (vT
0
)2

q sin(vt2f), and (37)

f5 arctan(vT
0
) . (38)

Using the equilibrated control simulation, we apply

oscillating Ekman pumping forcing with a 25%

FIG. 6. (a) First three halocline depth eigenfunctions; the legend

shows their corresponding nondimensional eigenvalues that grow

rapidly with the number of zero crossings. (b) Response of fresh-

water content to the mentioned surface stress profiles as simulated

by the eddy-resolving numerical model (blue, black, and red cor-

respondingly). Note that all stress perturbation had the same

magnitude of area-averaged Ekman pumping. Perturbations were

made on a control run.
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amplitude with respect to its mean value (the large-scale

spatial pattern does not change in time). The normalized

freshwater volume amplitude and its phase lag are di-

agnosed from the model and are shown in Fig. 7

(crosses). The eddy-resolving model is in close agree-

ment with our theoretical predictions based on the ad-

justment by mesoscale eddy diffusion.

The time scale T0 represents a transition in the system

from a one-dimensional to a three-dimensional re-

sponse. If the eddies were unimportant to the dynamics

[a limit of infinitely large adjustment time scale T0 in

Eqs. (37)–(38)], the volume perturbations would have

been inversely proportional to the frequency of the

Ekman pumping (V 5 WE/v) and the phase lag would

have been a quarter of a period for all frequencies (f5
p/2). This limit is relevant for high-frequency forcing,

where eddies have insufficient time to respond to

changes in Ekman pumping; the gyre response in this

case is entirely due to the Ekman advection. However,

the freshwater volume amplitude is maximized for

slowly oscillating forcing where it is more in phase with

the forcing (Fig. 7). In this regime the eddy transport

nearly compensates for the Ekman pumping. The re-

sponse amplitude diagnosed from the numerical model

is slightly larger than the analytical prediction (Fig. 7a)

due to a presence of internal modes of the gyre vari-

ability excited by the forcing.

The time scale T0 ’ 2.1 yr that was used in the theory

[Eqs. (38)–(37)] was estimated from bulk gyre sensitivity

to forcing as

T
0
5

DV

DW
E

����
tref

, (39)

whereDV is an equilibrium change in freshwater volume

corresponding to an increase of Ekman transport by

DWE. This time scale represents the gyre stability to

small perturbations around its equilibrium state. It is

slightly smaller than the 3-yr nonlinear adjustment time

scale that was diagnosed from the spinup time series

(Fig. 4).

8. Predicting FWC using the Gyre Index

Here, we propose a novel FWC tendency diagnostic—

the Gyre Index—that predicts the freshwater content

and includes both the effects of wind forcing and eddies.

a. The Gyre Index

We take Eq. (22) for the halocline perturbation and

integrate it over the surface area of the gyre to obtain an

evolution equation for the changes in the volume of

water above the halocline:

dV

dt
5

ðR
0

2pr
dh

dt
dr5 2pR

�
nK

o
s1

2t

r
0
f

�����
r5R

, (40)

where the halocline slope s and surface stress t are

perturbations from the mean state. Here, we made use

of the Stokes theorem for the Ekman pumping term and

integration by parts for the eddy diffusion term.

Taking into account that the top-to-bottom salinity

difference is constant throughout our simulations, we

can define the GI that closely approximates FWC ten-

dency as

GI5 2pR
DS

S
ref

nK
0
(R)s(R)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Eddy

transport

1
2t(R)

r
0
f|fflfflffl{zfflfflffl}

Ekman
transport

2
66666664

3
77777775
, (41)

where we have made use of Eq. (31) (s and t are per-

turbations from their mean values, while K0 is the eddy

diffusivity of the mean state). The GI approach is

FIG. 7. Amplitude-phase response of the gyre freshwater content

to periodic Ekman pumping. (a) Normalized amplitude of volume

oscillations [see Eq. (37)]. (b) Corresponding phase delay relative

to the oscillating Ekman pumping [Eq. (38)].
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analogous to conventional freshwater budget calcula-

tions with an additional eddy transport term. Thus, GI.
0 implies that the gyre is gaining FWC and GI , 0 im-

plies the gyre is losing FWC. The magnitude of the GI

should be compared to the maximum FWC flux out of

the gyre FWC/T0 ; t/(r0 f ) that is proportional to the

Ekman transport and is independent of the eddy diffu-

sivity [see Eqs. (21) and (20)]. We can also interpret the

GI as being a measure of how far the gyre is from its

equilibrium state. In equilibrium, the eddy and Ekman

transports are compensated resulting in GI5 0, the limit

of a vanishing residual circulation.

Because both terms in theGI are evaluated at the gyre

boundary [Eq. (41)], the FWC tendency depends ex-

plicitly only on the boundary processes. On one hand,

the mesoscale eddies can only redistribute the halocline

thickness within the gyre without affecting the total

FWC unless there are eddy thickness sources at the

boundaries. On the other hand, because of Stokes the-

orem, the area-integrated Ekman pumping is pro-

portional to the contour integral of surface stress around

the gyre boundaries. Thus, any spatially localized

anomaly in Ekman pumping can only affect the halo-

cline depth locally and changes in FWC would depend

only on the existence of a surface stress along the

boundaries.

b. Diagnostic power of the Gyre Index

We now proceed to investigate the extent to which the

GI can approximate FWC tendency within the eddy-

resolving numerical model. We simulate the gyre vari-

ability by applying time-dependent, spatially homogeneous

Ekman pumping. Its amplitude evolves according to a

red noise process with a memory parameter of 1 yr to

mimic observations that show enhanced variability on

interannual to decadal time scales (Proshutinsky et al.

2009); time series are shown in Fig. 8a. The surface stress

perturbations from the reference run have a variance of

25% with respect to the mean value of t̂ 5 0.015Nm22

(the reference case that we use for the Beaufort Gyre).

The corresponding FWC undergoes significant varia-

tions of about 3000 km3 on decadal time scales (Fig. 8a,

red curve).

We then compute the Gyre Index by diagnosing the

azimuthally averaged halocline slope perturbation s(t, R)

and the generated surface stress t(t, R) at the gyre

boundary [Eq. (41)]. Because we use stochastic in time

Ekman pumping perturbations, the time series have

large variances at short time scales (Fig. 8a). To illus-

trate its differences with the purely Ekman pumping-

based index, we evaluate the performance of the Gyre

Index on various time scales. In Fig. 8b, we compare

FWC tendency and the GI for which a 5-yr running

mean smoothing has been applied in order to explore

the interannual trends characteristic of the Beaufort

high variability. Using only the Ekman pumping as an

index (i.e., excluding the eddy transport term in theGI)

does not give an accurate representation of FWC ten-

dency (note the large differences between red and

black curves in Fig. 8b). In contrast, the GI provides a

much better agreement with the numerically simulated

FWC evolution (Fig. 8b), further supporting our theory

of the gyre variability.

We quantify the performance of the GI by calculating

the root-mean-square error as a function of the length of

the runningmeanwindow used to smooth the time series

(Fig. 8c). We see that the Ekman-only predictor of FWC

tendency provides a good match only on short time

scales where eddy activity is less important. However,

on interannual and longer time scales, it is necessary to

account for the eddy activity as the Ekman predictor

error becomes larger than the standard deviation of the

FWC tendency. This implies that at interannual and

longer time scales assuming no change in FWC gives a

better prediction than only taking into account the Ek-

man pumping. In contrast, the GI has a strong predictive

capability on all time scales with its error persistently

smaller than the standard deviation of the FWC ten-

dency (Fig. 8c).

A calculation of GI requires the background eddy

diffusivity evaluated at the boundary [Eq. (41)]. We

show that there exists an optimal eddy diffusivity that

minimizes error of the GI making it a factor of 2 smaller

than that of the Ekman index alone (see Fig. 8d). The

optimal value of K0 ’ 300m2 s21 is in a range of values

diagnosed earlier using the three other independent

methods (see Fig. 3b).

In section 7a, we demonstrated that only large-scale

variations in Ekman pumping significantly affect FWC.

Yet the GI, which accurately predicts variability of

FWC, does not contain information about the horizontal

scale of the Ekman pumping. Instead, it only uses the

Ekman transport, which is the area-integrated Ekman

pumping. This implies that for highly inhomogeneous

Ekman pumping (higher eigenmodes), the GI ’ 0, and

hence there should be a strong compensation between

the eddy transport at the boundary and the Ekman

transport.

9. Summary and discussion

We explored the transient dynamics of an idealized

Beaufort Gyre in an eddy-resolving general circulation

model with particular emphasis on the FWC variability.

We performed a series of experiments exploring the

gyre’s response to a time-dependent surface stress. The
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results were interpreted using transformed Eulerian-

mean theory that explicitly includes the effects of me-

soscale eddies. Using an eddy parameterization, we

provide theoretical predictions for the gyre’s stability

(inverse of the equilibration time) as well as transient

solutions for halocline and FWC evolution under time-

dependent Ekman pumping.

Our model and theory neglect several processes that

may be important in the real Beaufort Gyre. The the-

ory is adiabatic and the model was run with a vertical

diffusion coefficient of 1025m2 s21. Observations in-

dicate that diapycnal mixing is spatially and temporally

inhomogeneous but, on average, between 1026 and

1025m2 s21 (Guthrie et al. 2013). Scaling theory in

MS16 suggests that the impact of diapycnal mixing is

small but not negligible, especially when the surface

stress is weak. We also neglect eddy salt fluxes (or

thickness fluxes) that originate from eddies shed from

the boundary currents that encircle the Arctic Basin

(e.g., Manley and Hunkins 1985; Spall et al. 2008;

Watanabe 2013). Scaling in Spall (2013) suggests

that the freshwater flux carried by these eddies is of

similar amplitude as that carried by the Ekman trans-

port. It is important to note, however, that the Eulerian

streamfunction associated with eddies vanishes, so

they do not provide an equivalent to the Eulerian

Ekman pumping velocity produced by the surface

stress. We also do not represent geometric complex-

ities such as the Eurasian Basin, continental slopes,

shelf dynamics, and midocean ridges. We view the

present model as representing, in a compact and

transparent way, the leading-order dynamical balances

for the Beaufort Gyre from which additional processes

may be considered.

FIG. 8. (a) Response of the FWC (red) to time-dependent surface stress that has a fixed spatial pattern (same as

for the control run), but its amplitude oscillates around its mean state of 0.015 Nm22 with a 25% variance

(shown in blue). Surface stress perturbation amplitude was generated as a red noise with a 1-yr damping pa-

rameter. (b) FWC tendencies as directly estimated from the model (black), as inferred using the Ekman

pumping only (red), and the Gyre Index (blue). A 5-yr running mean filter was applied to these time series.

(c) Standard deviation of FWC tendency (black), error approximating it with Ekman only term (red), and error

of the Gyre Index (blue) plotted as functions of the smoothing interval. (d) The dependence of error on the

choice of the mesoscale eddy diffusivity showing the optimal choice ofK0’ 280 m2 s21 that was used for the time

series shown in (b).
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We now highlight four key results from this study.

First, we demonstrated that the presence of mesoscale

eddies directly affects the Ekman-driven gyre variability

[Eqs. (33) and (37)]. By defining the gyre equilibration

time scale [Eq. (28)], we provided a theoretical expres-

sion for the time scale and emphasize its explicit de-

pendence on mesoscale eddy diffusivity [Eq. (28)].

Second, we presented several estimates of the char-

acteristic mesoscale eddy diffusivity for the gyre, dem-

onstrating that it grows nearly linearly with the surface

stress forcing (Fig. 3). Our theory has only one a priori

unknown parameter, the mesoscale eddy diffusivity,

which we inferred in four ways based on the buoyancy

flux [Eq. (14)], the bulk halocline deepening [Eq. (15)],

the adjustment time scale [Eq. (29)], and volume trans-

port variability (Fig. 8d). These independent methods are

consistent between each other and thus provide support

for the theory. For conditions akin to a present-day

Beaufort Gyre, we provide an estimate of the charac-

teristic diffusivity of about 300m2 s21 (t̂ 5 0.015Nm22)

and predict its sensitivity to be 170m2 s21 per 0.01Nm22

increase in the azimuthal surface wind stress. These pa-

rameters should be tested against observations.

Third, motivated by a strong variability in atmo-

spheric winds over the Beaufort Gyre, we explored a

gyre response to spatially inhomogeneous and time-

dependent Ekman pumping. Our analytical and nu-

merical solutions show that among all possible stress

distributions that have the same area-averaged Ekman

pumping, the FWC is largely affected only by the gyre-

scale Ekman pumping (Fig. 6b). The FWC response to

temporally periodic Ekman pumping is closely approx-

imated by a simple, damped-driven dynamical system

that approaches equilibrium with a known adjustment

time scale controlled by eddy dynamics [Eq. (28)]. High-

frequency oscillations in the pumping (e.g., seasonal

cycle) have little effect on halocline depth, whereas the

strongest effect is achieved for low-frequency forcing

(e.g., on decadal time scales; Fig. 7).

Fourth, we proposed the use of the Gyre Index [Eq.

(41)] for monitoring/interpreting FWC tendency in the

Beaufort Gyre. Its key advantage is that calculating the

GI requires knowledge of the halocline slope and mag-

nitude of surface stress evaluated only at the gyre

boundaries (not in its interior). Using a numerical

model, we demonstrated its strong predictive capability

that is because it incorporates the competing effects of

both Ekman pumping and mesoscale eddy transport.

For interannual and longer time scales, the GI is far

superior to using only the strength of Ekman pumping in

evaluating the FWC tendency (Fig. 8).

TheGI can be readily generalized to include effects of

more realistic features of the Beaufort Gyre dynamics

such as the azimuthal asymmetry in Ekman pumping

and eddy diffusivities. This would require calculating a

contour integral along the gyre boundaries in order to

evaluate terms in the GI. Observationally, calculation of

the GI could be achieved through a network of in-

struments located along the gyre perimeter, thus com-

plementing the observational efforts in the interior of

the gyre. We envision the GI calculation requiring ob-

servations of density and velocities from a set of moor-

ings spaced around the gyre. Mooring observations of

ocean velocity and density fields would allow for calcu-

lation of the eddy fluxes by estimating the vertical shear

of the first baroclinic mode of the horizontal velocity

that is directly related to horizontal halocline slope. We

speculate that the GI would be a useful tool for inter-

preting the component of FWC variability that is related

to changes in the halocline depth in both observational

and modeling studies of the Beaufort Gyre.
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APPENDIX

Time Evolution of Halocline Depth Perturbations

The nonlinear equation set of equations [Eqs. (16)–

(17)] for the buoyancy evolution can be linearized in the

vicinity of its mean state to obtain

b
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5 0, (A1)

~c5
t

r
0
f
2 n

t
0

r
0
f

s

s
0

, and (A2)

s

s
0

5

 
b
r

b
0r

2
b
z

b
0z

!
, (A3)

where all dynamical variables are perturbations from

their mean state, while 0 subscripts correspond to mean

state variables. The fixed-buoyancy boundary conditions
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transform into homogeneous conditions for the pertur-

bation variables (b 5 0 at r 5 R and br 5 0 at r 5 0).

The linearized equation set simplifies dramatically if

one writes it along the characteristics defined by the

halocline depth of the mean buoyancy distribution.

Equation (11) may be written in characteristic co-

ordinates [r(l), z(l)] as bl 5 brrl 1 bzzl 5 0, where the

homogeneous right-hand side indicates that buoyancy is

conserved along the characteristic trajectory. The

characteristic velocities are then

dz

dl
52

�
2t

r
0
fk

�1/n

,
dr

dl
5 1. (A4)

The mean vertical buoyancy gradient, following the

isopycnals (characteristics) defined by the mean state,

does not change (b0z 5 const) and can thus define a

perturbation isopycnal displacement h as

h(l, t)5
b(l, t)

b
0z

. (A5)

Taking into account that ›l( )5 ›r( )rl 1 ›z( )zl, we

obtain the following system for variables following

characteristics:
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where K0(l) is a background eddy diffusivity set by the

isopycnal slope of the steady-state buoyancy distribution:

K
0
5 ksn21

0 5 k

�
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0
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. (A7)

Eliminating ~c from the equations above, we obtain an

equation for the time evolution of isopycnal displacement:
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, and (A8)

b:c:: hj
r5R

5 0, h
r
j
r50

5 0. (A9)

That is now written in terms of the radial coordinate

taking onto account that rl 5 1. The fixed-buoyancy

boundary conditions for the original equations trans-

lated into the homogeneous boundary conditions for the

linearized system.
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