CHANGES IN THE DISTRIBUTION OF δ^{13} C OF DEEP WATER Σ CO₂ BETWEEN THE LAST GLACIATION AND THE HOLOCENE

W. B. Curry

Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole, Massachusetts

J. C. Duplessy and L. D. Labeyrie

Centre des Faibles Radioactivites Laboratoire Mixte CNRS/CEA Domaine du CNRS Gif-sur-Yvette, France

N. J. Shackleton

Godwin Laboratory for Quaternary Research Cambridge, England

Abstract. Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean δ^{13} C values were 0.46 % lower during the last glacial maximum than during the Late Holocene. The geographic distribution of δ^{13} C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high δ^{13} C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean δ^{13} C values during the glaciation are lower than both North Atlantic and Pacific δ^{13} C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched ¹³C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.

INTRODUCTION

The biological and chemical processes that fractionate carbon isotopes in the ocean provide one of the most useful tracers for reconstructing past distributions of water masses and their properties. The present distribution of δ^{13} C of Σ CO₂ reproduces the general distribution of water masses in the oceans, and the gradients in δ^{13} C between locations record the net flow direction between ocean basins. Certain species of

Copyright 1988 by the American Geophysical Union

Paper number 8P0327. 0883-8305/88/008P-0327\$10.00 benthic foraminifera (*C. wuellerstorfi*, in particular) faithfully record these gradients of δ^{13} C, providing the tool necessary to reconstruct the past distribution of δ^{13} C. In this paper, we present the δ^{13} C distribution for the ocean during the last 30,000 years, and from these data determine the consequences of glacial-interglacial climate change on thermohaline circulation.

$\delta^{13}C$ Distribution in the Ocean

The distribution of δ^{13} C in the ocean is controlled principally by photosynthesis and remineralization of organic carbon, and by mixing between water masses of different isotopic composition. Photosynthesis in surface water preferentially extracts ¹²C from seawater, causing the enrichment of the surface water ΣCO_2 in ¹³C. The value of δ^{13} C in seawater, after primary producers have removed all nutrients, is controlled by the mean δ^{13} C and the mean nutrient concentration of the ocean [Broecker, 1982; Broecker and Peng, 1982]. Today when all of the nutrients are stripped from the surface water, the ΣCO_2 of the surface reservoir has lost approximately 10% of its total dissolved inorganic carbon. Since the carbon that has been removed by phytoplankton has a δ^{13} C equal to approximately -20 $^{0}/_{00}$, the surface reservoir is enriched by 2.0 $^{0}/_{00}$ over the mean δ^{13} C of the deep water (Figure 1). The mean ocean δ^{13} C value equals 0.0 % (PDB), so the surface value today equals approximately 2.0 $^{0}/_{00}$ (PDB). Complete nutrient utilization by phytoplankton generally occurs in the warm, well stratified regions of the oceans between 30°N and 30°S.

Deep water masses today form at high latitudes after physical processes have increased the surface water density and caused it to sink into the deep ocean. The initial carbon isotopic composition of the water mass, its preformed value, is determined by the extent of photosynthesis that has occurred in the seawater during its residence within the euphotic zone. Before sinking into the deep ocean, phytoplankton strip ¹²C and

Fig. 1. The depth distribution of δ^{13} C in the Pacific (triangles) and Atlantic (circles) oceans. The warm surface layers of the oceans, where stratification is strong, are generally nutrient depleted, and all surface water δ^{13} C values in these regions approach 2.0 % (PDB). The δ^{13} C differences between the deep waters reflects the presence of nutrient-depleted, high δ^{13} C deep water in the North Atlantic. Data from Kroopnick [1974, 1980].

nutrients (PO₄, NO₃) from the surface water, enriching it in ¹³C. If the nutrient concentration is depleted to zero in the present ocean, then the preformed δ^{13} C value will be near to 2.0 %₀.

At their sites of formation the principal deep water masses (North Atlantic Deep Water (NADW), Antarctic Bottom Water(AABW)) are depleted in nutrients and enriched in ¹³C relative to mean ocean water, but their nutrient concentrations are greater than zero, and their δ^{13} C values fall short of the values predicted for water stripped completely of its nutrients (Table 1). North Atlantic Deep Water is the most nutrient-depleted deep water mass forming in the oceans today. This water mass forms by the sinking of surface water in the Norwegian-Greenland Sea, mixing with Mediterranean Sea outflow and Labrador Sea water. Phosphate concentrations of these components are generally low (<1.0 μ M/kg), and initial δ^{13} C values of NADW are enriched to 1.0 to 1.4 % (PDB). Antarctic Bottom Water has more PO₄ at its source region than NADW, so it is generally lower in δ^{13} C (0.3 $^{0}/_{00}$ PDB).

After leaving the surface layers of the ocean, δ^{13} C of deep water masses changes only through two processes: remineralization of organic carbon and mixing between water masses with different isotopic compositions. Consequently, the δ^{13} C composition of seawater is not a conservative tracer of deep water masses. Within the

TABLE 1. The End-Member Values of δ^{13} C and [PO ₄] for
North Atlantic Deep Water (NADW),
Antarctic Bottom Water (AABW),
and Nutrient-Depleted Surface Water (SW)

Water Mass	[PO₄] µmole/kg	δ ¹³ C ‰(PDB)	
NADW	1.0	1.1	
AABW	2.3	0.3	
SW	0.0	2.0	

Atlantic Ocean, however, the δ^{13} C distribution today is acting much like a conservative tracer because the rates of production and degradation of organic carbon are very low in this ocean. This generalization is especially true for the western basins of the Atlantic, where the effects of mixing between NADW and AABW occur as bathymetric gradients in δ^{13} C at sharp water mass boundaries and as less distinct latitudinal gradients that occur in the South Atlantic as these two water masses mix and flow to the east to join and form the Circumpolar Deep Water. The mixing of these water masses is demonstrated by the straight lines on property-property diagrams of δ^{13} C of Σ CO₂ and conservative tracers such as salinity or δ^{18} O of the seawater (Figure 2).

Fig. 2. The relationship between salinity and δ^{13} C in the western Atlantic demonstrating the mixing of North Atlantic Deep Water (northern component) and Antarctic Bottom Water (southern component) from GEOSECS stations (δ^{13} C data from Kroopnick, [1985]). The end-member compositions of salinity and δ^{13} C, respectively, are 35.0 $^{0}/_{00}$ and 1.2 $^{0}/_{00}$ for NADW and 34.66 $^{0}/_{00}$ and 0.5 $^{0}/_{00}$ for AABW.

Fig. 3. The relationship between salinity and δ^{13} C for eastern Atlantic locations from GEOSECS data (δ^{13} C data from Kroopnick, [1985]). For comparable mixtures of northern and southern component deep water the eastern basins are depleted in δ^{13} C relative to the western basins. This difference in δ^{13} C results from the isolation of the eastern Atlantic and the greater input of remineralized organic carbon. The depletion in 13 C is proportional to the enrichment in other nonconservative properties ([Si]), showing that both degradation of organic matter and mixing affect the δ^{13} C distribution in the Atlantic.

The δ^{13} C composition of deep waters is not conservative on a global scale, nor is it conservative on a ocean basin scale in regions of high productivity or within basins with long residence times. One example of the nonconservative nature of δ^{13} C occurs in the eastern basins of the Atlantic Ocean, where deep water originally from the western basin is isolated and exposed to large amounts of settling particulate organic carbon (Figure 3). The δ^{13} C values (and [O₂]) of comparable water types are generally lower in the eastern Atlantic than in the western Atlantic (compare Figure 3 with Figure 2); enrichment of bioreactive constituents (SiO₂) in eastern Atlantic deep water [Broecker, 1981] are consistent with the observed decrease in δ^{13} C. These geochemical changes occur because of the circulation patterns in the region and the isolation of the eastern basins from the mainstream of thermohaline flow. Long deep water residence times within the eastern Atlantic result in greater remineralization of organic carbon and lower δ^{13} C values compared to western Atlantic deep water. Similarly, Pacific deep water shows characteristics which result from mixing of two water masses and excess organic carbon remineralization (Figure 4). The salinity of this deep water shows that it is a mixture of northern and southern component deep water in a ratio of 1 to 3 or 4, and its δ^{13} C composition is about 0.4 $^{0}/_{00}$ lower than expected if δ^{13} C were completely conservative.

The present geographic gradients of δ^{13} C in the oceans follow the general distribution of water masses and record the net flow of deep water from the Atlantic to the Pacific. Each of the principal water masses (NADW and AABW) forms in the Atlantic and begins with δ^{13} C values that are different from each other, and enriched with respect to the mean ocean δ^{13} C. During their transit to the Pacific, the isotopic composition of the deep water is altered by the oxidation of organic carbon and mixing, and the net result is a $1.2 \, \frac{0}{00}$ difference in δ^{13} C between the deep water present in the northern North Atlantic and the deep water present in the Pacific. Of this observed difference, 0.4 % results from "aging" effects, while $0.8 \ 0_{00}$ results from mixing with southern component deep water. When viewed in transects from the North Atlantic to Antarctic and through to the North Pacific, the principal water masses and the net direction of flow are recorded [Kroopnick, 1985].

In addition to effects of deep water circulation, temporal changes in benthic foraminiferal δ^{13} C occur because of global changes in the distribution of carbon between the ocean and various transient reservoirs (e.g., land vegetation, organic carbon in shelf sediments) [Shackleton, 1977b; Broecker, 1982]. Any individual record of benthic foraminiferal δ^{13} C can be a complicated combination of global effects, such as changes in the extent of land vegetation or burial of shelf organic carbon, and circulation effects, such as changes in deep water preformed δ^{13} C values, residence time within

Fig. 4. The relationship between salinity and δ^{13} C for the Pacific Ocean from GEOSECS stations (δ^{13} C data from Kroopnick, [1974]; salinity data from Chung and Craig, [1973]). Note that this deep water mass is a mixture of NADW and AABW, but its δ^{13} C composition falls off the mixing line between northern and southern component deep water. The effect of long residence time within the Pacific Ocean allows more degradation of organic carbon within the water mass lowering both its δ^{13} C and [O₂].

particular basins, or changes in mixing ratios between the principal deep water sources.

But because the ocean mixes thoroughly on time scales of 1000 years or less, all cores in all ocean basins will be affected equally by transfer of carbon between the land and the sea. Consequently, the global effects alter only the mean δ^{13} C value for the entire ocean. Synoptic regional gradients in benthic for a miniferal δ^{13} C record the important features deep ocean circulation pattern, independent of changes in mean ocean δ^{13} C. Thus they provide us with the means to reconstruct past patterns or direction of deep water flow and to estimate past changes in deep water residence time or changes in preformed δ^{13} C composition. In this paper we will determine the distribution of benthic for a miniferal δ^{13} C during the last glacial maximum, evaluate the distribution in terms of changing water mass chemistry, geometry and circulation, and compare the results to modern thermohaline flow.

METHODS

The analysis of isotopic ratios for oxygen and carbon in foraminiferal tests follows the methods outlined initially by Shackleton and Opdyke [1973]. Foraminiferal tests are cleaned and reacted with 100% phosphoric acid in a vacuum. The reaction takes place in a constant temperature bath that is usually 50°C, although the temperature of the reaction is not critical. It is most important that both standards and unknowns are reacted at the same temperature, and this procedure is followed by all of the laboratories reporting data in this paper. The products of the reaction between phosphoric acid and $CaCO_3$ are CO_2 and H_2O_3 , and these molecules are separated by fractional distillation using liquid nitrogen and a frozen solvent (e.g., isopropyl alcohol, methanol). The CO_2 is then analyzed on a isotopic ratio mass spectrometer. The results are expressed as per mil deviations from PDB, usually through the intermediate calibration standard NBS-20. Analytical precision of standards is reported by most laboratories to be $0.1 \frac{0}{00}$ or less. In general, analytical precision is always less than the natural variability observed in replicate analyses of unknown benthic foraminiferal samples.

We present here only isotopic data produced from the analysis of Cibicidoides species and most of the analyses have been produced using C. wuellerstorfi. Previous studies [Belanger et al., 1981; Graham et al., 1981; Curry and Lohmann, 1982; Duplessy et al. 1984] have documented the utility and reliability of this species for δ^{13} C measurements (Figure 5). Within a given sample, C. wuellerstorfi always has the most enriched δ^{13} C composition of the calcitic benthic foraminifera [Woodruff et al., 1980] and is closest to equilibrium with respect to ambient δ^{13} C of Σ CO₂ of the overlying deep water. The δ^{13} C composition of C. wuellerstorfi is lower than the expected isotopic equilibrium values for δ^{13} C by about 0.9 % [Rubinson and Clayton, 1969]. Thus it is probably only a coincidence that its observed δ^{13} C values are close to ambient δ^{13} C of deep water Σ CO₂. Coexisting C. wuellerstorfi and other species of Cibicidoides (e.g., C. kullenbergi, C. bradyn) exhibit no

Fig. 5. Measured δ^{13} C for ambient sea water Σ CO₂ and core top *Cibicidoides* species [after Duplessy et al. 1984]. The isotopic compositions of this benthic taxon reliably reproduce the gradients observed in δ^{13} C in the modern ocean. Although the observed δ^{13} C values for *Cibicidoides* species coincidentally equal ambient δ^{13} C of Σ CO₂, the observed values are lower than expected equilibrium values for calcite by about 0.9 % [Rubinson and Clayton, 1969].

significant differences in δ^{13} C [Duplessy et al., 1980; Woodruff et al., 1981; Keigwin, 1982].

We have chosen to analyze Cibicidoides species for three reasons: (1) their δ^{13} C variations most reliably reflect the gradients in the modern ocean [Belanger et al... 1981; Graham et al., 1981; Curry and Lohmann, 1982; Duplessy et al., 1984]; (2) the δ^{13} C values are closest to carbon isotopic equilibrium; and (3) the limited observations of living, stained individuals demonstrates that Cibicidoides have an epifaunal habitat [Corliss, 1985]. Studies of isotopic variability in core tops show that some species are not reliable recorders of modern ocean gradients in δ^{13} C and Apparent Oxygen Utilization (AOU) [Belanger et al., 1981]. We have chosen not to analyze Uvigerina because it does not always produce results which covary with δ^{13} C data of *Cibicidoides* species (compare Graham et al. [1981] with Zahn et al. [1986]). An infaunal habitat has been suggested for Uvigerina [Zahn et al., 1986] and other species [Corliss, 1985], a hypothesis which is consistent with their observed lower δ^{13} C compositions, and their temporal variations which parallel changes in sedimentary organic carbon preservation [Zahn et al., 1986]. Although reliable records of δ^{13} C change may be produced from other species, in regions where past changes in organic carbon input are suspected the most reliable results will come from analyses of Cibicidoides species.

Restricting analyses to a single species of benthic foraminifera may introduce systematic offsets into our results because glacial-interglacial changes in species abundance may create time series that are biased toward one extreme climatic regime. If a species is more abundant in interglacial sediments, then a time series containing only that species may be biased toward interglacial isotopic values because bioturbation will mix more interglacial individuals into glacial samples [Mix and Fairbanks, 1985]. Consequently, no true measurements of glacial maximum conditions will be seen in the time series, underestimating the amplitude of glacial-interglacial δ^{13} C changes. This problem can be avoided by carefully recording species abundance (generally expressed as concentration in number/gram sediment) throughout the time series and analyzing only species which have similar concentrations in both glacial and interglacial sediments. Unfortunately, this procedure is not always practical, nor is it always practiced. In general, we try to analyze data from cores with sufficiently high sedimentation rates so that bioturbation problems are minimized. Or we pay careful attention to the oxygen isotopic variations observed in the benthic foraminifera. If the glacial-interglacial amplitude of $\delta^{18}O$ is reduced by bioturbation [Shackleton, 1977a; Peng et al., 1977], then the carbon isotopic variations may be also affected.

The relationship between sedimentation rate, sampling frequency, and isotopic signal amplitude for our data is

Fig. 6. Glacial-interglacial changes in δ^{18} O and δ^{13} C as a function of core sedimentation rate and sample spacing. Cores in this data set vary in average sedimentation rate from 1.5 cm/kyr to greater than 18 cm/kyr. Average sample spacing (Δ t) varies from 0.5 to 2.8 kyr and averages about 1.5 kyr. No systematic differences in $\Delta\delta^{18}$ O can be observed as a function of either sedimentation rate or sample spacing. Thus we believe the data presented here are not biased significantly by bioturbation of low-sedimentation-rate cores or by insufficient sampling frequency.

presented in Figure 6. In general, there is no reduction in amplitude in the lower sedimentation rate cores in this data set. At low sedimentation rate (~2 cm/kyr) we observe a wide range of glacial-interglacial δ^{18} O amplitudes (1.2-1.8 $^{0}/_{00}$), but the observed $\Delta \delta^{18}$ O at low sedimentation rates are similar to those observed at sedimentation rates greater than 5 cm/kyr. Thus we believe that there is no reason to delete any cores from this data set based on sedimentation rate alone. Our conclusions support the observations of Pisias [1983], who noted that there was no significant difference between variance spectra of δ^{18} O records from cores with sedimentation rates of 2 cm/kyr or greater. Within this data set, cores vary in sedimentation from 1.5 to greater than 18 cm/kyr. Sample spacing (Δt) averages approximately 1.5 kyr, and we see no effect of sample density on the glacial-interglacial amplitude of δ^{18} O (Figure 6). Thus we are confident that the δ^{13} C signals that we are reporting are reliable and not significantly affected by bioturbation.

RESULTS

The isotopic data are tabulated in Appendix 1. We have determined a chronology for each record based on its correlation to Pacific Ocean core V19-30 [Shackleton et al., 1983a, 1983b]. Our correlation of the V19-30 δ^{18} O record with the chronology of Imbrie et al. [1984] is presented in Table 2. In the following sections we describe the observed changes in δ^{13} C for each ocean basin. A summary of the mean glacial (middle of stage 2, ~17-22 kyr) and interglacial values (Late Holocene, ~0-5 kyr) of δ^{13} C and δ^{18} O for each core in this data set are presented Table 3. We summarize the data for each major ocean basin in Table 4.

Pacific Ocean

Typical Pacific records for δ^{13} C and δ^{18} O are presented in Figure 7. A total of five records are

 TABLE 2. Stratigraphic Control Points and Their

 Estimated Ages in Core V19-30

Depth, m	Age, kyr	
0.00	0.0	
0.93	12.0	
1.16	15.0	
2.60	24.0	
4.70	59.0	

The ages of the control points are from Imbrie et al. [1984], except for the control point at 1.16 m, which is from Shackleton and Pisias [1985].

tabulated in Appendix 1, and their mean glacial-interglacial difference equals $1.49 \ ^{0}/_{00}$ for δ^{18} O and $-0.41 \ ^{0}/_{00}$ for δ^{13} C (Table 4). The variability in isotopic composition appears to increase during the glacial maximum, as noted by the larger standard deviations for mean glacial δ^{18} O and δ^{13} C values. Unfortunately, because of the small number of cores from the Pacific Ocean the difference is not highly significant. Today the Pacific is remarkably homogenous in its δ^{13} C composition [Kroopnick, 1974, 1985], and this homogeneity is reflected by the low variability in δ^{13} C observed in the average Late Holocene δ^{13} C values (Table 4). Similarly, temperature and salinity $(\delta^{18}O_w)$ variations in the deep Pacific are small, so the variability observed in $\delta^{18}O$ of *Cibicidoides* in the Late Holocene Pacific samples is also low. The increased variability observed in the glacial Pacific data may suggest that the Pacific was more heterogenous in its $\delta^{13}C$ distribution.

Southern Ocean

Figure 8 presents two isotopic records from representative cores of the southern ocean. RC13-229 [Oppo and Fairbanks, 1987] and MD84-527 [Labeyrie et al., 1986] demonstrate that the glacial-interglacial change

TABLE 3. Mean Values of δ^{13} C for Late Holocene (0-5 kyr) and Glacial (17-22 kyr) for Each Core Listed in Appendix 1

	Sedimentation	Sample	Holo	cene		Gla				
Core	Rate	spacing	δ ¹⁸ Ο	$\delta^{13}C$		δ ¹⁸ Ο	$\delta^{13}C$		$\Delta^{18}O$	Δ^{13} C
			,	Josth Atlantic	Ocean					
			1	orth Atlantic	. Ocean					
V28-14	90	17	2.55 ± 0.14	0.80 ± 0.16	n= 2	432 ± 0.14	121 ± 0.16	n=6	1.77	0.41
CH73-139	10.6	9	2.70 ± 0.04	0.93 ± 0.04	n= 7	454 ± 0.17	0.62 ± 0.20	n=4	184	-0.31
CHN82-24	3.6	1.5	2.65 ± 0.04	1.02 ± 0.14	n= 5	4.09±0 01	0.53 ± 0.08	n=2	1.44	-0.49
V 26-176	181	.8	2.70±0.19	087±0.22	n= 8	4.05±0.00	0.18±0.00	n= 1	1.35	-0.69
CH72-02	2.5	2.7	2.96±0.06	0.90±0.00	n=2	4.20±0.06	077±0.10	n= 2	1.24	-0 13
CH75-04	6.8	1.7	3 01±0.27	0.67±0.27	n=2	4.55±0.05	-016±0.18	n= 4	1.54	-0.83
CH75-03	5.1 4 E	21	2.83±0.08	0.87±0.04	n = 2	4.65±0.00	0.01±0.00	n = 1	1 82	-0.56
CH74-227	4.0	20	3.27±0.00	0.46±0.00		4.43±0.02	0.09 ± 0.13	n=2	1 16	-0.37
V 30-49 M19202	40	9	2.30±0.09	0.91 ± 0.08	n= 5 n= 7	3 94±0.10	0 20 ± 0.09		1 04	-0.71
WND110 89	10.5		1 02 1 02	1 11 1 1 1 2	n= 1 n= 3	4.07±0.14	0.20 ± 0.11	n=10	1 60	-0.01
KND110-02	3.5	.0	1.92±0.08	0.07±0.25	n= 0	9.74±0.14	0.21 ±0.21	n=10	2.10	-0.90
KNP110-73	9.0	.7	2.30±0.12	110 ± 0.23	n- 0	3.9610.26	0 20 ± 0 14	n = 9	1.20	-0.09
KNR110-66	4.0	1.1	220 ± 0.08 216 ± 0.14	0.71 ± 0.21	n- 4	3 72 + 0 32	0.40±0.14	n = 7	1.00	-0 52
KNR110-91	27	12	2 28+0.06	0.71 ± 0.26	$n \rightarrow 3$	3 81 + 0 16	0.10 ± 0.15	n= 6	1.53	-0.63
KNR110-50	3.2	1.0	253 ± 019	0.65 ± 0.37	n = 3	4.02 ± 0.16	0.20 ± 0.10	n= 9	1 4 9	-0.45
KNR110-58	30	11	262 ± 016	0.62 ± 0.21	n = 6	4.09 ± 0.16	-0.03 ± 0.13	n = 7	1 47	-0 65
KNR110-55	31	10	245 ± 0.24	0.40 ± 0.18	n= 5	3.97±0.30	-0.01 ± 0.17	n= 6	1.52	-0 41
V25-59	3.1	10	2.56 ± 0.10	0.89 ± 0.06	n= 5	4.28 ± 0.07	0.02 ± 0.11	n= 4	1 72	-0.87
V22-197	76	1.0	2.71 ± 0.16	0.77 ± 0.20	n= 8	4 37±0.05	0 18±0 09	n= 4	1 66	-0.59
EN066-38	1.7	20	2.66 ± 0.04	1.14 ± 0.13	n= 2	3.97 ± 0.04	0.51 ± 0.09	n= 3	1.31	-0.63
EN066-16	27	14	2.78 ± 0.50	0 83±0 23	n= 3	4 19±0.13	0.45 ± 0.07	n= 6	1.41	-0 38
EN066-44	1.5	22	2.59 ± 0.00	1 04±0.00	n= 1	4.35 ± 0.08	0.50±0 05	n= 3	1.76	-0.54
EN066-10	18	20	2.25 ± 0.00	0 82±0.00	n= 1	4 01±0 14	0 33±0.20	n= 2	1 76	-0.49
EN066-21	22	17	2.52 ± 0.03	0.80±0 04	n= 2	3.92 ± 0.14	0 24±0.18	n= 4	140	-0 56
EN066-36	19	1.8	2.81 ± 0.08	0.69±0 08	n= 2	4.23±0 07	0 11±0.07	n=4	1.42	-0 58
EN066-26	22	16	2.64 ± 0.00	0.84±0 00	n= 1	4.12±0 11	-0.07±0.15	n= 5	1.48	-0 91
EN066-32	2.6	1.9	2 77±0 10	0.89 ± 0.03	n= 3	4.09±0 05	-0.25 ± 0.07	n= 2	1.32	-1.14
EN066-29	25	24	2 57±0.00	0.85 ± 0.00	n= 1	3.75 ± 0.35	-0.19±0 05	n= 2	1.18	-1 04
			5	South Atlantic	c Ocean					
BT4	6.8	1.6	2.52 ± 0.07	0.38±0.07	n= 2	3.56 ± 0.10	0.04+0.05	n= 2	1 04	-0.34
RC13-228	81	7	2.66 ± 0.24	0.49 ± 0.19	n= 7	4.19 ± 0.14	-0.11 ± 0.16	n=8	1.53	-0 60
				Southern O	cean					
BC19-220	18	1.0	2654017	0 99-10 07	n	4 1840 07	0 9640 16	0	1 59	0.00
MD84-527	187	5	2.00 - 0 17	0 29 + 0 14	n= 0 n=11	4 27+0.05	-0.30 -0 10	n - 9	1 30	-0.09
BC11-120	38	26	2.30 ± 0.13 2.74 ±0.26	0.23 ± 0.14 0.42 ±0.04	n = 11 n = 2	4 45+0.00	-0.48+0.00	n = 0	1.32	-0.04
10011-120		2.0	2.112020	0.122004	m= 2	4.40±0.00	-0 4010.00		1 . 1	-0.30
				Indian Oc	ean					
MD76-135	14.6	.8	2 49±0 16	-0.14±0 04	n= 5	3.85 ± 0.35	-0.16±0.06	n= 3	1 36	-0 02
MD79-254	14 5	1.2	263 ± 0.14	0.65 ± 0.04	n= 4	395 ± 000	0.27 ± 0.00	n = 1	1.40	-0 38
MD76-125	8.3	12	2.66 ± 0.14	0.23 ± 0.05	n= 4	3 95±0 08	-0.19±0 05	n= 2	1.29	-0 42
				Pacific Oc	ean					
TB163	9.9	5	2 76+0 21	-0.03+0.31	n= 3	4.26 ± 0.08	-0.40+0.08	n= 6	1 50	-0.37
V28.304	59	17	2.68 ± 0.01	0.28 ± 0.14	n = 3	4.35 ± 0.02	0.07 ± 0.12	n = 2	1 67	-0.21
KNR73-4	4.5	10	2.47 ± 0.12	0.25 ± 0.06	n = 4	3 80±0.18	-0.22 ± 0.11	n=4	1 33	-0 47
V19-30	10.8	9	2.82 ± 0.15	-0.01 ± 0.07	n= 3	4.31 ± 0.07	-0.61±0 13	n= 2	1 49	-0.60
V35-05	16.0	9	242 ± 018	0.01 ± 0.03	n= 4	3.86±0.06	-0.38 ± 0.11	n=2	144	-0 39

The mean isotopic values were determined as averages of all data which fell within the prescribed stratigraphic intervals. The data are presented with respect to PDB, with no corrections for disequilibrium fractionation. All data are from *Cibicidoides* species. Δ equals the isotopic difference between glacial (17-22 kyr) and interglacial (0-5 kyr) means for each core expressed as (glacial - interglacial).

	Late H	olocene	Glacial			
Ocean	δ^{18} O	$\delta^{13}C$	δ ¹⁸ Ο	$\delta^{13}C$		
North Atlantic, n=29	2.59 ± 0.27	0.84 ±0.18	4.13 ±0.25	0.25 ± 0.31		
South Atlantic, n=2	2.59 ± 0.10	0.44 ±0.08	3.88 ± 0.45	-0.04 ±0.11		
Indian, n=3	2.59 ± 0.09	0.25 ± 0.40	3.92 ± 0.06	-0.03 ± 0.26		
Southern, n=3	2.78 ±0.15	0.35 ± 0.07	4.30 ±0.14	-0.46 ±0.10		
Pacific, n=5	2.63 ± 0.18	0.10 ±0.15	4.12 ± 0.26	-0.31 ± 0.25		

TABLE 4. Mean Values of δ^{18} O and δ^{13} C for Late Holocene (0-5 kyr) and Glacial (17-22 kyr) Summarized for Each Ocean Basin

in δ^{13} C of the southern ocean is the largest observed in any ocean. Mean glacial-interglacial differences in δ^{13} C are -0.81 %0,0, while the δ^{18} O difference equals 1.52 %0. Most significantly, the southern ocean cores have the lowest δ^{13} C values observed in the glacial ocean (Table 4). The average values for all other ocean basins are at least 0.15 %0 enriched in ¹³C with respect to the southern ocean values. Geographic variability in δ^{13} C and δ^{18} O is low during both the interglacial and glacial, as shown by standard deviations of about 0.1 %0 or less for both δ^{13} C and δ^{18} O (Table 4).

Indian Ocean

The isotopic records from three cores in the Indian ocean are presented in Figure 9. MD76-125 and MD79-254 each exhibit glacial-interglacial changes in δ^{13} C which are near to mean ocean changes (-0.4 $^{0}/_{00}$). The third core (MD76-135) shows no change in its δ^{13} C. MD76-135 and MD76-125 were recovered from the same water depth (~1800 m), so the differences in δ^{13} C are not simply related to depth differences in the water column. These Indian Ocean cores average 1.33 $^{0}/_{00}$

Fig. 7. Isotopic records for Pacific Ocean cores demonstrate the changes in δ^{13} C which are typical of this basin. Interglacial-glacial changes in δ^{18} O and δ^{13} C for the Pacific Ocean as a whole equal 1.49 $^{0}/_{00}$ and -0.41 $^{0}/_{00}$ respectively (Table 4).

Fig. 8. Isotopic records for two southern ocean cores showing the changes in δ^{13} C which are typical of this basin. Interglacial-glacial changes in δ^{18} O and δ^{13} C for this ocean equal 1.52 % and -0.81 % respectively (Table 4).

enriched in δ^{18} O during the glacial maximum and 0.28 $%_{00}$ depleted in 13 C (Table 4). All of the cores are located near to margins of the Indian Ocean and may not be representative of the isotopic changes observed in pelagic regions of this ocean basin.

Atlantic Ocean

The Atlantic Ocean has been the focus of extensive research on deep water circulation studies because of its abundant carbonate sediments, simple stratigraphic tools, and large number of high-quality cores. Consequently, we have compiled a collection of 31 isotopic records for this ocean basin for the last glacial-interglacial transition. Of these cores, two are located in the South Atlantic, and they averaged $1.29 \ \frac{0}{00}$ greater in δ^{18} O and 0.48 % less in δ^{13} C during the glacial maximum (Table 4). Twenty-nine North Atlantic cores averaged 1.54 $^{0}/_{00}$ greater in δ^{18} O and 0.59 $^{0}/_{00}$ less in δ^{13} C during the glacial maximum. Like the Pacific Ocean, the glacial maximum δ^{13} C samples in the North Atlantic have nearly twice the standard deviation of the Late Holocene samples, suggesting that greater heterogeneity occurred in the geographic distribution of δ^{13} C during the glaciation than today. This difference in standard deviation is significant with a high degree of confidence (p < 0.1).

The glacial-interglacial amplitude of δ^{13} C varies

regionally and with depth in the Atlantic Ocean (Figure 10). Cores from shallow depths (<2000 m) in the Atlantic appear to be enriched in ¹³C during the glacial maximum [Boyle and Keigwin, 1986; Zahn and Sarnthein, 1986; Cofer-Shabica and Peterson, 1986; Oppo and Fairbanks, 1987]. V28-14, in the Norwegian-Greenland Sea at 1855 m, shows a δ^{13} C enrichment of 0.4 $^{0}/_{00}$ during the glacial maximum (Table 3). At depths below 2000 m in the Atlantic, δ^{13} C is always lower during the glacial maximum than during the Late Holocene. In the northern North Atlantic the amplitude is about 0.3-0.5 0_{00} . The amplitude increases toward the south (Figure 10), and near the present mixing zone between northern and southern water masses at the equator, cores which are presently located in NADW display glacial-interglacial amplitudes of 0.5–0.9 $^{0}/_{00}$ in δ^{13} C. The largest variations in δ^{13} C occur in the deep eastern Atlantic (below 4700 m), where glacial-interglacial differences in δ^{13} C exceed 1.0 $^{0}/_{00}$ (Table 3).

DISCUSSION

Global Deep Water $\delta^{13}C$ Change

Based on the information in Table 4, we have determined the mean change in δ^{13} C and δ^{18} O of the deep ocean. We averaged all of the cores analyzed within each ocean basin (Pacific, Indian, and Atlantic) and determined a mean change in benthic foraminiferal isotopic composition for the whole ocean weighted by the volumetric fraction of each ocean. The results are presented in Table 5. On average, the δ^{13} C composition of the deep water was 0.46 $%_{00}$ lower during the last glacial maximum than during the Late Holocene. This mean value equals the value presented by Boyle and

TABLE 5. Mean Glacial-Interglacial Changes in δ^{18} O and
δ^{13} C and Volumetric Fraction of Each Ocean Used to
Calculate the Mean Change in Deep Water Isotopic
Composition

Ocean	Volume x 10 ⁶ km ³	δ ¹⁸ Ο	$\delta^{13}C$	
Pacific	656	1.49	-0.41	
Atlantic	295	1.52	-0.58	
Indian	246	1.33	-0.28	
Southern	123	1.52	-0.81	
Mean Ocean	1320	1.47	-0.46	

The isotopic data are from Table 4, and the occan volumes are from Worthington [1981]. The southern ocean volume includes Pacific, Indian and Atlantic Ocean sectors.

Fig. 9. Isotopic records for three cores from the Indian Ocean. Interglacial-glacial differences in δ^{18} O and δ^{13} C average 1.33 0 /₀₀ and -0.28 0 /₀₀, respectively, in the Indian Ocean. These cores are from marginal locations in the Indian Ocean; consequently, the average isotopic changes may not be representative of pelagic regions of the Indian Ocean.

Keigwin [1985/86], which they calculated using one core each from the Atlantic and Pacific oceans. The data presented in this paper show that their cores were representative of the mean changes of the deep water in those ocean basins as a whole. The data from the southern and Indian oceans, added to the global data set in this paper, have a mean glacial-interglacial difference which is near to the value presented by Boyle and Keigwin [1985/86]. This mean value $(0.46^{\circ}/_{00})$ probably will not change significantly from the addition of new deep water δ^{13} C records because it is now based on a large data set from the Atlantic Ocean and an adequate data set from the Pacific Ocean. Only the addition of more cores from the Indian Ocean is likely to affect our estimate of the mean glacial-interglacial δ^{13} C change for deep water. Because the cores in our data set are dominantly from below 2000 m water depth, our average reflects only the mean changes in deep water δ^{13} C. Our estimate is larger than the $0.32^{-0}/_{00}$ decrease calculated by Duplessy et al. [this issue], because these authors attempted to quantify the δ^{13} C changes in intermediate water masses during the last glaciation. To the extent that shallow cores appear to have increased in δ^{13} C during the last glacial maximum, our value is a maximum estimate of the global δ^{13} C change.

Atlantic Ocean Glacial Circulation

The principal changes in circulation of the Atlantic Ocean include: (1) decreased production of nutrient-depleted deep water (>2000 m) in the North Atlantic, (2) greater northward penetration of $low^{-13}C$ deep water from southern ocean source regions, and (3) the presence of a nutrient-depleted intermediate water mass shallower than 2000 m. These results are based on the observed changes in the geographic distribution of δ^{13} C during the glaciation. During the last glacial maximum, southern ocean deep water became reduced in δ^{13} C by more than 0.8 % (Table 4). Cores presently within NADW decreased in δ^{13} C by about 0.5 % during the glaciation in the North Atlantic, but toward the equatorial region, the amplitude of δ^{13} C increased (Figure 10). At this time, the isotopic composition of western equatorial cores fell between northern North Atlantic and southern ocean values (Figure 11). Because mixing between water masses of different composition is the principal method for altering the distribution of δ^{13} C in the western basins of the Atlantic (see Figure 2), these results suggest that the mixing zone between northern and southern component deep water migrated to the north during the glacial maximum. Our observations

Fig. 10. Isotopic records for Atlantic Ocean cores. V28-14 is from the Norwegian-Greenland Sea at about 1800 m water depth. It is the only core in this data set which increases in δ^{13} C during the glacial maximum. All cores from below 2000 m decrease in δ^{13} C during the glaciation, and their amplitude increases toward the equator (V25-59). Highest amplitude δ^{13} C records and lowest glacial values are observed in the deep eastern Atlantic below 4700 m.

support the observations and conclusions of Oppo and Fairbanks [1987].

The lowest δ^{13} C values observed in the glacial Atlantic Ocean are found in eastern Atlantic locations below 4700 m. Curry and Lohmann [1983, 1985] suggested that these values resulted from the increased residence time of the deep water, resulting from decreased glacial production of NADW. They assumed that the input composition of the deep water entering the eastern Atlantic through low-latitude fracture zones had a δ^{13} C value equal to the δ^{13} C values of cores in the eastern equatorial Atlantic from above the sill depth of the fracture zones. Thus they assumed that the bathymetric gradient in δ^{13} C of 0.7 $^{0}/_{00}$ approximated the geographic difference in δ^{13} C between the western and eastern basins of the equatorial Atlantic. It is clear from the above discussion that a greater proportion of southern component deep water was flowing into the western Atlantic during the glaciation [Oppo and Fairbanks, 1987] and that this affected the input composition of the deep water flowing into the eastern Atlantic Ocean. The δ^{13} C value of this ventilating deep water (at the sill depth of the Romanche Fracture Zone, ~4000 m) is best recorded by the western Atlantic δ^{13} C records of KNR110-50 and KNR110-58, which have average glacial δ^{13} C values of 0.20 and -0.03 $^{0}/_{00}$, respectively (Table 3). The lowest δ^{13} C values observed in the deepest eastern equatorial Atlantic are -0.19 and -0.25 %, respectively, for EN066-29 and and EN066-32. Since lower values are observed in the eastern Atlantic than are observed at any depth in the western Atlantic, some alteration of the isotopic value of the deep water must have occurred after it enter the eastern basin (see Figure 3). However, this effect of the longer

residence time on the glacial isotopic records of the deep eastern Atlantic cores is limited to a maximum of $0.1-0.3 \ ^0/_{00} \ \delta^{13}$ C out of the total bathymetric decrease of $0.7 \ ^0/_{00}$ observed in the eastern basin. This $0.1-0.3 \ ^0/_{00}$ difference in δ^{13} C because of increased carbon remineralization is similar to the magnitude of this effect today (compare Figure 2 with Figure 3).

The presence of a ¹³C enriched water mass shallower than 2000 m is observed in the limited data presented in this paper. Convincing evidence for the geographic extent of this intermediate water mass has been presented by Zahn and Sarnthein [1986], who mapped the bathymetric distribution of enriched ¹³C values in glacial benthic foraminifera sampled on the west African continental margin, and by Cofer-Shabica and Peterson [1986], Boyle and Keigwin [1986], and Oppo and Fairbanks [1987], who determined that glacial Caribbean benthic foraminifera were enriched in ¹³C and depleted in Cd. Because the Caribbean is ventilated through straits with a sill depth of about 1800 m, the dominant signal measured in this marginal sea reflects changes in δ^{13} C at 1800 meters in the North Atlantic. The source of this intermediate water is not yet confirmed, but Zahn and Sarnthein [1986] and Oppo and Fairbanks [1987] suggest that the Mediterranean Sea is the likely source. Oppo and Fairbanks [1987] demonstrate that glacial Mediterranean outflow was probably higher in δ^{13} C than Holocene outflow.

Glacial Pacific Deep Water

Two aspects of the δ^{13} C data for the Pacific suggest that there may have been source of nutrient-depleted

Fig. 11. Carbon isotopic variations in KNR110-82 from the western equatorial Atlantic Ocean. Lines indicate the δ^{13} C changes in one core from the North Atlantic (Solid line: CHN82-24) and one core from the southern ocean (Dashed line: RC13-229). Note that the equatorial Atlantic core and the North Atlantic core have equal δ^{13} C values during the Late Holocene. During the glaciation, the equatorial Atlantic core has values which are between southern ocean and North Atlantic values. Since mixing is the dominant process affecting the δ^{13} C distribution within the western basins of the Atlantic today, these results demonstrate that the mixing zone between northern and southern component deep water migrated to the north during the glacial maximum.

water produced in this ocean. The mean value of benthic for a miniferal δ^{13} C in the Pacific Ocean is greater than the mean value of δ^{13} C for the southern ocean during the glacial maximum (Table 4). Today, the δ^{13} C composition of southern ocean deep water falls between the values of NADW and mean Pacific Ocean deep water because it is a mixture of these two components. Thus Late Holocene benthic foraminifera from the southern ocean are higher in δ^{13} C than Pacific benthic for aminifera (Table 4). During the last glacial maximum, the mean isotopic composition of southern ocean benthic foraminifera was 0.15 % lower than Pacific Ocean benthic foraminifera. Although the small number of records in each ocean basin limits our confidence in this difference, it has important implications about Pacific Ocean deep circulation. Since both NADW and Pacific deep water were enriched in ¹³C compared to southern ocean deep water, southern ocean deep water could not have been a simple mixture of NADW and recirculated Pacific deep water as it is today. Oppo and Fairbanks [1987] first noted that Pacific and Southern Ocean benthic for a minifera were similar in δ^{13} C during the glaciation and concluded that glacial northern Atlantic water was not mixed into this region. Our results extend this observation to suggest that a separate

source of nutrient-depleted water may have mixed with southern ocean water to produce the Pacific δ^{13} C values.

Close examination of the Pacific data shows that some individual cores have glacial δ^{13} C values as low as southern ocean cores, while others are greatly enriched in ¹³C (Table 3). Heterogeneity like this normally would support an hypothesis of mixing between two water masses in the glacial Pacific Ocean. In the modern Pacific Ocean the geographic variability of δ^{13} C is small and results in the low standard deviation for the mean value presented in Table 4. In contrast, the mean value for the glacial samples shows a larger standard deviation suggesting that there was greater geographic variability in δ^{13} C at that time. Greater variability within the Pacific basin may have resulted from production of deep water within the Pacific and mixing between this water mass and southern ocean deep water. This mixing would produce a standard deviation of the δ^{13} C values which approaches the standard deviation observed in the present-day and glacial Atlantic Oceans, where mixing between two water masses is clearly an active process. But two ambiguities limit our conclusions about mixing between Pacific water masses: (1) Because of the small number of samples in our Pacific data set the difference in variance is not significant with a high degree of statistical confidence. Only a more extensive suite of Pacific δ^{13} C records will confirm our observations. (2) The two Pacific cores with the most enriched glacial $\delta^{13}C$ values (V28-304 and KNR73-3) are not located near to each other, so we cannot develop a simple geometry for mixing between water masses of different composition.

CONCLUSIONS

1. The geographic distribution of δ^{13} C is controlled by photosynthetic removal of carbon from the surface ocean and oxidative degradation in the deep ocean. Water masses are formed at the surface by cooling and mixing of water types with different preformed δ^{13} C values. After removal from the surface ocean, $\delta^{13}C$ of a water mass changes only as a result of mixing between two water masses, or from the oxidation of the organic particles settling through the water column. The relative intensities of these two effects vary regionally because of the dynamics of deep water circulation and differences in surface water productivity within and between oceans. Today, the δ^{13} C distribution in the western Atlantic is dominated by mixing between NADW and southern-source deep water because of the presence of these two water masses flowing in opposite directions within that basin and because surface water productivity is very low in the Atlantic Ocean. In contrast, the $\delta^{13}C$ values of the eastern Atlantic and the Pacific oceans are each lower than would be expected if mixing alone controlled their distribution. Degradation of organic carbon because of longer residence times within these basins (the "aging" effect) has lowered the δ^{13} C values by $0.2 \, {}^{0}_{/00}$ in the eastern Atlantic and up to $0.4 \, {}^{0}_{/00}$ in the Pacific.

2. δ^{13} C values of the genus *Cibicidoides* faithfully record the gradients in isotopic composition of the overlying bottom water. Thus the chemistry of their

shells provides us with a unique record of the past distribution of δ^{13} C in the oceans. Since the geographic distribution of δ^{13} C is controlled to a great extent by circulation patterns, we can evaluate the changes in δ^{13} C in terms of changes in bottom and deep water circulation and chemistry.

3. Largest glacial-interglacial changes in δ^{13} C occur in southern ocean cores (0.8 %)(0), followed by Atlantic (0.5 %)(0) and Pacific (0.3 %)(0) cores. In the modern ocean, lowest observed δ^{13} C values occur in the Pacific Ocean, where the effects of long residence time have lowered the δ^{13} C value by 0.4 %)(0) from its conservative-mixing value. Late Holocene δ^{13} C values for southern ocean fall between the values of NADW and recirculated Pacific deep water, showing the effects of mixing ¹³C-enriched NADW into the southern ocean. During the glaciation, southern ocean cores have lowest observed δ^{13} C values, demonstrating that reduced glacial production of NADW decreased its effect on southern ocean chemistry. Since Pacific Ocean cores also have greater δ^{13} C values than southern ocean cores during the last glacial maximum, some alternate source of nutrient-depleted water must have been produced in the Pacific Ocean.

4. High-amplitude changes in δ^{13} C in equatorial Atlantic cores probably resulted from increased northward penetration of a low- δ^{13} C southern-source deep water into the North Atlantic during the glaciation. The lowest δ^{13} C values in the equatorial region occur in the deep eastern Atlantic, and these values are near in composition to southern ocean δ^{13} C values. Western equatorial Atlantic locations also have low values during the glaciation, but the values are about 0.2 0/00 higher than in the deep eastern Atlantic. This difference places a maximum constraint on the effects of increased residence time on eastern Atlantic δ^{13} C values, and it is similar in magnitude to the effect of residence time observed in the modern eastern Atlantic.

	-										
Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}\mathrm{C}$
Core: V28-	-14			Core: CH7	3-139C			1.600	13.7	4.42	0.59
1955 m	*			0000	/			1.700	15.1	4.81	0.61
1655 m				2209 m				1.750	15.6	4.59	0.71
0 500	9 5	0.45	0.01					1.850	16.7	4.54	0.72
0.500	3.5	2.45	0.91	0.000	0.0	2.67	0.96	1.900	17.3	4.61	0.74
0.700	4.7	2.65	0.69	0.150	1.2	2.66	0.95	2.000	18.3	4.56	0.80
0.900	5.9	2.64	0.28	0.200	1.6	2.65	0.93	2.100	19.4	4.30	0.56
0.900	5.9	2.82	0.25	0.300	2.4	2.68	0.89	2.250	21.0	4.70	0.36
1.000	6.6	2.56	0.32	0.400	3.2	2.72	0.96	2.350	22.1	4.69	0.36
1.100	8.7	3.02	0.58	0.500	4.0	2.75	0.88	2.450	23.2	4.58	0.61
1.200	11.2	3.25	0.51	0.600	4.8	2.74	0.97	2.550	24.2	4.22	0.43
1.300	15.0	4.54	1.13	0.700	5.6	2.83	0.76	2.650	25.3	4.18	0.51
1.490	17.0	4.32	1.03	0.850	6.8	2.90	0.69	2.750	26.4	4.30	0.65
1.500	17.1	4.20	1.30	0.900	7.2	2.91	0.76	2.850	27.5	4.57	0.54
1.600	18.1	4.42	1.07	1.000	8.0	2.97	0.67	3.000	29.1	4.76	0.26
1.600	18.1	4.06	1.32	1.100	8.8	3.01	0.73	3.100	30.1	4.47	0.25
1.700	19.2	4.55	1.45	1.200	9.6	3.48	0.89	3.200	31.2	4.49	0.06
1.800	20.2	4.40	1.47	1.300	10.4	3.49	0.79	3.300	32.3	4 33	0.25
1.800	20.2	4.00	0.98	1.350	10.8	3.54	0.81			1.00	0.20
1.900	21.3	4.42	1.05	1.450	11.6	3.50	0.76	Source: Dunla	ev [1022]		
2.200	24.4	3.93	0.76	1.500	12.3	4.14	0.41	Species C	ьыу [1962] vollamete=Б		
2.300	25.5	3.68	0.22	1.550	13.0	3 96	0.59	opecies. C. Wi	enerstorn		

APPENDIX 1. ISOTOPIC DATA FOR *Cibicidoides* spp. FROM CORES DISTRIBUTED THROUGHOUT THE WORLD'S OCEAN

Source Shackleton [unpublished data]

Species. C. wuellerstorfi

Curry et al.: Distribution of δ^{13} C of Deep Water

Depth, m	Age, kyr	δ^{18} O	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$
Coro: CHN	182.24			1.450	8.7	2.46	1.01	Core: CH7			
43ºN 30ºW	102-24 J			1.500	9.0	2.61	1.08	10°N 56°V	V		
43 N 30 W				1.600	9.6	2.57	1.11	3820 m	-		
3010 m				1.690	10.2	2.95	1.33	0020			
0.040	0.4	2.69	1.11	1.800	10.9	2.74	0.95	0.000	0.0	2.82	0.86
0.040	0.4	2.68	0.99	2.010	11.8	3.31	0.74	0.000	4.0	3.20	0.48
0.070	1.3	2.66	0.85	2.110	12.0	3.33	0.84	0.120	7.5	3.07	0.56
0.100	2.2	2.61	1.27	2.200	12.2	3.45	0.40	0.420	8.6	3 31	0.52
0.100	2.2	2.58	1.01	2 300	12.4	3.50	0.66	0.525	0.6	3 75	0.62
0.130	3.1	2.59	1.29	2.390	12.6	3.20	0.60	0.013	9.0	3 84	0.02
0.130	3.1	2.63	1.03	2.000	13.0	3 53	0.08	0.037	9.9	211	0.40
0.190	4.9	2.69	0.91	2.020	14.1	3 51	0.00	0.087	10.4	0.14	0.01
0 220	5.9	2.67	1.04	3.200	14.1	1 01	0.00	0.962	15.1	4.00	0.00
0.250	6.8	2.84	1.05	3.470	14.0	4 17	0.00	1.087	16.6	4.48	-0.03
0.250	6.8	3 00	0.87	3.710	10.4	2.11	0.02	1.175	17.8	4.48	-0.02
0.200	0.0	3 13	0.88	3.810	10.0	3.00	0.90	1.288	19.2	4.58	-0.05
0.500	13.6	4 16	0.00	3.920	18.4	4.00	0.10	1.375	20.3	4.60	-0.41
0.540	14.2	4 97	0.01	4.280	23.4	3.70	0.00	1.475	21.6	4.56	-0.17
0.090	14.5	4.01	0.42	4.690	29.2	3.45	0.35				
0.020	14.1	4.40	0.40	4.790	30.6	3.70	0.17	Source: Duple	essy funpublisi	ned datal	
0.030	10.0	4.41	0.00	4.980	33.2	2.61	1.15	Species: Caba	cidoides spp.	•	
0.750	10.0	4.00	0.40	5.080	34.6	3.69	0.24				
0.750	19.3	4.09	0.09	5.180	36.0	3.77	0.31				
0.830	22.4	4.08	0.70	5.320	38.0	4.07	0.63				
0.910	25.5	3.96	0.60	5.430	39.6	3.99	-0.51	Denth m	Age. kvr	δ ¹⁸ Ο	$\delta^{13}C$
0.970	27.8	3.11	0.70			•		Depui, m			
1.100	32.9	3.93	1.00	Source: Keig	win lunpublish	ed datal					
1.165	35.4	3.81	0.03	Species, C. R	unellerstorfi. (7. kullenb	era	Core: CH7	5_03		
1.190	36.3	4.02	1.23				••• ••	10°N 57°W	0-00 7		
1.260	39.1	3.78	0.95					2410 m			
1.300	40.6	3.69	0.93					5410 III			
1.330	41.8	3.93	0.86					0.019	0.4	2 88	0.80
1.385	43.9	3.42	0.89					0.015	0.4	2.00	0.00
								0.015	6.8	2.11	0.78
Source Boyle	and Keigwin	[1985/86]						0.100	0.8	2.00	0.55
Species C. w	uellerstorfi, C	. kullenbe	rgi					0.220	0.J 11 A	3.58	0.00
								0.012	11.4	1.68	0.10
								0.837	17.5	4.00	0.04
								0.937	24.6	4.00	0.01
Depth. m	Age, kvr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$	1.207	24.0	4.20	0.40
2 ·p ·, ·	8-11-			1 /	0,.			1.208	20.0	4.20	0.03
								1.450	29.0	4.09	0.04
Core: V26	-176			Core: CH7	72-02			1.487	30.5	4.04	0.15
36°N 72°V	v			40°N 22°V	v						
3942 m	•			3485 m	*			Source: Duples	sy (unpublishe	ed data]	
0012 111				3403 III				Species: Cibic	idoides spp.		
0.000	0.0	2.54	1.15	0.000	0.0	9.09	0.00				
0.100	0.6	2.53	1.04	0.000	0.0	2.92	0.90				
0.200	1.2	3.05	1.14	0.040	2.2	3.00	0.90				
0.300	1.8	2.72	0.84	0.100	5.4	2.76	0.92			(180	c13 c
0.390	2.3	2.69	0.62	0.250	13.1	3.78	0.75	Depth, m	Age, kyr	0°*0	010C
0.500	3.0	2.48	0.63	0.300	15.1	4.27	0.80				
0.600	3.6	2.73	0.90	0.350	16.5	4.29	0.82				
0.770	4.6	2.88	0.66	0.400	18.0	4.24	0.70	Core: CH	74-227		
1.000	6.0	2.80	1.45	0.520	21.4	4.16	0.84	35°N 29°	W		
1,100	6.6	2.96	1.16	0.600	23.7	4.00	0.92	3225 m			
1.290	7.8	2.63	0.79			_					
1 400	84	1.68	2.81	Source: Dup	lessy [unpublic	shed data	1	0.300	5.0	3.27	0.46
1 400	84	2.00	1 23	Species Cab	icidaides ann			0 400	6.7	3.27	0.86
1.400	0.4	2.01	1.40	Species. Cio	ectaotacs spp.			0.400	0.1	0.21	0.00

Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$
0.500	8.4	3.24	0.68	Core: M12	392	-		3 312	32.2	3.85	0.37
0.600	10.1	3 76	0.00	25°N 17°W	, ,			3 412	33 2	4.04	0.41
0.700	11.9	3.84	0.22	2573 m				3.513	34.2	3.99	0.24
0.800	15.2	4.41	0.16					3.592	35.1	3.73	0.25
0.900	18.5	4.44	0.18	0.005	0.1	2.66	0.96				
1.000	21.7	4.41	-0.01	0.032	0.7	2.69	1.01	Source: Shack	leton [1977b],	Zahn et a	J. [1986]
1.100	25.0	4.03	0.03	0.032	0.7	2.55	1.11	Species: C. w	uellerstorfi		
1.200	28.3	3.87	0.08	0.032	0.7	2.49	1.12				
1.300	31.5	3.98	0.29	0.075	1.5	2.80	0.80				
1 400	34.8	3 75	0.11	0.087	1.8	2.41	1.02				
		0.10	0.11	0.087	1.8	2.15	0.85				
Source: Duples	sy (unpublishe	d data]		0.125	2.7	2.16	0.92			(180	c18 c
Species: Cibici	doides spp.			0.138	3.0	2.53	1.15	Depth, m	Age, kyr	9.00	9.ºC
				0.138	3.0	2.58	1.02				
				0.187	4.2	2.51	0.99				
				0.237	5.4	2.61	1.04	Core: KNH	110-82		
Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$	0.237	5.4	2.56	0.99	4°N 43°W			
-	•			0.312	7.3	2.73	0.96	2816 m			
				0.412	9.1	3.09	0.65	0.010	20	1 04	1 00
Core: V30-	-49			0.512	10.1	3.54	0.70	0.010	3.2	1 99	1.00
18°N 21°W	1			0.562	10.6	3.31	0.51	0.010	3.8	1 71	0.87
3093 m				0.613	11.1	3.33	0.57	0.100	38	1 05	1 15
0.010		0.00		0.613	11.1	3.32	0.22	0.100	0.0	9.95	0.80
0.010	0.4	2.23	0.86	0.712	12.1	3.67	0.51	0.130	9.2 0.2	2.20	0.00
0.040	1.6	2.28	0.80	0.762	12.6	3.75	0.35	0.130	9.2	2.34	0.10
0.080	3.3	2.22	0.91	0.812	13.0	3 62	0.23	0.170	11.9	2.30	0.50
0.100	4.1	2.18	1.06	0.913	14.0	3.82	0.25	0.200	11.9	2 90	0.08
0.100	4.1	2.45	0.94	1 013	15.0	4 47	0.41	0.230	12.5	3.45	0.90
0.120	4.7	2.44	0.97	1 013	15.0	4 57	0.37	0.230	12.0	9.40 9.91	0.40
0.160	5.6	2.17	0.71	1 112	15.6	4 50	0.46	0.210	13.2	4 35	0.00
0.240	7.3	2.22	0.48	1 212	16.2	4 45	0.10	0.300	13.7	2.05	-0.08
0.300	8.6	2.69	0.71	1 212	16.2	4 56	0.20	0.300	13.7	1 21	-0.00
0.320	8.9	2.71	0.47	1 319	16.8	4 36	0.20	0.300	13.7	4.95	0.24
0.400	10.2	2.92	0.53	1.012	17.4	4 51	0.01	0.300	14.9	4.20	-0.06
0.440	10.9	3.20	0.49	1 480	17.8	4 48	0.48	0.000	15.0	4.00	0.00
0.480	11.6	3.09	0.43	1.513	18.0	4 10	0.40	0.370	15.0	4.02	0.40
0.500	12.1	3.36	0.20	1 612	18.6	4 36	0.01	0.010	15.5	3 73	0.20
0.500	12.1	3.49	0.51	1.012	10.0	4 30	0.20	0.400	15.5	4 19	0.00
0.520	12.7	3.36	0.56	1 719	10.2	4 37	0.56	0.400	15.5	4 57	0.22
0.560	13.9	3.45	0.40	1 812	19.7	4 36	0.36	0.430	15.9	4.32	0.56
0.600	15.1	4.10	0.25	1 913	20.3	4 22	0.32	0.430	15.9	4.18	0.21
0.640	15.9	4.08	0.11	2 013	20.0	4 13	0.21	0 470	16.6	4.16	0.15
0.700	17.1	3.99	0.10	2.015	20.9	4.37	0.53	0.470	16.6	4.13	-0.01
0.720	17.0	4.20	0.32	2.010	21.5	4 13	0.00	0.500	17.0	4.20	0.05
0.760	18.4	4.00	0.23	2.112	22.0	4 31	0.21	0.530	17.5	4.04	-0.04
0.800	19.2	3.84	0.22	2.100	22.0	4 25	0.21	0.570	18.1	4.32	0.16
0.840	20.0	4.04	0.14	2.012	22.7	4 18	0.20	0.600	18.6	3.87	0.17
0.880	20.8	3.74	0.02	2.412	20.0	3 08	0.00	0.630	19.0	3 72	0.73
0.900	21.2	3.88	0.27	2.010	24.0	1 06	0.30	0.630	10.0	4 11	0.44
0.920	21.7	3.77	0.23	2.012	20.0	4.00	0.33	0.000	19.7	4 18	0.15
1.000	23.3	3.98	0.54	2.710 9 810	20.1 97 1	4 92	0.04	0.670	10.7	4 14	-0.08
1.040	24.1	3.26	0.02	2.010 9.019	27.1 97 1	ম.∠∪ ∕\ ৭৭	0.34	0.010	20.1	4.04	0.00
1.080	24.9	3.25	-0.01	2.012	21.1 98 1	ብ በዓ	0.20 0.60	0.700	20.1	4 15	0.31
1.100	25.3	3.54	0.37	2.012	20.1 90 1	1.00 1 00	0.00	0.130	20.0	4.10	0.01
1.120	25.7	3.46	0.38	0.010 2 119	20.1 ዓለ ዓ	3.00 3.21	0.45	0.000	21.2 91 7	4.00	0.00
Source: Mix an	d Fairbanke /1	9851		0.114 2.912	31.9	370	0.40	0.000	21.1 91 7	3 46	-0.03
Species: C www	ellerstorfi			3 990	31 9	4 11	0.10	0.000	21.1	4 37	-0.00
				0.440	01.0		0.00	0.000		1.01	0.00

•

Curry et al.: Distribution of δ^{13} C of Deep Water

Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C
0.830		A 19	0.47	0.400	16.2	3 90	0.47	Core: KNE	2110-71		
0.830	22.1 99 7	3 00	0.55	0.430	16.7	4.10	0.30	4°N 44°W			
0.010	22.1 93.9	4 00	0.54	0.430	16.7	3.87	0.85	3164 m			
0.900	20.2	3.80	0.51	0 430	16.7	4.23	0.19				
0.930	20.1	3 75	0.03	0.470	17.4	3 26	-0.04	0.010	1.1	2.44	1.20
0.970	24.0 94 3	3 15	0.04	0.470	17.4	3 70	0.01	0.010	1.1	2.16	1.22
1 000	24.0	3 24	0.62	0.470	17.4	J.13 A 16	0.01	0.010	1.1	2.35	1.20
1.000	24.0	3 62	0.02	0.410	17.4	2.10	0.10	0.010	3.5	2.22	0.99
1.000	21.0	3 77	0.65	0.500	19.4	2 76	0.91	0.070	3.5	2.19	0.98
1.030	25.2	3.26	0.66	0.530	10.4	2.05	0.30	0.100	7.0	2.68	1.36
1.030	25.8	3.58	0.00	0.510	19.1	3.3J 2.70	0.30	0.100	7.0	2.20	0.66
1 100	20.0	3.65	0.58	0.000	19.0	3.10	0.40	0 100	7.0	2.56	1.39
1.100	20.3	3 80	0.00	0.030	20.1	0.00 9.96	0.19	0.130	9.2	2.57	1.37
1 1 20	20.3	3 18	0.40	0.030	20.1	3.20	-0.29	0.130	9.2	3.18	0.76
1.130	20.0	3 90	0.71	0.030	20.1	9.90 9.60	0.39	0.130	9.2	3.11	1.07
1.130	20.0	4 04	0.70	0.670	20.7	3.00 9.60	0.22	0 170	10.4	3.13	0.91
1.130	20.0	3 35	0.10	0.070	20.7	3.00 9 65	0.19	0 170	10.4	2.89	0.36
1.170	27.5	3 53	0.07	0.700	21.3	3.00	0.30	0.200	11.3	2.96	0.75
1.200	21.0	3.62	1 12	0.730	21.8	3.09 2.01	0.34	0.200	12.2	3.62	0.28
1.230	28.3	3 78	0.85	0.770	22.4	3.91	0.42	0.230	12.2	3.39	0.28
1.200	20.0	3 40	0.80	0.800	23.0	3.98	0.72	0.200	13.3	3.53	0.73
1.270	20.5	3 75	0.00	0.830	23.5	2.84	0.13	0.200	14.2	4.41	0.64
1.300	29.4	3.87	0.95	0.870	24.1	3.65	0.00	0.300	14.2	3.74	0.34
1 330	20.4 20 Q	3 33	0.65	0.870	24.1	3.70	0.75	0.330	15.0	4.33	0.48
1 330	20.0	3.69	0.67	0.900	24.6	3.15	0.60	0.370	15.9	4.19	0.51
1.000	20.0	0.00	0.01	0.930	25.2	3.05	0.72	0.370	15.9	4.20	0.43
		_		0.970	25.8	3.70	0.64	0.400	16.6	4.07	0.28
Source: Curry	and Lohmann	[in manu	script]	1.000	26.3	3.80	0.77	0.430	17.2	3.84	0.34
Species: C. wu	ellerstorfi			1.000	20.3	0.09 9.97	0.00	0.470	18.1	3.12	-0.01
				1.030	20.9	3.37 9.00	0.00	0.470	18.1	3.86	0.47
				1.070	21.0	2.09	0.44	0.500	18.8	3.66	0.28
_		-10 -	-10	1.070	27.3	2.00	0.03	0.530	19.4	4.24	0.56
Depth, m	Age, kyr	δ ¹⁸ O	δ ¹³ C	1.070	21.5	2.89	0.00	0.570	20.3	3.95	0.37
				1.070	21.0	3.00 3.67	0.07	0.570	20.3	3.54	0.85
				1.100	20.0	3 99	0.42	0.600	21.0	4.11	0.44
Core: KNI	R110-75			1.130	20.0	0.22 A 11	0.31	0.630	21.7	4.06	0.34
4°N 43°W				1.130	20.0	4.11	0.50	0.630	21.7	3.84	0.37
3063 m				1.170	29.2	3.86	1 18	0.670	22.5	3.60	0.17
0.010	0.0	0 50	0.41	1 200	20.7	3.68	1.10	0.700	23.2	3.69	0.76
0.010	0.2	2.02 9.49	1.90	1 200	20.1	3.97	0.84	0.700	23.2	3.61	0.53
0.010	0.2	2.40	1.20	1.200	30.2	3 36	0.58	0.730	23.9	3.80	0.49
0.070	1.7	2.30	1.02	1.200	30.9	3 44	0.84	0.770	24.9	3.46	0.33
0.070	1.7	2.10	1.49	1 300	31 A	3 46	0.01	0.800	25.6	3.70	0.50
0.100	2.0	2.33	0.64	1 330	31 0	3 67	0.10	0.830	26.4	3.61	0.77
0.130	0.1 5 1	2.03	1 26	1 330	31.0	3.86	0.70	0.830	26.4	4.26	0.60
0.130	0.1	2.00	1.00	1.000	01.0	0.00	0.10	0.870	27.4	3.75	0.52
0.170	9.J 11 2	0.02 9.02	0.52					0.900	28.1	3.62	0.67
0.200	11.0	2.92	0.50	Source: Curry	y and Lohman	n [in man	uscript]	0.000	28.1	4.12	0.71
0.230	13.4	306	0.00	Species: C. u	uellerstorfi			0.930	28.8	3.55	0.67
0.230	14.0	3.80	0.00					0.970	29.8	3.49	0.69
0.270	14.0	3 00	0.20					1.000	30.6	4.00	0.73
0.210	14.0	3.30	-0.01					1.000	30.6	3.38	0.49
0.000	14.5	3 36	-0.03					1.000	30.6	4.13	0.87
0.300	14.5	4 02	0.14					1.030	31.3	3.96	0.84
0.330	15.0	4.01	0.47					1.070	32.3	3.46	0.54
0.330	15.0	4.00	-0.24					1.100	33.1	3.91	0.56
0.370	15.7	3.96	0.34					1.130	33.8	3.56	0.81
			-								

Curry et al.: Distribution of δ^{13} C of Deep Water

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C
	1.170	34.8	3.48	0.77	0.630	17.2	3.58	0.21	0.230	13.6	3 63	-0.91
	1.200	35.6	3.59	0.94	0.670	18.0	3.27	-0.07	0.270	14.4	3.58	-0.37
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.230	36.3	3.42	1.04	0.700	18.5	3.86	0.39	0.270	14.4	4.47	0.22
	1.270	37.3	3.58	0.47	0.730	19,	3.38	-0.05	0.270	14.4	4.05	0.30
	1.300	38.0	3.82	0.78	0.770	2(1	4.06	0.21	0.270	14.4	4.39	0.04
	1.330	38.8	3.10	0.49	0.800	20.7	4.06	0.33	0.300	15.0	4.03	-0.10
	1.370	39.8	3.82	0.75	0.830	21.3	3.82	0.32	0.300	15.0	4.37	0.08
	1.400	40.5	3.91	1.27	0.870	22.2	3.77	0.56	0.300	15.0	4.48	0.06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.430	41.3	3.83	0.96	0.900	22.8	4.01	0.36	0.330	15.8	4.14	-0.10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.470	42.3	4.01	0.89	0.930	23.4	3.65	0.28	0.330	15.8	4.29	0.28
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					0.930	23.4	3.32	-0.35	0.330	15.8	4.03	0.35
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Source: Curry	and Lohmann	(in manu	script]	0.970	24.2	3.52	0.17	0.370	16.8	3.75	-0.13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Species: C. wu	ellerstorfi			1.000	24.9	4.11	0.76	0.370	16.8	4.43	0.30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.000	24.9	3.72	0.74	0.400	17.6	3.30	0.07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					1.030	25.5	3.23	0.13	0.400	17.6	4.75	0.67
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					1.030	25.5	3.15	0.05	0.400	17.6	4.17	0.29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.070	26.3	3.30	0.26	0.400	17.6	4.13	0.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	1.100	26.9	3.50	0.34	0.430	18.3	3.71	0.07
$\begin{array}{c} \text{Core: KNR110-66} \\ \text{5^{\circ}N 43^{\circ}W} \\ 3547 \text{ m} \\ \begin{array}{c} 1.110 & 28.4 & 4.40 & 0.62 & 0.410 & 19.4 & 3.91 & 0.40 \\ 5^{\circ}N 43^{\circ}W \\ 3547 \text{ m} \\ \begin{array}{c} 1.200 & 29.0 & 3.28 & 0.38 & 0.530 & 20.9 & 3.65 & -0.12 \\ 0.000 & 0.0 & 1.99 & 0.90 & 1.270 & 30.5 & 4.46 & 0.94 & 0.600 & 22.7 & 3.90 & 0.25 \\ 0.000 & 0.0 & 2.33 & 0.64 & 1.270 & 30.5 & 3.79 & -0.01 & 0.600 & 22.7 & 4.13 & 0.02 \\ 0.000 & 0.0 & 2.44 & 0.88 & 1.300 & 31.1 & 3.85 & 0.23 & 0.630 & 23.5 & 3.47 & -0.03 \\ 0.000 & 0.0 & 2.44 & 0.88 & 1.300 & 31.1 & 3.85 & 0.23 & 0.630 & 23.5 & 3.96 & 0.32 \\ 0.070 & 1.4 & 1.80 & 0.96 & 1.300 & 31.1 & 3.95 & 0.59 & 0.670 & 24.6 & 3.76 & 0.24 \\ 0.070 & 1.4 & 2.42 & 0.90 & 1.300 & 31.7 & 3.38 & 0.56 & 0.700 & 25.5 & 3.95 & 0.28 \\ 0.070 & 1.4 & 2.42 & 0.90 & 1.330 & 31.7 & 4.00 & 0.85 & 0.730 & 26.3 & 3.97 & 0.28 \\ 0.100 & 2.0 & 1.63 & 0.04 & & & & & & & & & & & & & & & & & & &$					1.130	27.0	3.95	0.62	0.470	19.4	3.72	0.02
$\begin{array}{c cccccc} \mathrm{KNR110-66} \\ 5^{\mathrm{eN}} \mathrm{M}^{3^\mathrm{eW}} \\ 5^{\mathrm{SN}} \mathrm{M}^{3^\mathrm{eW}} \\ 5^{\mathrm{SN}} \mathrm{M}^{3^\mathrm{eW}} \\ 1.200 & 29.6 & 3.84 & 0.66 & 0.570 & 21.9 & 3.65 & -0.12 \\ 3.26 & 0.328 & 0.570 & 21.9 & 3.65 & -0.12 \\ 1.270 & 30.5 & 3.28 & 0.70 & 0.570 & 21.9 & 3.01 & 0.25 \\ 0.000 & 0.0 & 2.33 & 0.64 & 1.270 & 30.5 & 3.74 & -0.01 & 0.600 & 22.7 & 4.13 & 0.02 \\ 0.000 & 0.0 & 2.44 & 0.88 & 1.300 & 31.1 & 3.85 & 0.23 & 0.630 & 23.5 & 3.47 & -0.03 \\ 0.000 & 0.0 & 2.44 & 0.88 & 1.300 & 31.1 & 3.85 & 0.23 & 0.630 & 23.5 & 3.47 & -0.03 \\ 0.000 & 0.0 & 2.44 & 0.88 & 1.300 & 31.1 & 3.95 & 0.59 & 0.670 & 24.6 & 3.76 & 0.24 \\ 0.070 & 1.4 & 1.80 & 0.96 & 1.300 & 31.1 & 3.95 & 0.59 & 0.670 & 24.6 & 3.76 & 0.24 \\ 0.070 & 1.4 & 2.46 & 0.88 & 1.330 & 31.7 & 4.00 & 0.85 & 0.730 & 26.3 & 3.97 & 0.28 \\ 0.100 & 2.0 & 1.63 & 0.04 & 5 & 5 & 5 & 0.59 & 0.730 & 26.3 & 3.97 & 0.28 \\ 0.100 & 2.0 & 2.25 & 1.03 & 5 & 5 & 5 & 0.59 & 0.23 \\ 0.100 & 2.0 & 2.25 & 1.03 & 5 & 5 & 5 & 0.59 & 0.330 & 29.2 & 3.46 & -0.06 \\ 0.170 & 5.9 & 1.29 & 0.46 & 0.79 & 0.55 & 0.830 & 29.2 & 3.46 & -0.06 \\ 0.170 & 5.9 & 2.29 & 1.18 & 0.43 & 0.31 & 0.330 & 29.2 & 3.46 & -0.06 \\ 0.200 & 7.3 & 2.97 & 0.40 & 0 & 0.850 & 0.830 & 29.2 & 3.46 & -0.06 \\ 0.200 & 7.3 & 2.97 & 0.40 & 0 & 0.850 & 0.970 & 33.2 & 3.47 & 0.47 \\ 0.230 & 8.1 & 2.34 & 0.33 & 0.270 & 9.1 & 2.72 & 0.59 & Core: KNR110-91 & 0.970 & 33.2 & 3.47 & 0.47 \\ 0.300 & 10.1 & 3.54 & 0.04 & 5^{\mathrm{N}} \mathrm{A}^{3\mathrm{V}} & 1.000 & 34.1 & 3.48 & 0.44 \\ 0.300 & 10.1 & 3.54 & 0.04 & 5^{\mathrm{N}} \mathrm{A}^{3\mathrm{V}} & 1.000 & 34.1 & 3.48 & 0.44 \\ 0.300 & 10.1 & 3.54 & 0.01 & 0.070 & 1.9 & 2.49 & 0.86 & 1.130 & 37.8 & 3.68 & 0.27 \\ 0.470 & 13.9 & 3.56 & -0.12 & 0.020 & 1.4 & 2.37 & 0.86 & 1.130 & 37.8 & 3.68 & 0.27 \\ 0.470 & 13.9 & 3.56 & -0.01 & 0.070 & 1.9 & 2.19 & 0.82 & 1.130 & 37.8 & 3.68 & 0.27 \\ 0.530 & 15.1 & 4.40 & 0.43 & 0.130 & 10.0 & 3.5 & 0.68 & 1.300 & 42.7 & 3.59 & 0.26 \\ 0.570 & 15.9 & 3.63 & 0.35 & 0.130 & 10.0 & 3.13 & 0.15 & 1.330 & 42.7 & 3.59 & 0.26 \\ 0.570 & 15.9 & 3.63 & 0.35 & 0.130 & 10.0 & 3.13 & 0.15 & 1.330 &$					1.170	28.4	4.40	0.82	0.470	19.4	3.97	0.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Core: KNF	2110-66			1.170	20.4	0.01 9.90	0.18	0.500	20.1	3.08	-0.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5°N 43°W				1.200	29.0	0.20 9.94	0.30	0.550	20.9	3.00 9.79	-0.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3547 m				1.230	29.0	3.04	0.00	0.570	21.9	0.70 1 01	-0.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1.270	30.5	J.20 A AR	0.70	0.510	21.9	2 00	0.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000	0.0	1.99	0.90	1.270	30.5	3 79	-0.01	0.000	22.1	0.90 112	0.20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	0.0	2.33	0.64	1.300	31.1	3.85	0.23	0.630	23.5	3 47	-0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	0.0	2.44	0.88	1.300	31.1	4.19	0.62	0.630	23.5	3.96	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	0.0	2.42	0.90	1.300	31.1	3.95	0.89	0.670	24.6	3.76	0.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.070	1.4	1.00 9.46	0.90	1.330	31.7	3.38	0.56	0.700	25.5	3.95	0.28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.070	1.4	2.40	0.00	1.330	31.7	4.00	0.85	0.730	26.3	3.97	0.28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.010	2.0	1 63	0.00					0.770	27.5	3.79	0.51
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.100	2.0	2.25	1.03	Source Curry	and Lohman	11083 1	9851	0.770	27.5	3.53	0.23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.100	2.0	2.51	0.98	Species C. w	uellerstorfi	a [1900, 1	200]	0.800	28.3	3.57	0.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.130	2.6	1.98	0.43	Species Cr B	j-			0.830	29.2	3.46	-0.06
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.170	5.9	1.89	0.56					0.830	29.2	4.33	0.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.170	5.9	2.29	1.18					0.830	29.2	3.95	0.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.200	7.3	2.97	0.40					0.870	30.4	3.83	0.31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.200	7.3	2.68	1.01	Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$	0.900	31.2	3.88	0.47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.230	8.1	2.46	0.79					0.930	32.1	4.07	0.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.230	8.1	2.34	0.33					0.930	32.1	3.73	0.33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.270	9.1	2.72	0.59	Core: KNI	R110-91			0.970	33.2	3.47	0.47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.300	10.1	3.54	0.04	5°N 43°W				1.000	34.1	3.48	0.44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.300	10.1	3.29	0.35	3810 m				1.030	34.9	3.94	0.73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.330	11.1	2.76	-0.25					1.030	34.9	4.20	0.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.330	11.1	3.28	0.75	0.020	1.4	2.27	0.86	1.070	30.1 26.0	3.08 2.40	0.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.370	11.9	3.15	-0.12	0.020	1.4	2.39	0.93	1.100	30.9	0.49 2 50	0.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.400	12.5	3.05	-0.01	0.070	1.9	2.40	0.86	1.130	37.8	3.50	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.430	13.1 12.0	う.00 2 F4	0.03	0.070	1.9	2.19	0.82	1,170	39.0	3 77	0.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.470	10.9	3.04 3.04	-0.19	0.100	3.5	2.29	0.31	1.200	39.8	3.79	0.53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	14.0	0.90 / / /	0.22	0.100	3.5	2.13	0.52	1.270	41.8	3.61	0.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	10.1	4.44 1 90	0.40 0.49	0.130	10.0	2.77	0.50	1.300	42.7	3.62	0.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	15.1	4.20 110	0.40	0.130	10.0	პ. პე ე იე	0.68	1.300	42.7	3.59	0.26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.530	15.0	3 69	0.21	0.130	10.0	2.82	U.ƏJ 0.15	1.330	43.5	3.58	0.47
0.600 16.6 4.21 0.27 0.200 13.0 3.73 0.22 Source: Curry and Lohmann [in manuscript] 0.600 16.6 4.00 0.48 0.200 13.0 3.39 0.41 Species: C. unrellerstorf	0.570	15.9	3.94	0.00	0.130	10.0	3 21	0.10				
0.600 16.6 4.00 0.48 0.200 13.0 3.39 0.41	0.600	16.6	4.21	0.27	0.200	13.0	3.73	0.20	Source: Curry	and Lohmann	lin manu	script
	0.600	16.6	4.00	0.48	0.200	13.0	3.39	0.41	Species C. un	ellerstorfi	Lautur	1

Curry	et	al.:	Distribution	of δ^{13} C	of Deep	Water

									_		
Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$
Core: KNE	2110-50			1.100	29.5	3.59	0.68	0.470	18.3	4.10	-0.14
5°N 43°W	0110 00			1.130	30.0	4.29	0.76	0.500	19.0	4.19	0.00
3995 m				1.130	30.0	3.78	0.43	0.530	19.7	3.74	-0.15
5550 m				1.170	30.7	3.71	0.55	0.570	20.7	4.11	0.00
0.010	0.1	2 16	0.58	1.200	31.2	3.80	0.33	0.600	21.3	4 14	0.07
0.010	0.1	2.40	0.00	1 230	31 7	3.23	0.37	0.630	22.0	4 15	0.01
0.010	0.1	2.40	0.69	1 230	31 7	4.26	0.49	0.670	23.0	3 99	-0.03
0.070	1.0	2.40	0.00	1.200	31.7	4 05	0.34	0.010	20.0	3 84	-0.00
0.070	1.8	ა.00 იიc	1.21	1.250	20.2	3 65	0.60	0.750	24.0	9.77	0.20
0.100	4.0	2.20	0.20	1 300	39 8	3 74	0.00	0.770	25.9	2.11	0.14
0.100	4.5	1.02	0.47	1.300	32.0	3 80	0.00	0.710	20.9	J.09 1 09	-0.00
0.100	4.5	3.09	0.03	1.000	00.0 99 9	J.09 4 07	0.75	0.000	20.8	4.03	0.10
0.130	10.3	3.13	0.31	1.330	33.3	4.07	0.05	0.830	27.8	4.08	0.21
0.130	10.3	3.71	0.23					0.870	29.0	3.35	0.12
0.170	11.5	3.23	-0.05	Source Curry	and Lohmann	ı (ın manu	script]	0.870	29.0	3.87	0.27
0.170	11.5	3.41	-0.25	Species: C. wu	uelle rs torfi			0.870	29.0	3.43	0.46
0.200	13.4	3.78	-0.25	-				0.870	29.0	3.67	0.08
0.230	15.1	4.26	0.10					0.900	30.0	3.90	0.35
0.230	15.1	4.32	0.09					0.930	30.9	3.76	0.26
0.270	15.7	3.95	-0.01	-				1.000	33.1	3.75	0.24
0.300	16.2	3.95	-0.01	Depth. m	Age. kvr	$\delta^{18}O$	$\delta^{13}C$	1.030	34.1	3.81	0.31
0.300	16.2	4.22	0.34	2 ·P·,	0-,,, -			1.030	34.1	3.87	0.43
0.300	16.2	4.08	0.18					1.070	35.4	3.42	0.09
0.330	16.7	3.80	-0.12	Core: KNI	R110-58			1.070	35.4	3.77	-0.10
0.330	16.7	4.18	0.32	5°N 43°W				1.100	36.3	3.73	0.60
0.370	17.4	4.03	0.14	4341 m				1.100	36.3	3.66	0.13
0.400	17.9	4.13	0.22					1.130	37.2	3.48	0.18
0.430	18.4	4.16	0.17	0.010	0.2	2.17	0.73	1.130	37.2	3.64	0.50
0 470	19.1	4.07	0.28	0.010	0.2	2 17	0.20	1.170	38.5	3.37	0.22
0 470	19.1	3.81	0.06	0.010	0.2	2.89	0.64	1.170	38.5	3.79	0.27
0.500	19.6	4.01	0.23	0.010	0.5	2.61	0.35	1.200	39.5	3.31	0.56
0.530	20.1	4 14	0.16	0.000	14	2.01	1.05	1.230	40.4	3.63	0.30
0.550	20.1	A 1A	0.10	0.010	1.4	2.00	0.80	1 230	40.4	4.20	0.10
0.510	20.1	3 01	0.12	0.010	2.4	2.30	0.00	1 270	41 7	3.80	0.53
0.070	20.7	3.31	0.20	0.100	2.0	2.41	0.13	1 300	42.6	3 51	0.20
0.000	21.2	3.49	0.00	0.100	2.0	2.13	0.01	1.300	42.6	3 57	0.32
0.000	21.2	0.19 1 10	0.20	0.130	2.0	2.10	0.00	1.000	42.0	0.01	0.01
0.640	21.9	4.10	0.30	0.130	2.0	2.91	0.01				
0.670	22.4	0.04 4.09	0.17	0.170	3.0 9.6	2.44	0.40	Source Curry	and Lohman	n [in man	uscript]
0.670	22.4	4.02	0.01	0.170	3.U 0.2	2.04	0.00	Species: C. w	uellerstorfi		
0.700	22.9	0.40 0.00	0.07	0.200	9.0	0.01	0.40				
0.700	22.9	3.99	0.10	0.200	9.0	3.17	0.20				
0.700	22.9	3.99	0.33	0.230	11.0	ე.29 ე.ეე	0.24				
0.730	23.4	3.67	0.59	0.230	11.0	3.32	0.27	Danth m	A	(180	(130
0.730	23.4	3.96	-0.15	0.270	13.0	3.96	0.22	Deptn, m	Аде, куг	00	0C
0.730	23.4	4.10	0.45	0.270	13.0	4.02	-0.36				
0.770	24.0	3.11	0.16	0.300	14.1	3.36	0.24		~		
0.770	24.0	3.96	0.13	0.300	14.1	4.29	0.21	Core: KN	R110-55		
0.800	24.5	3.97	0.08	0.330	15.1	4.79	0.51	5°N 43°W			
0.800	24.5	3.91	0.39	0.330	15.1	4.01	-0.01	4556 m			
0.830	25.0	3.38	0.41	0.330	15.1	4.29	0.10			_	
0.870	25.7	3.66	0.20	0.370	16.0	4.19	-0.05	0.010	0.3	2.56	0.61
0.900	26.2	3.48	0.29	0.370	16.0	4.12	0.31	0.010	0.3	2.65	0.21
0.930	26.7	3.30	0.17	0.370	16.0	4.01	0.17	0.010	0.3	2.57	0.85
	97 9	3.73	0.49	0.400	16.7	4.19	0.08	0.030	1.0	2.10	-0.08
0.970	21.0		-								0 54
$0.970 \\ 1.000$	27.3	3.17	0.17	0.400	16.7	4.18	0.09	0.030	1.0	3.27	0.54
0.970 1.000 1.000	27.8 27.8	3.17 3.79	0.17 0.11	0.400 0.400	16.7 16.7	4.18 4.38	0.09 0.00	0.030 0.030	1.0 1.0	$\begin{array}{c} 3.27 \\ 2.70 \end{array}$	0.54
$\begin{array}{c} 0.970 \\ 1.000 \\ 1.000 \\ 1.030 \end{array}$	27.8 27.8 27.8 28.3	3.17 3.79 3.86	0.17 0.11 0.26	0.400 0.400 0.430	16.7 16.7 17.4	4.18 4.38 4.02	0.09 0.00 -0.23	0.030 0.030 0.070	1.0 1.0 2.4	$3.27 \\ 2.70 \\ 2.16$	0.54 0.70 0.43

Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ Ο	δ^{13} C
0.070	2.4	2.09	0.46	1.230	35.3	3.76	0.05	1.025	29.3	3.68	0.57
0.070	2.4	2.26	0.02	1.230	35.3	3.89	0.39	1.050	29.8	3.62	0.71
0.100	3.6	2.30	0.54	1.230	35.3	3.83	0.56	1.075	30.2	3 70	0.61
0.100	3.6	1 74	0.34	1.270	36.3	3 94	0.00	1 100	30.7	3 54	0.01
0.100	3.6	2 72	0.61	1.270	36.3	4 02	0.00	1 1 2 5	31.9	3 76	0.40
0 130	40	2.12	0.03	1 300	37.0	2 69	0.00	1.120	31.2 91.7	9 50	0.04
0.100	67	2.03	0.44	1 300	37.0	J.UZ	0.10	1.130	31.7 99.9	0.00 9 E 4	0.70
0.170	67	9.40	0.32	1.300	37.0	4.12	0.55	1.170	32.2	3.04	0.50
0.170	67	2.00	-0.00	1.300	57.0	3.93	0.48	1.200	32.7	3.03	0.37
0.200	7.0	2.00	0.90					1.220	33.1	3.09	0.51
0.200	9.2	2.01	0.07	Source: Curry	and Lohman	n [in man	uscript]				
0.200	0.2	2.03	0.00	Species: C. w	uellerstorfi			Source: Mix a	nd Fairbanks	1985]	
0.200	10.5	2.10	0.09					Species C. wa	uellerstorfi		
0.210	10.0	2.04	-0.04								
0.300	11.1	0.20 9.60	0.00								
0.300	11.1	3.00	-0.30								
0.330	11.7	3.70	0.29	David	4 1	(180	(12)	D		-19 -	.10
0.330	11.7	3.02	0.24	Depth, m	Age, kyr	910O	δ ¹³ C	Depth, m	Age, kyr	δ ¹⁸ O	$\delta^{13}C$
0.370	15.1	4.51	-0.05								
0.400	15.8	4.18	0.13	a 1	-			.			
0.400	15.8	3.91	-0.34	Core: V25	-59			Core: V22	-197		
0.400	15.8	3.94	0.24	1°N 33°W				14°N 10°V	V		
0.430	16.5	3.85	0.15	3824 m				3167 m			
0.470	17.4	3.97	-0.17								
0.470	17.4	4.29	0.12	0.000	0.0	2.68	0.96	0.080	0.7	2.55	0.69
0.500	18.1	4.22	0.22	0.025	0.9	2.52	0.81	0.080	0.7	2.51	0.46
0.500	18.1	4.45	0.16	0.050	1.8	2.41	0.95	0.100	0.8	2.67	0.67
0.530	18.8	3.38	-0.25	0.075	2.7	2.63	0.87	0.150	1.2	2.70	0.79
0.530	18.8	3.98	-0.17	0.100	3.5	2.56	0.85	0.150	1.2	2.80	1.01
0.570	19.8	3.09	-0.30	0.150	5.3	2.78	0.99	0.200	1.6	2.88	1.08
0.570	19.8	3.97	-0.05	0.175	6.2	2.87	0.94	0.250	2.0	2.75	0.97
0.600	20.5	4.07	-0.03	0.200	7.1	2.75	0.92	0.250	2.0	2.60	0.75
0.630	21.2	4.08	0.17	0.225	8.0	2.94	0.80	0.300	2.5	2.50	0.62
0.670	22.1	3.80	0.06	0.250	8.8	2.98	0.95	0.350	3.6	2.71	0.90
0.700	22.8	4.04	0.01	0.300	10.6	3.50	0.71	0.400	4.6	2.99	0.53
0.730	23.5	3.74	0.03	0.325	11.5	3.08	0.95	0.450	5.6	3.12	0.69
0.730	23.5	4.00	0.10	0.350	12.2	3.77	0.04	0.500	6.6	2.77	0.77
0.770	24.5	3.21	-0.27	0.400	13.7	3.60	0.37	0.550	7.1	3.64	0.37
0.770	24.5	3.75	-0.28	0.425	14.4	3.51	0.02	0.600	7.5	3.15	0.61
0.800	25.2	4.37	0.41	0.450	15.1	4.30	0.09	0.650	8.0	2.70	1.17
0.800	25.2	4.04	-0.31	0.475	15.6	4.07	0.02	0.780	9.4	3.40	0.02
0.800	25.2	4.05	0.19	0.500	16.2	4.23	0.14	0.960	11.4	3 39	0.36
0.830	25.9	3.46	0.13	0.550	17.4	4.28	0.00	1.050	13.1	4 31	0.00
0.830	25.9	3.67	-0.15	0.600	18.5	4.29	0.06	1.150	15.1	4 56	0.13
0.870	26.8	3 41	0.18	0.675	20.5	4.35	0.14	1,150	15.1	4.00	0.14
0.900	27.5	3 41	0.10	0.700	21.8	4.18	-0.13	1.240	16.3	4.49	0.00
0.000	21.0	3 06	0.02	0.725	23.1	4 15	0.01	1 350	17.9	4.91	0.20
0.000	20.2	0.00 1 91	0.02	0.750	24 0	3 93	-0.05	1.500	10.1	4.01	0.21
0.970	20.2	2 22	0.21	0.775	24 4	3 90	0.00	1.550	20 5	4.41	0.27
0.970	20.2	3 38	_0.21	0.800	24.9	3 84	-0.05	1 650	20.0 91 P	4.41 1 95	0.00
1 000	20.0	3 60	-0.00	0.825	25.4	3 76	0.00	1.000	41.0 99.9	4.30	0.18
1 030	20.0 30 r	0.09 9.50	-0.10	0.850	25.0	3 80	-0.01	1.100	20.2 04 F	4.39	0.08
1 020	30.0 30 G	3.00	-0.11 0 10	0.000	20.8 96 A	3.00	-0.00	1.000	24.0	3.97	0.03
1.030	30.0 91 K	0.07 2 69	0.12	0.010	20.4 96 0	0.9U 2.00	0.01	1.920	25.8	4.04	0.18
1 100	01.0 01.0	0.02 9.21	-0.01	0.000	20.9 97 9	0.00 9 FC	U.20 0.60	<u> </u>			
1 190	04.0 ११ ∩	0.01 9.61	0.19	0.920	41.0 97.0	ე.ეე ე.უი	0.02	Source Shack	leton [uppubl	ehad data	.1
1.130	330 330	9 5.01 9 5.4	0.20	0.900	21.0 99.9	3.12 9.61	0.33	Species Cohi	idoidee enn	ened dats	1
1.170	00.9 91 C	0.00 9.20	0.21	0.910	20.J	0.01 0.00	0.51	-pooles. 01010	spp.		
1.200	94.0	ə.02	0.08	1.000	20.8	3.62	0.42				

Depth, m	Age, kyr	δ^{18} O	δ ¹³ C	Depth, m	Age, kyr	δ^{18} O	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ Ο	δ ¹³ C
Core: EN0 5°N 20°W	66-38			Core: EN0 5°N 22°W	66-44			0.470 0.470	$\begin{array}{c} 26.3\\ 26.3\end{array}$	3.79 3.89	0.54 0.48
2931 m				3428 m				0.500	27.9	3.79	0.65
0.030	2.2	2.52	0.98	0.040	2.4	2.62	1.15	Source: Curry	and Lohmann	1983 198	5]
0.030	2.2	2.75	1.11	0.040	2.4	2.55	0.94	Species: C. and	ellerstorfi	[1303,130	o]
0.060	4.2	2.69	1.24	0.070	7.8	2.95	0.95	opecies of ma			
0.090	6.3	3.17	0.93	0.070	7.8	2.00	1 15				
0.090	6.3	2.82	0.85	0.010	97	3 69	0.61				
0.120	8.3	2.96	1.09	0.100	11.6	3 59	0.59	Denth m	A	6180	130
0.160	11.0	3.17	0.69	0.170	15.0	4 40	0.60	Depth, m	Age, kyr	00	0-°C
0.190	12.4	3.99	0.41	0.210	16.4	4 91	0.50				
0.220	13.6	4.05	0.50	0.200	16.4	3 87	0.04		aa a1		
0.260	15.1	4.23	0.69	0.200	10.4	1 26	0.40	Core: EN0	66-21		
0.290	17.1	3.98	0.59	0.240	10.0	4.00	0.40	4°N 21°W			
0.320	19.2	3.93	0.41	0.270	19.0	4.00	0.02	3995 m			
0.350	21.2	4 00	0.52	0.270	19.0	3.94	0.40				
0.000	21.2	3 04	0.55	0.300	21.2	4.11	0.48	0.030	2.5	2.50	0.78
0.390	24.0	3 00	0.00	0.300	21.2	4.16	0.50	0.060	4.0	2.54	0.83
0.390	24.0	2.20	0.00	0.340	23.1	4.65	0.75	0.110	6.5	2.55	0.90
0.420	20.0	9.00	0.02	0.340	23.1	4.02	0.55	0.160	9.7	3.06	0.69
0.400	20.0	3.09	0.10	0.370	24.5	4.14	0.61	0.200	12.1	3.42	0.54
0.490	30.8	3.92	0.55	0.370	24.5	4.01	0.57	0.230	13.0	3.53	0.34
				0.370	24.5	3.81	0.53	0.260	13.9	3.88	0.17
Source: Curry	and Lohmann	[1983, 19	985]	0.400	25.9	4.04	0.69	0.300	15.0	4.09	0.12
Species C. wi	iellerstorfi			0.440	27.8	4.17	0.62	0.330	16.2	4.07	0.19
				0.470	29.3	3.94	0.71	0.360	17.4	3.72	-0.02
				0.470	29.3	3.97	0.84	0.400	19.0	4.03	0.27
_		- 10 -	.10 -	0.470	29.3	3.82	0.67	0 430	20.2	3 98	0.24
Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	0.470	29.3	4.01	0.49	0.100	20.2	3 07	0.20
								0.400	21. 1 92.1	2 04	0.42
				Source: Curr	v and Lohman	n [1983, 1	985]	0.500	20.1	0.04	0.39
Core: EN(066-16			Species C 1	y ellerstorfi			0.500	20.0	0.44 9.64	0.09
5°N 21°W	•			species. O. u				0.000	29.0 90 F	0.04 200	0.00
3152 m								0.000	29.0	3.82	0.43
0.040	1.1	2.54	0.94					Source [,] Curr	y and Lohman	nn [1983, 1	1985]
0.070	2.3	2.44	0.99					Species C.	wuellerstorfi	• •	•
0.100	4.9	3.35	0.57					-			
0.140	8.4	2.81	0.95								
0.170	11.0	3.09	0.77	Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$				
0.200	12.9	4.14	0.47	• ·	0						
0.240	15.0	4.38	0.44								
0.270	15.7	4.19	0.31	Core: EN	066-10			Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$
0.300	16.3	4.35	0.43	7°N 22°W	1						
0.340	17.2	4.38	0.43	3527 m							
0.010	17.8	4 30	0.40	5027 m				Core: EN	066-36		
0.010	18.5	1.00	0.10	0.040	28	9 95	0.82	4°N 20°W	1		
0.400	10.3	4 19	0.40	0.040	2.0	2.20	0.02	4270 m			
0.440	19.5	4.15	0.51	0.070	J.2 7 7	2.49	0.00	1210 111			
0.440	19.0	4.10	0.50	0.100	1.1	2.09	0.00	0.040	26	2 50	0.00
0.470	20.0 00.4	4.20	0.04	0.140	9.0	J.21	0.40	0.040	2.U 0.C	4.J9 9.01	0.99
0.500	20.0	4.14	0.44	0.170	10.9	2.92	0.55	0.040	2.0	2.91	0.01
0.500	20.6	3.96	0.28	0.240	13.9	3.96	0.53	0.070	4.8	2.87	0.63
0.600	22.8	4.02	0.71	0.270	15.2	4.02	0.40	0.100	7.1	2.99	0.60
0.700	24.9	3.55	0.84	0.300	16.9	3.87	0.36	0.140	9.3	3.56	0.58
0.700	24.9	3.97	0.81	0.340	19.1	4.11	0.19	0.170	10.7	3.12	0.75
				0.370	20.7	3.91	0.47	0.200	12.2	3.75	0.33
Source. Curry	and Lohmann	n [1983, 1 9	985]	0.400	22.4	3.81	0.54	0.240	14.9	4.28	0.38

0.440

Species C. wuellerstorfi

24.6

3.79 0.44

0.270

16.3

4.24 0.19

335

				·							
Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}\mathrm{C}$	Depth, m	Age, kyr	δ ¹⁸ Ο	δ^{13} C	Depth, m	Age, kyr	δ^{18} O	$\delta^{13}\mathrm{C}$
0.300	17.6	4.18	0.06	0.200	97	3 31	0 54	0 290	86	3.00	0.15
0.340	19.4	4.29	0.23	0.240	11.8	3.46	0.63	0.390	99	3.08	0.10
0.340	19.4	4.33	0.16	0.300	15.0	4.11	0.41	0.500	10.9	2.87	0.00
0.370	20.7	4.27	0.03	0.340	16.1	4.09	0.04	0.590	11.4	2.93	0.03
0.400	22.0	4.16	0.14	0.370	16.9	4.08	0.06	0.690	12.2	3.36	0.10
0.440	23.7	3.95	0.22	0.400	17.7	4.05	-0.30	0.790	13.2	3.46	-0.06
0.470	25.1	3.95	0.14	0.440	18.8	4.12	-0.20	0.900	14.3	3.70	0.24
0.600	30.8	3.70	0.17	0.640	24.2	3.89	-0.19	0.990	15.2	3.83	0.19
				0.700	25.8	3.80	0.22	1.090	16.6	3.77	0.16
		_	_	0.740	26.9	3.73	0.14	1.190	18.0	3.49	0.00
Source. Curry	and Lohmann	[1983, 19	85]	0.770	27.7	3.74	0.17	1.290	19.4	3.63	0.07
Species: C. wi	iellerstorfi							1.490	22.2	3.59	0.02
								1.590	23.6	3.47	0.02
				Source: Curry	and Lohmanr	n (1983, 19	985]	1.690	25.0	3.30	0.19
				Species: C. we	sellerstorfi			1.790	26.4	3.52	0.19
Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$					1.890	27.7	3.48	0.01
Core: EN(3°N 20°W)66-26			Depth, m	Age, kyr	δ ¹⁸ Ο	δ^{13} C	Source Shack Species. Cibic	eton [unpubli idoides spp	shed data]
4745 m											
				Core: EN0	66-29						
0.040	2.5	2.64	0.84	2°N 20°W							
0.100	6.3	2.67	0.52	5104 m						(180	c13 cr
0.140	8.8	3.04	0.24					Depth, m	Age, kyr	810U	810C
0.170	10.7	3.28	0.51	0.040	2.9	2.41	0.85				
0.200	12.6	3.62	0.20	0.040	2.9	2.72	0.84	~ ~~			
0.240	15.0	4.19	0.19	0.100	6.1	2.86	0.48	Core: RC1	3-228		
0.270	15.9	4.11	0.10	0.140	8.3	3.01	0.77	22°S 11°E			
0.300	16.9	4.16	-0.16	0.200	11.5	3.14	0.21	3204 m			
0.340	18.1	4.23	-0.18	0.200	11.5	3.19	0.18				
0.370	19.0	4.03	-0.25	0.240	15.0	4.03	-0.04	0.000	0.0	3.19	0.14
0.400	19.9	4.10	-0.06	0.300	16.5	3.87	-0.29	0.020	0.3	2.62	0.44
0.440	21.1	4.23	0.10	0.300	16.5	4.24	-0.34	0.070	0.9	2.58	0.64
0.470	22.0	4.01	0.05	0.400	19.0	3.50	-0.16	0.130	1.7	2.53	0.75
0.500	22.9	3.97	0.13	0.500	21.5	4.00	-0.23	0.180	2.4	2.51	0.40
0.600	26.0	3.59	0.07	0.540	22.5	3.99	0.01	0.230	3.1	2.58	0.49
				0.600	24.0	3.62	0.27	0.320	4.5	2.63	0.55
Source: Curry	and Lahmann	[10-29 10-	orl	0.640	25.0	3.44	0.01	0.380	5.4	2.77	0.59
Spacies: Curry		[1903, 19	09]	0.700	26.5	3.75	0.06	0.430	6.1	2.75	0.42
Species C. wu	enerstorji							0.480	6.9	2.87	0.27
								0.520	7.5	2.70	0.12
				Source Curry a	and Lohmann	[1983, 198	35]	0.630	9.0	3.21	0.05
				Species C. wu	ellerstorfi			0.730	9.9	3.54	0.06
								0.820	10.7	3.81	-0.15
Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$					0.880	11.2	3.82	-0.12
								0.930	11.6	3.47	-0.25
								0.980	12.7	4.22	0.03
Core: EN0	66-32			Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$	1.070	15.0	4.51	0.09
2°N 20°W					-			1.130	15.6	4.33	-0.29
5003 m								1.180	16.1	4.44	-0.06
				Core: BT4				1.200	16.3	4.34	-0.09
0.040	1.4	2.76	0.86	4°S 10°E				1.230	16.6	4.39	-0.02
0.070	2.9	2.68	0.91	1000 m				1.270	17.0	4.50	0.03
0.100	4.5	2.88	0.90					1.320	17.6	4.23	-0.14
0.140	6.6	3.18	0.60	0.050	0.5	2.57	0.33	1.430	18.7	4.18	-0.15
0.170	8.1	2.93	0.82	0.190	3.2	2.47	0.43	1.480	19.2	4.21	0.00
					_						

Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ 0	$\delta^{13}\mathrm{C}$	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}\mathrm{C}$
1.500	19.4	4.12	-0.49	Core: MD8	34-527			Core: RC1	.1-120		
1.630	20.7	4.15	-0.03	44°S 51°E				44°S 80°E			
1.680	21.2	4.12	-0.06	3269 m				3193 m			
1.730	21.8	4.05	-0.08								
1.820	22.7	4.16	0.33	0.050	0.3	3.09	0.28	0.050	0.9	2.92	0.39
1.880	23.3	4.21	0.20	0.130	0.8	3.05	0.51	0.150	3.9	2.37	0.29
1.930	23.8	3.94	0.09	0.230	1.4	3.03	0.19	0.150	3.9	2.74	0.61
1.980	24.3	3.81	0.21	0.300	1.8	2.84	0.45	0.300	8.5	2.84	0.45
2.020	24.7	3.80	0.27	0.400	2.5	2.53	0.13	0.400	10.7	3.88	0.15
				0.500	3.1	2.88	0.23	0.450	11.4	3.45	0.12
Courses Charles				0.530	3.3	3.17	0.42	0.600	14.9	4.52	-0.23
Source. Snacki	eton [unpublis	sned data	J	0.600	3.7	2.84	0.13	0.800	20.8	4.45	-0.48
Species. Cibici	doides spp			0.700	4.3	3.15	0.37	0.850	22.2	4.55	-0.32
				0.730	4.5	2.99	0.31	0.900	23.7	4.43	-0.46
				0.800	4.9	2.84	0.14	0.950	25.1	4.36	-0.12
				0.830	5.1	2.95	0.26				
				0.900	5.5	2.89	0.07	Source: Shack	leton lunnubli	shed date	al
		(160	(12)	1.000	6.2	3.02	0.00	Species: Caba	adoides spp	aned date	1
Depth, m	Age, kyr	91ºO	913C	1.100	6.8	2.73	-0.24	openes. oron	courses spp.		
				1.130	7.0	3.19	-0.16				
~ ~~~				1.200	7.4	2.82	-1.25				
Core: RC1	.3-229			1.300	8.0	2.65	-0.18				
26°S 11°E				1.430	8.7	3.03	-0.18	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$
4194 m				1.500	9.0	3.09	-0.11				
				1.600	9.3	3.21	0.00				
0.025	3.2	2.73	0.31	1.700	9.7	3.30	-0.15	Core: MD2	76-135		
0.025	3.2	2.16	0.47	1.800	10.1	3.26	-0.51	14°N 51°E			
0.045	3.9	2.73	0.25	2.100	11.2	3.42	-0.12	1895 m			
0.065	4.6	2.76	0.35	2.200	11.6	3.56	0.01				
0.085	5.3	2.81	0.39	2.300	11.8	3 74	-0.12	0.000	0.0	2.41	-0.14
0.100	5.9	2.66	0.27	2.400	12.1	3 79	-0.40	0.100	2.1	2.29	-0.17
0.100	5.9	2.83	0.25	2 500	12.3	3.81	-0.31	0.200	3.5	2.45	-0.15
0.145	7.5	2.67	0.41	2 600	12.0	3.96	-0.22	0.300	4.1	2.64	-0.06
0.200	8.9	2.92	0.44	2,700	12.0	3 97	-0.29	0.400	4.6	2.68	-0.16
0.250	9.5	3.04	0.20	2.100	13.8	4 40	-0.25	0.500	5.1	2.75	-0.07
0.300	10.2	2.96	0.19	2.000	15.0	A 5A	-0.35	0.600	5.6	2.64	-0.10
0.310	10.9	3.30	0.16	2.000	15.0	4 40	0.55	0.700	6.2	2.54	-0.08
0.350	12.0	3.61	-0.10	2.550	15.6	4.40	-0.00	0.800	6.6	2.52	-0.17
0.400	12.7	3.65	0.03	3 020	15.0	1.20	-0.30	0.900	6.9	2.64	-0.27
0.410	12.8	3.72	-0.15	3 100	16.1	4.02	-0.44	1.000	7.2	2.72	-0.08
0.450	15.0	4.26	-0.47	3.100	16.2	4.34	-0.33	1.100	7.6	2.82	-0.10
0.500	15.8	4.03	-0.20	2.100	10.4	4.00	-0.11	1.200	7.9	2.73	-0.17
0.550	16.6	4.07	-0.42	3.200	10.9	4.29	-0.04	1.300	8.2	2.86	-0.26
0.600	17.4	4.20	-0.29	3.300	17.0	4.31	-0.40	1.400	8.6	2.51	-0.11
0.600	17.4	4.31	-0.52	3.400	10.1	4.33	-0.08	1.500	9.1	2.62	0.02
0.650	18.2	4.23	-0.48	0.000 9 200	10.4	4.30	-0.04	1.600	9.6	2.91	-0.45
0.700	19.0	4.05	-0.20	3.000	19.4	4.24	-0.80	1.700	10.2	3.27	-0.61
0.710	19.2	4.16	-0.57	3.1UU 2.000	20.0	4.22	-0.47	1.800	10.7	3.33	-0.85
0.750	19.8	4.21	-0.33	0.800 9.000	20.0	4.22	-0.47	1.900	11.3	3.20	-0.20
0.800	20.6	4.15	-0.16	3.900	21.2	4.23	-0.09	2.000	12.0	3.26	-0.13
0.900	22.2	4.04	-0.42	4.000	21.8	4.32	-0.86	2.100	13.6	3.93	0.00
1.000	23.3	4.03	-0.37					2.200	15.2	4.16	-0.11
				Source Labey	rie et al. [198	37]		2.300	16.7	3.95	-0.01

Source Labeyrie et al. [1987] Species. Cibicidoides spp.

2.400

2.500

2.600

2.700

18.3

19.9

21.4

23.0

4.16

3.93

3.47

3.83

-0.10

-0.21

-0.17

-0.20

Source: Oppo and Fairbanks [1987]

Species: C. wuellerstorfi, C. kullenberg:

Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$	Depth, m	Age, kyr	δ^{18} O	$\delta^{13}C$
2 800	24.6	3 03	_0 12	0.500	78	2 72	0.26	0.720	13.5	4.09	-0.42
2.000	24.0	3 55	-0.12	0.600	9.6	3.33	0.14	0.730	13.6	4.19	-0.26
3,000	20.2 97 7	3.65	-0.13	0.700	11.4	3.32	0.14	0.750	13.7	4.24	-0.33
0.000	21.1	0.00	-0.10	0.100	19.7	3 50	0.15	0.850	14.3	4.23	-0.20
				1 000	15.0	4 03	-0.02	0.970	15.0	4 45	-0.28
Source Duples	sy and Labey	rie [unpul	blished data]	1 100	15.5	3 75	-0.02	1 090	15.8	4 37	-0.20
Species Cibici	doides spp.			1.100	16.0	0.10 1 01	-0.04	1.000	16.6	4.46	0.20
				1.200	10.0	4.04	-0.08	1.210	10.0	4.40	-0.30
				1.300	10.5	4.08	-0.07	1.000	10.0	4.20	-0.40
				1.400	17.0	3.89	-0.22	1.450	18.3	4.25	-0.47
				1.500	17.6	4.01	-0.15	1.590	19.3	4.27	-0.47
Depth, m	Age, kyr	δ ¹⁸ Ο	$\delta^{13}C$					1.710	20.2	4.14	-0.43
				Saurea Durk	way and Labo	ume lunni	ubliched data	1.830	21.0	4.26	-0.34
				Source Dup	essy and Labe	yrie lunpe	Ionanea data	1.950	21.9	4.39	-0.28
Core: MD7	79-254			Species. Cios	ciaoiaes spp.			2.070	22.7	4.06	-0.33
18°S 39°E								2.150	23.3	4.14	0.03
1934 m								2.190	23.6	4.03	-0.48
			-					2.310	24.4	3.76	-0.39
0.000	0.0	2.74	0.71					2.430	25.3	4.18	-0.23
0.100	0.5	2.71	0.62	Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$	2.550	26.1	3.93	-0.10
0.300	1.5	2.65	0.66					2.670	26.9	3.83	-0.25
0.400	2.0	2 43	0.62								
0.700	57	2 59	0.62	Core: TR1	63-31						
0.100	6.9	2.00	0.65	4°S 84°W				Source: Shack	deton [unpubl	shed dat	a]
0.000	8.0	2.02	0.00	3210 m				Species. Cibi	cidoides spp		
1.000	0.0	2.00	0.01								
1.000	9.2	2.14	0.40	0.010	0.8	2 75	0.11				
1.100	10.4	0.00	0.30	0.010	19	2.16	-0.38				
1.200	10.9	0.21	0.09	0.000	30	2.00	0.18				
1.300	11.5	3.19	0.31	0.010	5.5	2.91 9.00	0.10	Depth, m	Age, kyr	$\delta^{18}O$	$\delta^{13}C$
1.400	12.0	3.77	0.10	0.110	5.2	4.00 9.00	0.03				
1.500	12.4	3.95	0.00	0.120	0.0 E C	4.00	-0.04				
1.600	12.7	3.32	0.08	0.130	5.0	2.80	0.02	Core: V28-	-304		
2.100	14.7	3.58	0.33	0.160	6.3	3.10	0.09	29°N 134°	E		
2.200	15.1	4.22	0.08	0.190	7.0	3.37	0.11	2942 m			
2.300	15.8	4.19	-0.02	0.200	7.3	2.81	0.24				
3.100	21.3	3.95	0.27	0.230	8.0	3.05	-0.11	0.000	0.0	2 69	0.11
3.400	23.4	3.77	0.08	0.240	8.3	2.98	-0.09	0.000	14	2.00	0.11
3.500	24.1	3.66	0.39	0.250	8.5	3.04	-0.08	0.120	4 1	2.01	0.00
				0.260	8.7	2.69	-0.40	0.120	55	2.09	0.01
				0.260	8.7	3.54	-0.26	0.100	5.5	2.09	0.20
Source Duples	sy and Labey	rie [unpul	blished data]	0.270	8.9	3.22	-0.30	0.100	0.0	2.07	0.20
Species Cibici	doides spp.			0.310	9.7	3.43	-0.32	0.200	0.9	2.80	0.20
				0.320	9.9	3.13	-0.04	0.400	13.0	3.71	-0.12
				0.350	10.5	3.05	-0.19	0.440	13.7	4.22	-0.02
				0.360	10.7	3.39	-0.07	0.480	13.8	3.85	-0.16
				0 370	10.9	3.65	-0.10	0.760	14.6	4.15	-0.11
Denth m	A ge kyr	<u>م180</u>	513C	0.400	11.5	3 36	-0.11	0.900	15.3	4.42	0.06
Deptil, III	Age, Kyl	00	00	0.490	11.0	3 00	0.04	1.000	17.0	4.36	-0.01
				0.430	11.0	2.20	0.04	1.100	18.7	4.33	0.16
	105			0.440	11.9	0.92	0.11	1.300	22.2	4.12	0.05
Core: MD7	0-125			0.490	12.2	0.09 0.00	0.00	1.600	27.3	3.77	-0.08
8"N 75"E				0.510	12.3	3.80	-0.02	1.900	32.4	3.55	0.11
1878 m				0.520	12.3	3.98	0.14				
				0.550	12.5	3.48	-0.18				
0.000	0.0	2.62	0.29	0.550	12.5	3.80	-0.01	Source Shack	deton [unpubli	shed data	a]
0.100	1.2	2.85	0.21	0.590	12.7	4.03	-0.19	Species: C101	cidoides spp		
0.200	2.5	2.52	0.17	0.590	12.7	3.79	-0.45				
0.300	4.3	2.65	0.26	0.610	12.9	4.02	0.00				
0.400	6.1	2.95	0.12	0.710	13.4	4.02	-0.11				

Depth, m Age, kyr δ^{18} O δ^{13} C Depth, m Age, kyr δ^{18} O δ^{13} C Depth, m Age, kyr δ^{18} O δ^{13} C	8 ¹³ C
Core: KNR73-4-3 Core: V19-30 Core: V35-05 0° 106°W 3°S 83°W 7°N 112°E 3606 m 3091 m 1950 m	
0.100 0.7 2.58 0.29 0.320 4.1 2.66 -0.09 0.020 0.2 2.68 -0.09 0.020 0.2 0.2	-0.02
0.135 1.5 2.46 0.29 0.360 4.6 2.85 0.03 0.050 0.4 2.32	0.02
$0.170 \qquad 2.2 \qquad 2.31 \qquad 0.28 \qquad 0.380 \qquad 4.9 \qquad 2.95 \qquad 0.04 \qquad 0.070 \qquad 0.6 \qquad 2.27 \qquad \cdot \\$	-0.02
0.200 3.2 2.54 0.16 0.480 6.2 2.84 0.08 0.125 1.1 2.46	0.11
0.270 5.3 2.57 0.01 0.500 6.5 2.67 -0.03 0.125 1.1 2.41	0.02
0.300 6.2 2.64 0.22 0.560 7.2 3.07 0.00 0.125 1.1 2.34	0.01
0.335 7.3 2.81 0.97 0.600 7.7 3.22 -0.01 0.650 5.5 2.43	0.01
0.370 8.4 2.57 0.30 0.630 8.1 3.41 0.03 0.725 6.2 2.46	-0.15
0.400 8.9 3.13 -0.11 1.180 15.1 4.47 -0.39 0.900 7.7 2.60	-0.10
0.470 9.8 2.99 0.08 1.200 15.3 4.36 -0.26 0.925 7.9 2.71	0.01
0.500 10.2 3.04 0.01 1.230 15.4 4.42 -0.33 0.975 8.3 2.42	-0.25
0.535 10.7 3.29 -0.09 1.270 15.7 4.20 -0.44 1.075 9.1 2.85	-0.18
0.600 11.5 3.12 -0.13 1.300 15.9 4.35 -0.41 1.125 9.4 2.75	-0.20
0.635 12.1 3.37 -0.39 1.320 16.0 4.26 -0.19 1.175 9.7 2.60	-0.37
0.670 14.0 3.84 -0.11 1.350 16.2 4.24 -0.53 1.230 10.1 2.89	0.00
0.700 15.3 4.01 -0.23 1.390 16.4 4.27 -0.33 1.250 10.2 2.90	-0.24
0.735 16.1 4.00 -0.22 1.410 16.6 4.28 -0.47 1.325 10.7 2.87 -0.735	-0.35
0.770 16.9 3.80 -0.20 1.440 16.7 4.12 -0.56 1.375 11.1 3.29	-0.22
0.800 17.6 3.59 -0.37 1.480 17.0 4.36 -0.51 1.425 11.4 3.05	-0.19
0.835 18.3 3.72 -0.21 1.520 17.2 4.26 -0.70 1.550 12.0 3.25	-0.14
0.900 19.8 3.86 -0.10 2.475 15.2 3.87	-0.33
0.950 21.0 4.01 -0.19 2.475 15.2 3.92	-0.39
1.035 22.9 3.78 0.01 Source. Shackelton [unpublished data] 2.775 17.2 3.90	-0.31
1.070 23.7 3.56 -0.11 Species: Cibicidaides spp. 3.090 19.3 3.81	-0.46
1.100 24.4 3.67 0.09	
1.135 25.2 3.68 0.03	
1.170 26.0 3.56 0.19 Source. Oppo and Fairbanks [1987]	

Species C. wuellerstorfi, C. kullenbergi

Source. Boyle and Keigwin [1985/86] Species C. wuellerstorfi, C. kullenbergs

26.7

28.3

28.9

29.7

3.65

3.853.55

3.43

0.09 0.03

0.01

0.19

1.200

1.270

1.300

1.335

Acknowledgments. This paper was presented during the Deep Water Paleoceanography Symposium at the Second International Conference on Paleoceanography at Woods Hole, September 1986. We thank all of the contributors to that session for their cooperation and discussions. We especially than E. Boyle, R. Fairbanks, L. Keigwin and D. Oppo for sharing with us their preprints and unpublished data. This research was supported by NSF grants OCE85-11014 and OCE83-9124 to W.B.C. J.-C. Duplessy and L. D. Labeyrie are supported by CNRS, CEA, TAAF, INEDC and program CO₂-PIREN. This is Woods Hole Oceanographic Institution Contribution 6813 and CFR contribution 949.

REFERENCES

Belanger, P.E., W.B. Curry, and R.K. Matthews, Core-top evaluation of benthic foraminiferal isotopic ratios for paleoceanographic interpretation, *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 33, 205-220, 1981.

Boyle, E.A., Paired carbon isotope and cadmium data from benthic foraminifera: Implications for changes in oceanic phosphorous, oceanic circulation, and atmospheric carbon dioxide, *Geochum. Cosmochim.* Acta, 50, 265-276, 1986.

Boyle, E. A. and L. D. Keigwin, Deep circulation of the North Atlantic over the last 200,000 years: Geochemical evidence, *Science*, 218, 784-787, 1982.

Boyle, E.A., and L.D. Keigwin, Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: Changes in deep ocean circulation and chemical inventories, *Earth and Planetary Science Letters*, 76, 135-150, 1985/86.

Boyle, E.A., and L.D. Keigwin, Glacial North Atlantic hydrography and atmospheric carbon dioxide, *EOS Trans. AGU*, 67, 868-869, 1986.

Broecker, W.S., Geochemical tracers and ocean circulation, in *Evolution of Physical Oceanography*, edited by B.A. Warren and C. Wunsch, pp. 434-460, MIT Press, Cambridge, Mass., 1981.

Broecker, W. S., Glacial to interglacial changes in ocean chemistry, Prog. in Oceanogr., 11, 151-197, 1982.

Broecker, W. S., and T.-H. Peng, Tracers in the Sea, 690 pp., Eldigio Press, New York, 1982.

Chung, Y, and H. Craig, Radium-226 in the eastern equatorial Pacific, *Earth Planet. Sci. Lett.*, 17, 306-318, 1973.

Cofer-Shabica, N.B., and L.C. Peterson, Carbon isotope evidence for an O₂-rich deep water in the eastern Caribbean Sea, *Geol. Soc. Am. Abstr. Programs*, 17, 567, 1986.

Corliss, B.H., Microhabitats of benthic foraminifera within deep-sea sediments, Nature, 314, 435-438, 1985.

Curry, W.B., and G.P. Lohmann, Carbon isotopic changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns, *Quat. Res.*, 18, 218-235, 1982.

Curry, W. B., and G. P. Lohmann, Reduced advection into Atlantic Ocean deep eastern basins during last glaciation maximum, Nature, 306, 577-580, 1983.

- Curry, W. B., and G. P. Lohmann, Carbon deposition rates and deep water residence time in the equatorial Atlantic Ocean throughout the last 160,000 years, in The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Recent, Geophys. Monogr. Ser., vol. 32, edited by E. Sundquist and W. Broecker, 285-301, AGU, Washington, D.C., 1985.
- Duplessy, J.C., North Atlantic deep water circulation during the last climatic cycle, Bull. Inst. Geol. Bassin d'Aquitaine, 31, 379-391, 1982.
- Duplessy, J.C., J. Moyes, and C. Pujol, Deep water formation in the North Atlantic Ocean during the last ice age, *Nature*, 286, 479-482, 1980.
- Duplessy, J.C., N.J. Shackleton, R.K. Matthews, W. Prell, W.F. Ruddiman, M. Caralp, and C. Hendy, ¹³C record of benthic foraminifera in the last interglacial ocean: Implications for the carbon cycle and the global deep water circulation, *Quat. Res.*, 21, 225-243, 1984.
- Duplessy, J.-C., N. J. Shackleton, R. G. Fairbauks, L. D. Labeyrie, D. Oppo, and N. Kallel, Deep water source variations during the last climatic cycle and their impact on the global deep water circulation, this issue.
- Graham, D.W., B.H. Corliss, M.L. Bender, and L.D. Keigwin, Carbon and oxygen isotopic disequilibria of Recent deep-sea foraminifera, *Mar. Micropaleontol.*, 6, 483-497, 1981.
- Imbrie, J., J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J.J. Morley, N. G. Pisias, W. L. Prell, and N. Shackleton, The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ^{18} O record, in *Milankovitch and Climate*, edited by A. Berger et al., pp. 269-305, D. Riedel, Hingham, Mass., 1984.
- Keigwin, L., Stable isotope stratigraphy and paleoceanography of Sites 502 and 503, *Initial Rep.* Deep Sea Drill. Proj., 68, 445-453, 1982.
- Kroopnick, P.M., The dissolved O₂-CO₂-¹³C system in the eastern equatorial Pacific, *Deep Sea Res.*, 21, 211-227, 1974.
- Kroopnick, P.M., The distribution of ¹³C in the Atlantic Ocean, Earth Planet. Sci. Lett., 49, 469-484, 1980.
- Kroopnick, P.M., The distribution of 13 C of Σ CO₂ in the world oceans, *Deep Sea Res.*, *32*, 57-84, 1985.
- Labeyrie, L.D., J.J. Pichon, M. Labracherie, P. Ippolito, J. Duprat, and J.C. Duplessy, Melting history of Antarctica during the past 60,000 years, *Nature*, 322, 701-706, 1986.
- Labeyrie, L. D., J. C. Duplessy, and P.L. Blanc, Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years, *Nature*, 327, 477-482, 1987.
- Mix, A., and R.G. Fairbanks, North Atlantic surface-ocean control of Pleistocene deep-ocean circulation, *Earth Planet. Sci. Lett.*, 73, 231-243, 1985.
- Oppo, D.W, and R.G. Fairbanks, Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern hemisphere modulation of the Southern Ocean, *Earth Planet. Sci. Lett.*, 86, 1-15, 1987.

- Peng, T.H., W.S. Broecker, G. Kipphut, and N. Shackleton, Benthic mixing in deep sea cores by ^{14}C dating and its implications regarding climate stratigraphy and the fate of fossil fuel CO₂, in *Fate of Fossil Fuel CO₂ in the Oceans*, edited by N. R. Andersen and A. Malahoff, pp. 355-373, Plenum, New York, 1977.
- Pisias, N.G., Geologic time series from deep-sea sediments: Time scales and distortion by bioturbation, *Mar. Geol.*, 51, 99-113, 1983.
- Rubinson, M., and R.N. Clayton, Carbon-13 fractionation between aragonite and calcite, *Geochim. Cosmochim. Acta*, 33, 997-1002, 1969.
- Shackleton, N.J., The oxygen isotope stratigraphic record of the Late Pleistocene, *Philos. Trans. R. Soc. London* Ser. B., 280, 169-182, 1977a.
- Shackleton, N. J., Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, in *Fate* of Fossil Fuel CO_2 in the Oceans, edited by N. R. Andersen and A. Malahoff, pp. 401-427, Plenum, New York, 1977b.
- Shackleton, N.J., and N. D. Opdyke, Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 10⁵ year and 10⁶ year scale, *Quat. Res.*, 3, 39-55, 1973.
- Shackleton, N. J., and N. G. Pisias, Atmospheric carbon dioxide, orbital forcing, and climate, in *The Carbon Cycle and Atmospheric CO₂: Natural Variations Archean to Recent, Geophys. Monogr. Ser.*, vol. 32, edited by E. Sundquist and W. Broecker, 303-317, AGU, Washington, D.C., 1985.
- Shackleton, N.J., J. Imbrie, and M.A. Hall, Oxygen and carbon isotope record of East Pacific core V19-30: Implications for the formation of deep water in the Late Pleistocene North Atlantic, *Earth Planet. Sci. Lett.*, 65, 233-244, 1983a.
- Shackleton, N. J., M. A. Hall, J. Line, and C. Shuxi, Carbon isotope data from core V19-30 confirm reduced

carbon dioxide concentration in the ice age atmosphere, Nature, 306, 319-322, 1983b.

- Woodruff, F., S.M. Savin, and R.G. Douglas, Biological fractionation of oxygen and carbon isotopes by Recent benthic foraminifera, *Mar. Micropaleontol.*, 5, 3-11, 1980.
- Woodruff, F., S.M. Savin, and R.G. Douglas, Miocene stable isotope record: A detailed deep Pacific Ocean study and its paleoclimatic implications, *Science*, 212, 665-668, 1981.
- Worthington, L.V., The water masses of the World Ocean: Some results of a fine-scale census, in *Evolution* of *Physical Oceanography*, edited by B.A. Warren and C. Wunsch, pp. 42-69, MIT Press, Cambridge, Mass., 1981.
- Zahn, R., K. Winn, and M. Sarnthein, Benthic foraminiferal δ^{13} C and accumulation rates of organic carbon: Uvigerina peregrina group and C. wuellerstorfi, Paleoceanography, 1, 27-42, 1986.
- Zahn, R., and M. Sarnthein, Benthos isotopic evidence for changes of the Mediterranean outflow over the last 30,000 years, Abstracts with Programs, paper presented at the Second International Conference on Paleoceanography, Woods Hole Oceanographic Institution, Woods Hole, Mass., 1986.

W. B. Curry, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

J. C. Duplessy and L. D. Labeyrie, Centre des Faibles Radioactivites, Laboratoire Mixte CNRS/CEA, Domaine du CNRS, 91190 Gif-sur-Yvette, France

N. J. Shackleton, Godwin Laboratory for Quaternary Research, Free School Lane, Cambridge, CB2 3RS UK, England

(Received December 23, 1987; revised April 18, 1988; accepted April 22, 1988.)