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1 Introduction

Air and water, the most common fluids on the Earth, are Newtonian fluids. It means
that the viscous behaviors of these fluids can be described by Stokes’ law of viscosity. In
other words, the viscosity, which is defined as the ratio of shear stress versus shear rate,
is constant. However, there are many liquids that do not obey Stokes’ law of viscosity.
For example, many geological and industry materials, such as mud, ice, lava, painting oil,
toothpaste, drilling mud, chocolate and so forth, are not Newtonian fluids. Any fluid that
does not follow the constant-viscosity law is called non-Newtonian fluid. Non-Newtonian
fluids often exhibit some very interesting behaviors.

There are many types of non-Newtonian fluids: shearing thinning fluid, viscoplastic fluid
and viscoelastic fluid... In this report, we will focus on the viscoplastic fluid. Viscoplastic
fluid is also called ”yield stress” fluid. Such fluid has a property in which the fluid behaves
like a solid below some critical stress value (the yield stress), but flows like a viscous liquid
when the yield stress is exceeded. It is often associated with highly aggregated suspensions.
Flow of the muddy rivers is a typical example. Among many viscoplastic fluids, there is a
special class called Bingham plastics. For Bingham plastic fluid, the shear stress beyond the
yield stress is linearly proportional to the shear rate. If the yield stress approaches zero, the
Bingham plastic fluid can be approximately treated as Newtonian fluid. Mathematically,
this model can be represented as ([11]):

τij =

(

ν +
τY
γ̇

)

γ̇ij for τ > τY , (1)

and

γ̇ij = 0 for τ < τY . (2)

where τij is the deviatoric stress tensor, ν is the viscosity, the rate-of-strain tensor is:

γ̇ij =
∂vi

∂xj
+
∂vj

∂xi
. (3)

where vj represents the velocity field, and

τ =

√

1

2
τijτij and γ̇ =

√

1

2
γ̇ij γ̇ij . (4)
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Figure 1: The Rheology of the Bingham model.

are the second invariants of τij and γ̇ij . The rheology of the Bingham fluid is shown in
Figure 1.

For the flow of the Bingham fluid, the stress varies in space and time. There can be
regions in the fluid where the yield stress is exceeded, and other regions in which it is
not. The boundaries between the two regions are the yield surfaces. Tracking the yield
surfaces as the flow evolves is one of the most complicated problems associated with the
Bingham model. The stability of the viscoplastic flows depends on what happens to these
non-material surfaces when a sudden perturbation is introduced? Do the yield surface
remain intact and merely displaced, or do they disappear and the plug is “broken” by
the perturbation? In the study of the channel flow of the Bingham fluid, Friggard ([4])
address that an infinitesimal perturbation to the flow should displace the yield surfaces but
otherwise leave them intact, since the unyielded region is ”an elastic solid that would not
break up”. However, the identification of the yield surface leads to some confusion in the
free surface flow of the Bingham fluid down an inclined plane and through narrow conduit
([2]). In this kind of problems, asymptotic expansion can be used to reduce the governing
equations due to the small aspect ratio of the fluid. The leading order asymptotic solution
contains apparent yield surface, however, the theory subsequently predicts that fluid flow
is extensional even in the supposedly non-yielding regions. The resolution of this paradox
is to re-interpret the apparent yield surfaces as “fake” ones and apparent “plug flow” as a
weakly yielding flow, or a “pseudo-plug” ([1]; [2]).

Then, when the “plug flow” can be treated as “pseudo-plug flow”? How the stability
criterion changes as we interpret the “plug flow” differently? What is the meaning of the
yield surface and yield stress for the Bingham plastic flow? In this paper, we will try to
answer these questions by studying various kinds of Bingham flow phenomena: free surface
flow, channel flow and thermal convection. Based on the understanding of the yield surface
and yield stress in the Bingham fluid, we then get an improved vertical average mode for
the free surface flow of the Bingham thin film.
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Figure 2: Fluid flowing down the inclined plane.

2 Free surface flow

Mud, the common geological fluid, has Bingham rheology. Every year, accompanying the
heavy and persistent rainfalls in mountainous areas, mudflow can be induced by mixture of
the water and mud flowing down the hill. It can move stones, boulders and even trees. It
threatens the lives of the people who inhabit in the mountain area and is a main source of the
natural hazards. Mudflows caused by Hurricane Mitch in 1998 have incurred devastating
floods in Central America. In Honduras alone more than 6000 people perished. Half of the
nations infrastructures were damaged([9]).

River with a large amount of clay suspension can also be characterized as Bingham fluid.
The mud concentration at low water in the Yellow river of China is known to reach 50% by
volume ([10]). In Jiang-xia Ravine China, the mudflow surges down during the wet season
in groups of successive bores. The maximum wave height reaches 4m and the maximum
wave velocity 13ms−1. The wavelength varied between 20 and 100m, while the period of
each wave ranges from 5 to 60s. The bore fronts splattered with so much force that even
large stones were thrown into the air. The flow in the rear of the waves was much shallower,
slower and essentially laminar, and frequently stagnant before next surge. ([10])

Better understanding of the free surface flow of the Bingham fluid and accurate deriva-
tion for the stability criterion can help us to monitor the mudflows down the hill and mud
surges in the rivers. In this section, we first give the governing equations for two-dimensional
free surface flow, and then we introduce the pseudo-plug theory for the Bingham flow under
the lubrication approximation. After that, we briefly describe the vertical average mode
and its limitations. We also compare the pseudo-plug theory for the Bingham model with
the bi-viscous model. Finally, we derive an improved vertical average model.

2.1 Governing equations

Consider a two-dimensional laminar flow of a thin layer of mud flowing down a plane with
inclination θ. We define an (x, z) coordinate system with the x-axis along and the z-axis
normal to the plane. We denote the longitudinal and transverse velocity components by
u(x, z, t) and w(x, z, t) respectively, the pressure by p(x, z, t) and the depth normal to the
bed by h(x, t) (Shown in figure 2).
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The momentum equations along x and z directions are:

ρ(ut + uux + wuz) = −px + ∂xτxx + ∂zτzx + ρg sin(θ), (5)

ρ(wt + uwx + wwz) = −pz + ∂zτxz + ∂zτzz − ρg cos(θ), (6)

with the continuity equation:
ux + wz = 0. (7)

At the bottom z = 0, the velocity vanishes (non-slip boundary condition):

u = w = 0. (8)

On the free surface z = h, the kinematic boundary condition requires:

ht + u(x, h, t)hx = w(x, h, t); (9)

and the stress free boundary condition states:

(

τxx − p τxz

τxz τzz − p

)(

hx

1

)

=

(

0
0

)

. (10)

The constitutive law of the Bingham fluid is:

{

τij = (ν + τY

γ̇
)γ̇ij if τ > τY ,

γ̇ij = 0 if τ < τY ,
(11)

where τij is the stress tensor, γ̇ij is the rate-of-strain tensor and γ̇ is the second-invariant
of the rate-of-strain tensor.

For the slow flow of the thin mud layer, the height of the fluid layer H is much less than
the length L and the vertical velocity V is much less than the horizontal velocity U . We
can define the aspect ratio: ε = H

L
(ε � 1) and non-dimensionalize the equations in the

following way: p = ρgHcos(θ)p′, z = Hz′, x = Lx′, u = Uu′, w = H
L
Uw′, and t = L

U
t′.

Drop the primes and the scaled momentum equations are:

εRe(ut + uux + wuz) = −px + ε2∂xτxx + ∂zτzx + S, (12)

ε3Re(wt + uwx + wwz) = −pz + ε2∂zτxz + ε2∂zτzz − 1. (13)

where S is the dimensionless slope defined as: S = L
H

tan θ. Re is the Reynolds number
defined as: εRe = UH

ν
.

Under this scaling, the stress tensor can be expressed as:

τ = ν
U

H

(

2εux uz + ε2wx

uz + ε2wx 2εwz

)

. (14)

We can scale the stress as ν U
H

and define the Bingham number as B = τY H
νU

, which is the
dimensionless yield stress. Then the largest element in the stress tensor will be:

τzx = τxz =

(

1 +
B

|uz|

)

uz. (15)
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2.2 Lubrication Approximation

There are several ways to analyze the stability of the flow. Lubrication approximation is
the simplest way. Under the standard lubrication approximation, we let ε be zero. The
momentum equation can be simplified as:

0 = −px + ∂zτxz + S,

0 = −pz − 1. (16)

The stress free boundary condition at the top surface requires: p = 0 and τxz = 0 (at z = h).
Solution of the momentum equations shows that the vertical distribution of shear stress is:

τxz = (hx − S)(z − h). (17)

The yield surface Y is defined at the place where the shear stress τxz is equal to the Bingham
number:

B = τxz = (hx − S)(Y − h). (18)

Thus,

Y = h+
B

|hx − S|
. (19)

Below the yield surface (0 ≤ z ≤ Y ), the material is yielded. Above the yield surface
(h ≥ z > Y ), the material remains to be unyielded. We usually call the region above the
yield surface as the plug region.

Integrating the momentum equation (16) along the x-direction gives the vertical distri-
bution of the horizontal velocity u:

{

u = (S − hx) z
2
(2Y − z) for z < Y,

u = (S − hx)Y 2

2
for z > Y.

(20)

Below yield surface (0 ≤ z ≤ Y ), the velocity u has parabolic dependence on height z.
Above the yield surface (h ≥ z > Y ), the velocity u is independent of height z and called
plug velocity.

Integrating the kinematic boundary condition (9)across the layer, we arrive:

ht +
∂

∂x

∫ h

0

udz = 0. (21)

Substituting the horizontal velocity u(z) (Equation 20)into this equation, we find that the
height of the free surface satisfies:

ht +
1

6

∂

∂x

[

Y 2(3h− Y )(S − hx)
]

= 0. (22)

Linear stability analysis with an infinitesimal perturbation shows that the profile is
linearly unconditionally stable. However, instabilities has been observed for the free surface
flow of Bingham fluid down the inclined plane both in nature ([8]) and in the laboratory .
Then, the lubrication approximation cannot be used to describe the stability of the Bingham
fluid flowing down the inclined plane. Since the Reynolds number for the free surface flow
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of Bingham fluid can be very large, then εRe ∼ O(1), the inertia term must be included for
correctly describing the stability of the free surface flow for the Bingham fluid.

However, the lubrication approximation reveals some interesting features about the
Bingham fluid. During the initiation period, the viscoplastic flow usually contains per-
turbation, which can be the noise in the laboratory or natural environment. Then the
velocity at the plug region can treated as a sum of the plug velocity u0(x, t) and the O(ε)
perturbation velocity u1(x, z, t):

u = u0(x, t) + εu1(x, z, t). (23)

Notice that the velocity in the plug region will not be independent of height any more. We
can treat the plug as a “fake” one, and call this region as “ pseudo-plug” region. The stress
tensor in the pseudo-plug region can be written as:

{τij} = ε

(

1 +
B

γ̇

)(

2u0x u1z

u1z −2u0x

)

. (24)

Substituting the strain rate: γ̇ = ε
√

4u2
0x + u2

1z into the above expression, we then have:

τij =
B

√

4u2
0x + u2

1z

(

2u0x u1z

u1z −2u0x

)

. (25)

Therefore, as the flow reaches the steady state, the variation of the zero order plug velocity
along the x direction goes to zero: u0x → 0, the stress tensor through the pseudo-plug
region can be written as:

τij = B

(

0 1
1 0

)

sgn(u1z) +O(ε). (26)

As the flow settles down to a steady state, the stress in the pseudo-plug region will be
O(ε) above the yield stress B. It implies that the flow in the pseudo-plug region will relax
to a slightly yielded state if we consider the noise in the initialization period.

In figure 3, we compared the vertical stress distribution obtained in the uniform true
equilibrium state (17) with that obtained in the pseudo-plug state. From this figure we
can see that the uniform true equilibrium state will produce a true plug, but the limiting
lubrication solution will always produce a slightly yielded pseudo-plug.

For the experiment carried out in the laboratory and geological Bingham fluid flowing
down the inclined plane, the uniform true equilibrium state is very hard to achieve. In most
cases, the flow in the plug region will always relax to a slightly yielded pseudo-plug state
after the flow is initiated.

2.3 Vertical averaged model

For describing stability of the Bingham fluid flowing down the inclined plane, the more
accurate boundary layer approximation including the inertia term can be used. In boundary
layer approximation, the momentum equations are:

R(ut + uux + wuz) = 1 − px +
∂

∂z
τxz,

0 = −1 − pz. (27)
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Figure 3: Compare the vertical stress distribution between the true equilibrium state and
the pseudo plug state.

where R = εRe. Following the study of the Newtonian fluid flowing down the inclined plane
([15]), further simplification of this mode can be obtained for Bingham fluid by vertically
integrating the momentum equation assuming the following velocity profile ([8]):

{

u = UP (x, t) z
Y

(2 − z
Y

) for z < Y,
u = UP (x, t) for z > Y.

(28)

where UP (x, t) is the plug velocity. This velocity profile is obtained from the lubrication
approximation. Integrating the momentum equation along the x-direction for the plug
region Y < z < h gives:

R(UP t+ UPUPx) = 1 − hx −
B

h− Y
. (29)

And integrating the x-direction momentum equation for the yielded region 0 < z < Y gives:

R

(

2

3
Y UPt −

1

3
UPYt +

2

5
Y UPUPx −

2

15
U2

PYx

)

= (1 − hx)Y −
2UP

Y
sgn(UP ). (30)

Finally, integration of the kinematic boundary condition across the whole layer yields:

ht +
∂

∂x

[

UP (x, t)

3
(3h− Y )

]

= 0. (31)

The vertical average model (VAM) is composed of the above three equations (29, 30, 31).
Linear stability analysis of this model has been conducted by Liu and Mei ([8]). However,
even for the Newtonian fluid flowing down the inclined plane, VAM does not give the correct
Reynolds number ([3]; [15]).
For Newtonian fluid, VAM is usually used to study the turbulent flow. Since the flow of the
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Bingham fluid down to the inclined plane is usually laminar, it is not necessary to apply
the vertical average model.
Furthermore, VAM is built on the assumption that the vertical profile of the velocity u is the
same with or without considering the inertia term in the momentum equation. Due to the
existence of the yield stress and yield surface in the Bingham fluid, there is no justification
for assuming this velocity profile. A better understanding of the Bingham fluid is necessary
for obtaining the stability criteria.

2.4 Long wave expansion

For Newtonian fluid flowing down the inclined plane, it is well known that the long wave
expansion for the boundary layer model (27) yields the correct Reynolds number ([3],[15]).
To see how good the vertical averaged model for Bingham fluid is, let us check the critical
Reynolds number for the Bingham fluid using a long wave expansion for the boundary layer
model (27). First, we will carry out the stability analysis under the pseudo-plug assump-
tion. After that, we will do the stability analysis under the true plug assumption.
Under the boundary layer approximation (See equation 27 ), we can integrate the momen-
tum equation along the z-direction and considering p = 0 on the free surface z = h. Then,
we get the vertical distribution of the pressure: p = h−z. Substituting it to the momentum
equation along the x-direction, we get:

R(ut + uux + wuz) = 1 − hx +
∂

∂z
τxz. (32)

For simplification, we set the slope to be unity: S = 1. In equilibrium, the horizontal
velocity U is:

{

U = 1

2
z(2Y − z) for z < Y,

U = 1

2
Y 2 for z > Y.

And the vertical velocity W is zero. We can also normalize the height of the free surface at
the equilibrium to be unity h = 1.
Applying the following infinitesimally small perturbations to the equilibrium state:

u = U(z) + û(x, z, t), w = ŵ(x, z, t), h = 1 + ĥ(x, z, t). (33)

Dropping the hats, the momentum equation can be rewritten as:

R(ut + Uux + wUz) = 1 − hx +
∂

∂z
τxz. (34)

Since the velocity perturbation satisfies the following continuity equation: ux +wz = 0, we
can define a stream function Ψ and the perturbations can be rewritten as:

u = Ψz, w = −Ψx. (35)

First, we assume the periodic perturbations: Ψ, h ∝ exp(λt + ikx) carry out the stability
analysis for the pseudo-plug assumption. We divide the layer into two parts: the upper part
is the pseudo-plug region and the low part is the yielded region. If we use the superscript
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t and b to express the function of the top and bottom part respectively, the momentum
equations in these two regions can be written as:

Ψt
zz = 0, for z > Y, (36)

and,
Ψb

zzz = ik +R(λΨz + ikUΨz − ikΨUz) for z < Y. (37)

From the expression of the stream function in the region above the yield surface, we can see
that the motion is allowed in this region under the pseudo-plug assumption. The linearized
kinematic boundary condition at the free surface ht + Uhx = w is:

λ = −
ik

2
Y 2 − ikΨt, at z = 1. (38)

Non-slip boundary condition at the bottom z = 0 requires:

Ψb
z(z = 0) = Ψb(z = 0) = 0. (39)

Under the pseudo-plug assumption, the zero order stress in the pseudo-plug region is equal
to the yield stress B. And the stress free boundary condition at the top surface is satisfied by
the first order correction (See the discussion in the section of the lubrication approximation).

At the interface of the two parts (the perturbed yield surface), the continuation of the
stress implies:

U t
z + Ψt

zz = U b
z + Ψb

zz, (40)

Since U t
z = 0 and Ψt

zz = 0 at the interface, we then have:

Y U b
zz(z = Y ) + Ψb

zz(z = Y ) = 0. (41)

Recall the perturbation of the yield surface is: Y ′ = 1− ikB−R(λ+ iU t)ΨzB, the interface
condition (41) can be written as:

(1 − ikB −R(λ+ ikU t)ΨzB)U b
zz(z = Y ) + Ψb

zz(z = Y ) = 0. (42)

Similarly, the continuation of the perturbed velocity u across the interface implies:

Ψb
z(z = Y ) = Ψt

z(z = Y ), (43)

and the continuation of the stream function across the interface needs,

Ψb(z = Y ) = Ψt(z = Y ). (44)

We can then do long wave expansion by taking k << 1 :

λ = kλ1 + k2λ2 + ... (45)

Ψ = kΨ1 + k2Ψ2 + ... (46)

where λ1, λ2, Ψ1, and Ψ2 denote the expansion coefficients. To the leading order, the
momentum equations can be written as:

Ψt
0zz = 0, (47)

Ψb
0zzz = 0, (48)
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with the interface conditions:

U b
zz(z = Y ) + Ψb

0zz(z = Y ) = 0, (49)

Ψb
0z(z = Y ) = Ψt

0z(z = Y ), (50)

Ψb
0(z = Y ) = Ψt

0(z = Y ), (51)

From the leading order calculation, we obtain: λ1 = −iY . To the second order, the mo-
mentum equations are:

Ψt
1zz = 0, (52)

Ψb
1zzz = i+R(λ1Ψ

b
0z + iU bΨb

0ziΨ
b
0U

b
z ). (53)

and the interface conditions are:

(−iB −R(λ1 + iU b)Ψb
0zB)U b

zz(z = Y ) + Ψb
0zz(z = Y ) = 0, (54)

Ψb
1z(z = Y ) = Ψt

1z(z = Y ), (55)

Ψb
1(z = Y ) = Ψt

1(z = Y ). (56)

Putting the second order solution into the kinematic boundary condition (38), we then have:

λ2 = −
RB6

5
+
RB5

5
+
RB4

3
−
RB3

3
+
B3

3
−

2RB

15
+

2R

15
−

1

3
. (57)

And the critical Reynolds number is then:

R =
5(B2 +B + 1)

3B5 − 5B3 + 2
. (58)

We can compare the critical Reynolds number obtained by the long wave expansion with
that gotten from VAM in the long wave length limit (See Figure 4). From this figure, we
find that the Reynolds number obtained in VAM is always larger than that in the long
wave expansion. When the yield stress equals zero, the Reynolds number gotten from the
long wave expansion is 5

6
of that from VAM, which is consistent with the calculation for

the Newtonian fluid. As the yield stress increases (yield surface decreases), the difference
increases. If the dimensionless yield stress approaches one, the difference approaches infinity.

Now, let us carry out the stability analysis under the true plug assumption. Since
the true plug behaves as the elastic solid, it will not be destroyed by the infinitesimal
perturbation. Then the perturbation velocity is zero in the plug region. Under the linear
perturbation: u,w, h,Ψ ∝ exp(λt+ ikx), the stream function in the plug region satisfies:

Ψt = Ψt
z = Ψt

zz = 0 for z ≥ Y, (59)

which means that no motion can be transferred from the yield region to the plug region.
The stream function in the yielded region, the boundary condition, and the interface

condition will remain to be the same with that under the pseudo-plug assumption. Taking
the long wave expansion, to the leading order we have:

Ψt
0 = Ψb

0 = 0. (60)
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Figure 4: (a) Compare the critical Reynolds number obtained from the long wave expansion
with that from the vertical average mode. (b) The difference between the Reynolds number
obtained by different methods.

and λ1 = 0. To the second order, we have:

Ψt
1 = Ψt

1z = Ψt
1zz = 0 for z ≥ Y, (61)

Ψb
1zzz = i for z < Y. (62)

There is no solution satisfying these two equations, the boundary conditions, as well as the
interface conditions. It means the solution does not exist under the true plug assumption.

2.5 Compare pseudo-plug theory for the Bingham fluid with bi-viscous

model

Under the pseudo-plug assumption, the motion can exist in the plug region for the Bingham
fluid. Then the relationship between the rate of strain tensor and the stress is like the
modified constitutive model:

τij =

(

ν +
τY

√

∆2 + γ̇2

)

˙γij (63)

When the parameter ∆ becomes small, the model becomes more and more Bingham-like,
with flow regions that resemble the fully plastic regions of the Bingham fluid, and other
regions in which the flow is just slightly yielding and reminiscent of the pseudo-plug. Here,
we will consider the simplest regularized model: the bi-viscous model.

The constitutive relationship for the bi-viscous fluid is illustrated in figure 5, with a
lower viscosity ν for the high shear rate and much higher viscosity ν for the lower shear
rate. We can use α to express the viscosity ratio: α = ν

ν
. If α goes to zero, the bi-viscous
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Figure 5: The Rheology of the bi-viscous fluid.

fluid will approaches the Bingham fluid. If α goes to one, the bi-viscous fluid is reduced to
the Newtonian fluid.

τij = νγ̇ij for τ ≤ τY , (64)

τij = νγ̇ij + (1 − α)
τY
γ̇
γ̇ij for τ > τY . (65)

We use the same scaling as free surface flow of the Bingham fluid. The boundary layer
approximation requires:

R(ut + uux + wuz) = 1 − px +
∂

∂z
τxz, (66)

0 = −1 − pz. (67)

For the bottom layer, the shear stress is τxz = uz + B(1 − α). For the top layer, the
shear stress is τxz = 1

α
uz Substitute the expression for the shear stress into the momentum

equation, we can then get the equilibrium velocity profile:

U t = −
αz2

2
+ αz +

Y 2

2
−
αY 2

2
for z > Y, (68)

U b = −
z2

2
+ (−αY + Y + α)z for z < Y. (69)

with Y = 1 + B
|hx−S| . Here the superscript t and b denotes the function for the top and

bottom layer respectively.
As before, we perturb the equilibrium by infinitesimal amount: u = U(z) + u′(x, z, t)

and w = w′(x, z, t). We also use a stream function Ψ to express the perturbation velocity:
u′(x, z, t) = Ψz, and w′(x, z, t) = −Ψx. We can then carry out the linear stability analysis
by assuming: Ψ ∝ exp(ikx+ λt). Then the stream function satisfies:

Ψt
zzz = ikα+Rα(λΨz + ikUΨzikΨUz) for z > Y, (70)

Ψb
zzz = ik +R(λΨz + ikUΨzikΨUz) for z ≤ Y. (71)

243



At the free surface (z=1), the linearized kinematic condition gives:

λ+ U(z = 1)ik = −ikΨt, (72)

and the stress free condition gives:

Ψt(z = 1) + Uzz(z = 1) = 0. (73)

The non-slip boundary condition at the bottom implies:

Ψb
z(z = 0) = Ψb(z = 0) = 0. (74)

At the interface between the two layers, the continuation of the shear stress requires:

Ψb
zz(z = Y ) =

1

α
Ψt

zz(z = Y ). (75)

The continuation of the velocity and the stream function needs:

Ψb
z(z = Y ) = Ψt

z(z = Y ) and Ψb(z = Y ) = Ψt(z = Y ). (76)

Do long wave expansion, the Reynolds number is given in figure 6. From this figure we
find that the Reynolds number of the bi-viscous fluid approaches the Reynolds number for
the Bingham fluid as the viscosity ratio approaches zero. This result is quite different from
the result obtained by Hjorth ([5]), which states that the free surface flow of the bi-viscous
fluid is linearly unconditionally stable as the viscosity ratio α goes to zero. The reason for
this difference is probably due to the different interfacial conditions between two different
viscosity region.

2.6 Improved vertical averaged model

Researches on the Newtonian fluid flowing down the inclined plane have shown that the
vertical averaged model can not give the correct stability criterion. The limitations of
this model exist in the rustic character of the averaging method and the lack of freedom
in the description of the hydrodynamic fields. The improved model has been derived by
combining a gradient expansion to weighted residual techniques with polynomials as test
functions ([12]; [13]). Based on the understanding of the free surface Bingham flow and the
pseudo-plug assumption, we can use this technique to improve the vertical average model
for the free surface Bingham flow.

We separate the fluid into two regions: the pseudo-plug region and the yield region. In
the pseudo-plug region (Y ≤ z < h), the velocity is the same as the plug velocity u = U(x, t),
which is guaranteed by the pseudo-plug theory. In the yielded region(0 ≤ z < Y ), the
boundary layer equations are:

R(∂xu+ u∂xu+ w∂zu) − uzz = 1 − ∂xh, (77)

ux + wz = 0, (78)

uz|z=Y = 0, (79)

u|0 = w|0 = 0. (80)
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Figure 6: Compare the critical Reynolds number for the long wave expansion and the
bi-viscous mode.

From the continuity equation: ux + wz = 0 and the non-slip boundary condition u|0 =
w|0 = 0, we can replace w by w = −

∫ z

0
uxdz so that the only remaining dynamical variable

is u(x, z, t). Expanding u(x, z, t) in the following form:

u(x, z, t) = aj(x, t)fj(z̄), (81)

where z̄ is defined as: z̄ = z
Y

. Both Y and expansion coefficients aj are supposed to be
slowly varying function of time t and the stream-wise coordinate x. The base function fj(z̄)
can be chosen to be:

fj(z̄) = z̄j+1 −
j + 1

j + 2
z̄j+2. (82)

which fulfills the boundary condition: fj(0) = f ′j(1) = 0. It is easily observed that the
vertical velocity profile used in VAM is merely proportional to f0(z̄). It can be shown
that the consistent first order model can be obtained by considering a reduced set of test
functions comprising monomials up to degree 6 included.

Inserting the truncated expansion u(x, z, t) =
∑

4

j=0
aj(x, t)fj(z̄) into the momentum

equation along the x-direction, and neglecting all terms in aj(j > 0) involving derivatives
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with respect to x and t, we will have:

0 =
1

RY 2
(a0 − 2a1) −

1

R
+
∂xh

R
, (83)

0 =
1

RY 2
(4a1 − 6a2) + ∂ta0 −

a0

Y
∂tY, (84)

0 =
1

RY 2
(9a2 − 12a3) −

1

2
∂ta0 +

a0

Y
∂tY +

1

2
a0∂xa0 −

a2
0

2Y
∂xY, (85)

0 =
1

RY 2
(16a3 − 20a4) −

1

3
a0∂xa0 +

2a2
0

3Y
∂xY, (86)

0 =
1

RY 2
25a4 +

1

6
(
1

2
a0∂xa0 −

a2
0

Y
∂Y ). (87)

Eliminating a1, a2, a3 and a4 by inserting their expression into the first equation, we arrive:

a0 = Y 2 −
R

3
Y 2∂ta0 +

RY

6
a0∂tY −

RY 2

10
a0∂xa0 +

RY

30
a2

0∂xY − Y 2∂xh. (88)

Now we need to obtain the plug velocity: u(z = Y ) = U(x, t). The plug velocity can be
expressed as:

U(x, t) =
∑

j

aj(x, t)fj(z̄ = 1). (89)

Substituting the expansion coefficient aj(x, t) into this equation, thus we have:

U(x, t) =
1

2
a0 −

1

45
RY 2a0∂xa0 +

1

360
RY a2

0∂xY −
1

24
RY 2∂ta0. (90)

Also, we use p to denote the local instantaneous flow rate: p =
∫ Y

0
udz = Y

∫

1

0
udz̄. The

value for p can be calculated out and expressed as:

P (x, t) =
1

3
a0 −

3

280
a0Y

2R∂xa0 +
1

504
a2

0Y R∂xY −
1

45
∂ta0RY

2 +
1

360
a0RY ∂tY. (91)

Integrating the kinematic boundary condition across the pseudo-plug region gives:

ht +
∂

∂x
(U(x, t)(h− Y )) +

∂

∂x
P = 0. (92)

Also we can integrate the momentum equation in x-direction across the pseudo-plug region,
we then have:

R(Ut + UUx) = 1 − hx −
sgn(B)

h− Y
. (93)

Plus the equations for a0, p and U , we then have a set of five equations. These five equations
close the system. To test this set of equations, we can do linear stability analysis and
comparing the critical Reynolds number with that obtained from the long wave expansion
for the boundary layer model. The equilibrium is:

h = 1, Y = 1 −B,U =
1

2
(1 −B)2, a0 = (1 −B)2, P =

a0

3
Y. (94)
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Apply small perturbations: h = h+h′, Y = Y +Y ′, U = U+U ′, p = p+p′, and a0 = a0+a′0.
Do normal mode expansion for these perturbations: h′, U ′, Y ′, P ′, a′0 ∝ exp(λt+ ikx). Then
the perturbed equations will be:

λh+ ikBU(x, t) +
1

2
(1 −B)2ik(h− Y ) + ikp = 0, (95)

R(λU +
1

2
(1 −B)2ikU) = −ikh−

h− Y

B
, (96)

U =
a0

2
−

1

45
R(1 −B)4ika0 +

R

360
(1 −B)5ikY −

R

24
(1 −B)2λa0, (97)

a0 = 2(1 −B)Y −
R(1 −B)2

3
λa0 +

R(1 −B)3

6
λY

−
R(1 −B)4

10
ika0 +

R(1 −B)5

30
ikY − (1 −B)2ikh, (98)

P =
1

3
a0Y −

3RY

280
(1 −B)4ika0 +

RY

504
(1 −B)5ik −

R

45
(1 −B)2λa0 +

λRY

360
(1 −B)3. (99)

For the improved vertical average model, the Reynolds number R in the long wave length
limit is very close to that obtained from the long wavelength expansion for the boundary
layer model (See figure 7).

3 Channel flow of Bingham fluid

In this section, we will study the channel flow of Bingham fluid.

3.1 Govening equations

For the Bingham fluid flowing through a channel with width L, the momentum equation
can be written as[1]:

ρ(ut + uux + wuz) = −px + ∂xτxx + ∂zτzx, (100)

ρ(wt + uwx + wwz) = −pz + ∂zτxz + ∂zτzz, (101)

with the continuity equation: ux + wz = 0, with the boundary condition: w = u = 0 on
z = L,−L. We scale the problem in the following way:

u ∼ Uu; w ∼ Uw; x ∼ Lx; z ∼ Lz; p ∼ ρU 2p. (102)

Define the Bingham number as: B = τY L
νU

, and the dimensionless viscosity coefficient ν as:
ν = µ

ρUL
. Also we separate the background pressure gradient from the evolving pressure

gradient:

p = νx+ p′(x, z, t). (103)
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Figure 7: Compare the critical Reynolds number for the improved vertical averaged model.

Droping the primes, the momentum equation can be written as:

ρ(ut + uux + wuz) = ν − px + ν(∂xτxx + ∂zτzx), (104)

ρ(wt + uwx + wwz) = −pz + ν(∂zτxz + ∂zτzz), (105)

with,
{

τxz = (1 + B
|Uz |

)Uz if τ > B,

τxz = 0 if τ < B.
(106)

The equilibrium state will be w = p = 0 and u = U(z):

U(z) = −
1

2
(1 − z2) −B(1 − |z|) for |z| > B, (107)

U(z) = (1 −B)2/2 for |z| < B (108)

Do linear stability analysis:

(u,w, p) = (U, 0, 0) + (Ψy, ikΨ, p)exp(ikx+ λt). (109)

Then we will get the Orr-Sommerfeld equation;

(
ikU

ν
+
λ

ν
)(Ψyy − k2Ψ) − U ′′Ψ = (∂2

y − k2)2Ψ − 4Bk2∂y(
Ψy

|U ′|
). (110)

The boundary conditions are Ψ = Ψy = 0 at y = −1, 1.
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3.2 k � 1 mode

For k � 1 mode, we can do long wave expansion and the leading order term for outside of
the plug region is:

ψyy −
λ

ν
Ψ = 0, (111)

with the boundary condition: ψy = 0 on y = 1. For the region inside the pseudo-plug
region, we have:

ψyy = 0. (112)

We can solve these equations analytically, and get the eigen-value and eigen-functions for
odd mode and even mode respectively. The odd mode in stream function Ψ is corresponding
to the ’sausage’ mode of the flow, the even mode in stream function Ψ is corresponding to
the ’kink’ mode of the flow. For the odd mode in stream function, we have: Ψ = 0 on y = 0.
The eigen-value satisfies:

λ = −
n2π2

(1 −B)2
ν. (113)

For the even mode, we have: ψy = 0 on y = 0. And the eigen-value satisfies:

−B
λ

ν
tanh(

√

λ

ν
(1 −B)) = 1. (114)

The above equations has no real solution for real λ, and the flow is linearly unconditional
stable.

3.3 k finite mode

For finite k, we have ψyy − ψxy ≈ 0, and ψxy ≈ 0, which implies:

ψ = ψy = ψyy = 0, (115)

inside the pseudo-plug. It reveals a very interesting phenomena of the flow: the plug in this
case bahaves like a solid and seperate the flow completely. In fact, the pertubation in top
part of the flow will not be transport to the bottom part of the flow! Both odd and even
mode will exist and have the same eigenvalue, which is the same as the predicted by the
regularized mode.([1])

4 Convection of Bingham fluid

Put the Bingham fluid between two plates with fixed temperatures: T0 and T1, with T0 > T1.
The momentum equation will be:

Du

Dt
= −

1

ρ0

∂p

∂x
+
∂τxx

∂x
+
∂τxz

∂z
, (116)

Dw

Dt
= −

1

ρ0

∂p

∂z
− g + αg(T − T0) +

∂τxz

∂x
+
∂τzz

∂z
. (117)
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the temperature equation is:
DT

∂t
= κ∇2T, (118)

with the continuity equation: ∇ · u = 0 and the following constitutive equation:
{

τij = (µ+ τY

γ̇
)γ̇ij if τ > τY ,

γ̇ij = 0 if τ < τY ,
(119)

where τY is the yield stress of the Bingham fluid, and ν is the viscosity. we scale the problem
in the following way:

x ∼ d, t ∼
κ

d2
, u ∼

d

κ
, T ∼

1

βd
, p ∼

d2

ρκ
, (120)

where d is the spacing between two plates, and β is the inverse temperature gradient. Define
the following dimensionless numbers: Rayleigh number Ra:

Ra =
αβgd4

κµ
, (121)

and define the Prandtle number Pr:
Pr =

µ

κ
, (122)

and define the Bingham number: B

B =
τY ρκ

d2
, (123)

Then the scaled equations will be:

Du

Dt
= −

∂p

∂x
+ Pr

∂τxx

∂x
+ Pr

∂τxz

∂z
, (124)

Dw

Dt
= −

∂p

∂z
+ PrRaT + Pr

∂τxz

∂x
+ Pr

∂τzz

∂z
. (125)

the temperature equation is:
DT

∂t
− w = κ∇2T (126)

with the continuity equation: ∇ · u = 0 and the following constitutive equation:
{

τij = (1 + B
γ̇
)γ̇ij if τ > B,

γ̇ij = 0 if τ < B.
(127)

We have the none-slip boundary condition at the top and the bottom surface: u = w = 0,
also the temperature at the top is 1, and the temperature at the bottom is 0. At the
equilibrium, the fluid has no motion: u∗ = w∗ = 0 and no stress: τ ∗ij = 0. The equilibrium
temperature structure will be: T ∗ = 1 − z and the equilibrium pressure profile will be:
p∗ = z − z2

2
. Apply the small perturbations: u′, w′, θ, p′, and drop the primes, then the

perturbed momemtum equation will be:

Du

Dt
= −

∂p

∂x
+ Pr

∂τxx

∂x
+ Pr

∂τxz

∂z
, (128)

Dw

Dt
= −

∂p

∂z
+ PrRaθ + Pr

∂τxz

∂x
+ Pr

∂τzz

∂z
. (129)
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We conduct the linear stability analysis by assuming u,w, θ, p ∝ exp(ikx + λt). Since the
fluid is heated from the below, the fluid is at the true equilibrium state in the beginning.
The initial stress in the fluid is zero. Therefore, adding infinitesimal perturbation will not
make the stress in the fluid larger than the yield stress (see equation 127). It can be easily
shown that the only solution is u = 0, w = 0. Therefore, the fluid is linearly unconditional
stable under the infinitesimal perturbation.

5 Conclusion

For Bingham fluid in the laboratory and in the nature, the fluid is likely to relaxed to a
pseudo-plug state. In this case, the stress in the pseudo-plug is slightly above the yield
stress and the fluid can be linearly unstable. However, for the thermal convection of the
Bingham fluid, since the initial stress in the fluid is zero, adding infinitesimal perturbation
will not make the stress in the fluid larger than the yield stress. The thermal convection of
the Bingham fluid will be linearly unconditional stable.
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