
Lecture 1: Introduction

E. J. Hinch

Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste,
saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian
fluids and have a number of additional material properties. In general, these differences
arise because the fluid has a microstructure that influences the flow. In section 2, we will
present a collection of some of the interesting phenomena arising from flow nonlinearities,
the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss
a variety of devices for measuring material properties, a process known as rheometry.

1 Fluid Mechanical Preliminaries

The equations of motion for an incompressible fluid of unit density are (for details and
derivation see any text on fluid mechanics, e.g. [1])

∂u

∂t
+ (u · ∇)u = ∇ · S + F (1)

∇ · u = 0 (2)

where u is the velocity, S is the total stress tensor and F are the body forces. It is customary
to divide the total stress into an isotropic part and a deviatoric part as in

S = −pI + σ (3)

where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to
the velocity field (the pressure field satisfies the incompressibility condition). It is common
to look for local models where the stress depends only on the local gradients of the flow:
σ = σ (E) where E is the rate of strain tensor

E =
1

2

(

∇u + ∇u
T
)

, (4)

the symmetric part of the the velocity gradient tensor.
The trace-free requirement on σ and the physical requirement of symmetry σ = σ

T

means that there are only 5 independent components of the deviatoric stress: 3 shear
stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements
constrained to sum to 0). These two normal stress differences are

N1 = σxx − σyy (5)

N2 = σzz − σyy. (6)
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Throughout this series of notes we will frequently refer to two model flow types: Simple

shear and Uni-axial extension. In simple shear the velocity profile is u = γ̇ (y, 0, 0) where γ̇
is the shear rate. The rate of strain tensor in this case is

E =





0 γ̇ 0
γ̇ 0 0
0 0 0



 .

For uni-axial extension, u = ε̇ (x,−y/2,−z/2) with rate of strain tensor

E = ε̇





1 0 0
0 −1/2 0
0 0 −1/2



 ,

where ε̇ is the magnitude of the strain. Note that γ̇ and ε̇ are both scalars, whereas E is a
tensor.

2 Phenomena

2.1 Non-linear Flow

In the simple example of flow down a pipe at low Reynolds numbers, the flow rate in
Newtonian fluids increases linearly with the applied pressure drop (see figure 1). Any
fluids which deviate from this relation are then non-Newtonian. These fluids can be further
classified depending on how this relation changes, relative to the Newtonian example. Shear

thinning fluids become less viscous with increasing shear rates and so have larger than
linear growth with pressure-drop in the flow rate. The microstructures of such materials
are smashed up at higher shear. This results in lower viscosities, hence the fluid flows more
easily. Shear thickening fluids become more viscous with increasing shear rate and hence
have less than linear flow rates. Shear thickening behavior is less common and generally
arises in fluids that have a highly regular microstructure at rest. When the fluid begins
to move, the microstructural components jam against each other, thickening the fluid thus
preventing movement. Finally there are yield fluids for which there is no flow below a
certain critical pressure drop. Some common yield fluids are ketchup, toothpaste, silicate-
rich lava and mud. The viscous properties of all of these fluids are strongly dependent on
temperature and pressure.

2.2 Inhibition of Stretching

Another phenomenon associated with some non-Newtonian fluids is a dramatic resistance
to stretching of fluid elements compared to Newtonian fluids. Typically, the force required
to stretch the fluid is ∼ 1000 times greater than that required to shear it. Measurements
of the extensional viscosity, the resistance of the fluid to stretching motions, show large
variations in behavior depending on the type of flow (see figure 2).

The high extensional viscosities present in these fluids give rise to a multitude of con-
sequences. Bubbles rising in these fluids form cusps at the downstream end, thus avoiding
the large stretching flow out of a rear stagnation point (see figure 3). A similar effect in
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Figure 1: Flow rate as a function of pressure drop for flow down a pipe.

jets inhibits the ejection of spray. The formation of droplets is a highly straining event that
occurs at the pinching off of a parcel of fluid. In a fluid containing a few parts per million
of high molecular weight polymers, this effect is inhibited by the high extensional viscosity
(see figure 4). This lack of spray formation could provide a beneficial effect for fire hoses
and in aircraft fuel by preventing potentially explosive mists of droplets from forming.

The inhibition of stretching by high extensional viscosities is also thought to be impor-
tant in the process of turbulent drag reduction. Addition of very small amounts of high
molecular weight polymers to turbulent fluid flows can dramatically reduce the amount of
drag in pipe flows. Drag reductions of 50% are possible with polymer concentrations of 10
parts per million (ppm) and as much as an order of magnitude reduction with concentra-
tions of only 500 ppm. This reduction is not well understood and is a much-debated issue
in current research. One hypothesis is as follows: drag in turbulent flows is largely due to
turbulent bursting events which transport low momentum fluid from near the walls into the
interior of the pipe. These bursts are highly straining flows and so are less frequent with the
addition of polymers and the attendant increase in extensional viscosity. Such reductions
in drag can be critical for oil pipelines (the trans-Alaskan pipeline) and ancient municipal
sewer systems. (In Bristol, so great was the drag reduction after a rainfall that a hydro-
dynamic shock wave was formed in the sewer system and propagated down the network
blowing off manhole covers as it passed.)

Conversely, non-Newtonian effects can be detrimental for some industrial processes,
for example through the formation of upstream vortices (see section 6 from Lecture 3).
Consider flow from a reservoir out a hole: as seen in figure 5, Newtonian fluids flow toward
the hole from the entire reservoir while non-Newtonian fluids can form recirculating vortices
upstream. These upstream vortices are industrially important in the processing of polymers
because fluid that stays in the tank for longer can be significantly degraded (e.g. by a
longer exposure to heating), and hence can lead to the production of inconsistent materials.
These upstream vortices are caused by high extensional viscosity in the following way: the
stretching of fluid elements is proportional to the width of the cone through which fluid flows

3



Figure 2: Extensional viscosity measurements for the M1 Boger fluid from (1) open siphon,
(2) spinline, (3) contraction flow, (4) opposing jets, (5) falling drop, (6) falling bob, (7)
contraction flow, (8) contraction flow [from [2]].

into the hole. For non-Newtonian fluids shear is preferential to stretching and a narrower
cone of extensional flow forms at the cost of recirculating vortices ([3]). On the other hand,
for Newtonian fluids the cone of fluid flowing out through the hole fills the entire container.

2.3 Elastic Effects

Many non-Newtonian fluids are called visco-elastic because they exhibit a variety of elastic
effects in which straining of the fluid can store energy. A dramatic example is shown in
figure 6 which shows the cutting of visco-elastic liquid as it is poured. The lower portion of
the fluid falls as expected, however the upper portion rebounds upward into the container
from which it is being poured. Another interesting effect is the open (tubeless) siphon,
in which fluid is drawn up over the wall of the upper container by elastic forces from the
descending fluid (see figure 7). Finally in flow out of an orifice, non-Newtonian fluids show
an expansion of the stream of fluid known as die swell (see figure 8). This expansion is
caused by the release of elastic energy stored in the fluid as it is stretched in the outlet
tube. This tension causes a vertical rebounds after the fluid leaves the tube and because of
incompressibility the stream must expand in the transverse direction.

2.4 Normal Stress Effects

Our final category of non-Newtonian effects contains those caused by stresses normal to
shear flow. These effects can be viewed as being due to tension in the streamlines of the
flow. For example, there can be dramatic effects on the distribution of particles in shear
flows. In simple shear there is aggregation of particles. The tension present in the curved
streamlines surrounding two particles produces a net force on the particles that pushes
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(a) (b) (c)

Figure 3: Photographs of air bubles in (a) a newtonian fluid (b-c) a non-newtonian fluid
(front and side view). Notice the asymmetry.

Figure 4: Photograph of high-speed jets for pure water and 200 ppm polyethyleneoxide in
water.
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Figure 5: Streamlines of flow out a hole for (a) glycerin, De = 0 and (b-e) i for 1.67%
aqueous polyacrylamide solution, De = 0.2, 1, 3 and 8.

Figure 6: Aluminum soap solution cut in midstream

Figure 7: Schematic of the open-siphon effect
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Figure 8: Schematic of the die swell effect for Newtonian and non-Newtonian fluids

them together (figure 9) with a cumulative effect as shown in figure 10. A similar effect
is the migration of particles to the center of a pipe. The parabolic velocity profile gives a
non-uniform shear that is higher near the walls of the pipe than in the center. This makes
the tension in the streamlines greater near the wall and thus applies a net force which causes
particles to migrate towards the center as in figure 11.

tension in streamlines
resultant force

Figure 9: Balance of forces for two particles in a simple shear.

A final example of the effect of normal stresses is that of a spinning rod in a bath of
fluid. For low rates of rotation, a Newtonian fluid will have a flat (or slightly depressed) free
surface. For comparable rates of rotation in the non-Newtonian fluid, we see an upwards
deflection in the free surface, which is higher in the center (see section 4 from Lecture
3). The shear caused by the rotating rod creates tension in the circular streamlines. This
“hoop” stress balances the hydrostatic pressure of a column of fluid above it, allowing the
fluid to “climb” the rod as in figure 12.
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Figure 10: Particle aggregation in sheared polymer solution [after [4]].
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Figure 11: Migration of particles to centerline in a non-Newtonian pipe flow.

3 Rheometry

Rheometry is the study of material properties of fluids including shear viscosities, exten-
sional viscosities and normal stresses as well as the dependence of those properties on
temperature and pressure. In this section we discuss the definitions of these properties and
the mechanisms used to measure them.

3.1 Simple Shear Devices

There are many ways to generate a shear flow in the laboratory that allow us to measure
fluid properties. One of the simplest is shown in figure 13. The fluid lies between two
parallel plates with the top plate free to move under an applied force and the bottom plate
held fixed. This method works for fluids, such as heavy tars, which are sufficiently viscous
so they do not flow out of the sides. The top plate is dragged at constant velocity v across
the fluid and feels a force F . The area of the plates is A and their separation is h. The
shear rate across the layer is

γ̇ =
v

h
.
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Figure 12: A photograph of the rod climbing effect. The device consisted of a rod immersed
in the lower, darker fluid. As the rod is rotated, normal stresses cause a fluid column to
rise near the rod.

Possible values of this shear rate range from γ̇ ≈ 10−5 s−1 for fine particles sedimenting,
γ̇ ≈ 101 s−1 for food being chewed and as high as γ̇ ≈ 107 s in lubrication shear flows. The
tangential shear stress is

σxy =
F

A
,

and the shear viscosity µ is given by the ratio of these two quantities,

µ =
σxy

γ̇
=

Fh

Av
.

Typical values of µ for non-Newtonian fluids are quite large, for example polymer melts have
µ ≈ 103 Pa s and molten glass has µ ≈ 1012 Pa s (for water µ = 10−3 Pa s). Shear-thinning
materials often have approximate power law dependence with shear viscosity as a function
of shear rate, that is

µ(γ̇) = kγ̇n−1, for n < 1. (7)

For molten polymers n ≈ 0.6, toothpaste has n ≈ 0.3 and grease has n ≈ 0.1.
A variety of other devices exist for measuring shear viscosities and these are summarized

below (figure 14). The capillary tube rheometer is used for measurements on low viscosity
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Figure 13: Device for measuring simple shear

liquids with high shear rates. The Couette device is used for flows which have very low
Reynolds numbers and so does not suffer from any inertial instability. However, a defect
of these two devices is that the shear rate is not uniform throughout the device hence it is
not clear what value of γ̇ is being measured. The cone-and-plate rheometer is designed so
that the shear rate is independent of position for small angles α ≈ 2◦ (figure 14). Sample
rheometric data are shown in figure 15. The plateau at low shear rates, with power law
behavior above a critical value is characteristic of non-Newtonian fluids (see section 3.7).

3.2 Normal Stresses

The normal stresses (the first normal stress due conceptually to the tension in the stream-
lines) can be measured using the cone-and-plate device described earlier. Tension in the
streamlines produces an axial thrust pushing the cone and plate apart with a force which
can be measured (see figure 14). With the same device, the second normal stress can be
found by measuring the distribution of pressure over the surface of the cone or, if the first
normal stress is known, it can be computed from the axial thrust on two rotating parallel
plates. A final apparatus for measuring the second normal stress is Tanner’s tilted trough,
in which non-Newtonian fluid flows down an inclined trough. The free surface is curved
due to the influence of the second normal stress and this bowing can be measured with an
optical device.

3.3 Oscillatory Rheometry

Rheometers of the parallel plate and cone-and-plate varieties often have the capability to do
small amplitude oscillatory shear tests. These tests involve the application of a sinusoidal
stress (or strain) to the upper plate or cone of the rheometer. The resulting strain (or
stress) can be resolved into components that are in phase with the input (elastic response)
and π

2 out of phase with the input (viscous response). From these data a complex modulus,
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Figure 14: Illustration of devices for measuring shear viscosities. The vertical scale in the
cone-and-plate illustration is exaggerated.
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Figure 15: Dependence of viscosity on shear rate for two polymer solutions (◦ and ∆) and
an aluminum soap solution (�). All data were taken at 298 K.
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G∗, is determined as a function of frequency.

G∗ = G′ + iG′′, (8)

where G′ (storage modulus) and G′′ (loss modulus) give information on energy storage and
energy dissipation in the flow, respectively. For a perfectly elastic solid, G′′ = 0 and G′ = G,
the elastic modulus. For a Newtonian fluid, G′ = 0 and µ = G′′

ω
, where ω is the frequency.

3.4 Extensional Viscosity

For the uni-axial extensional flow, we can define the extensional viscosity as,

µext =
σxx − 1

2σyy −
1
2σzz

3ε̇
, (9)

where σxx, σyy and σzz are the diagonal components of the stress tensor. Unfortunately,
in the laboratory this steady straining flow cannot be maintained indefinitely. An approxi-
mation to this flow is the spinline experiment (figure 16) where, at every point in the flow,
there is one straining direction, in this case the x-direction, and two contracting directions.
(for further details see section 7 from Lecture 3 and 1 frpm Lecture 8). Using a similar
approximation to that used in section 3.1 we can compute an average stress by dividing the
tension T by the area A and an average shear from the velocity gradient ∇u ≈ (v2 − v1)/L.
Then the extensional viscosity is given by

µext ≈
TL

A(v2 − v1)
. (10)

Other devices to measure extensional viscosity include the filament stretching rheometer and
the Moscow rheometer. The filament stretching rheometer works by placing a fluid between
two plates which are pulled apart rapidly (2 m within a second) at a constant strain rate and
the applied force on the bottom plate is measured. The Moscow rheometer allows surface
tension to squeeze a filament of fluid and measures the rate of thinning. The “Worthington
jet” could also be used as a possible method to measure the inhibition of stretching: a
solid sphere is dropped into a fluid, as it breaks the surface a cavity forms and the filling
of this cavity creates an upwards jet. In non-Newtonian fluids the extensional viscosity
retards the motion of the drop and the rebound of the surface [5]. Theory to describe the
correlation between the maximum height of this jet and the extensional viscosity has yet
to be developed. Other devices to measure extensional viscosity include flow between four
rollers or opposed jets, film blowing and Meissner’s film on an expanding square grid.

3.5 Temperature, concentration and molecular weight scaling

Material properties depend on a variety of parameters, including the concentration and
molecular weights of the polymers and also temperature. Using an appropriate choice of
non-dimensional parameters the data may be collapsed to give a power-law dependence for
viscosity as a function of shear rate. Figure 17 shows a plot of the non-dimensional reduced
viscocity and reduced shear rate, which are defined as
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Figure 16: Spinline apparatus for measuring extensional viscosity

µr = µ (γ̇, T )
µ (0, T∗)

µ (0, T )
, (11)

γ̇r = γ̇
µ (0, T )

µ (0, T∗)

T∗ρ∗
Tρ

, (12)

where T∗ and ρ∗ are a reference temperature and density, respectively. Similarly, figure
18 shows a plot of dimensionless viscosity against dimensionless shear rate for a series of
solutions with different concentrations of polymers. Figure 19 shows the power law depen-
dence of viscosity on molecular weight. In the dilute regime, (lower molecular weights) the
dependence is linear and in the entangled regime (higher molecular weights) the viscosity is
proportional to the molecular weight to the (empirically determined) 3.4 power. The signif-
icance of these scalings is that the rheological properties can be determined at a reference
condition and then extrapolated to other conditions.

3.6 Cox-Merz rule

The Cox-Merz rule is an empirical rule which states that the dependence of the steady
shear viscosity on the shear rate can be estimated from the dynamic viscocity (see section
3.3) as a function of frequency as the two curves are approximately identical (figure 20).
This has important practical applications as it is easier to acquire data over a wide range
of oscillation frequencies. We force a fluid periodically with frequency ω so that the strain
γ(t) = γeiωt and write the resulting stress as

σ(t) = G∗(ω)γ(t) =
(

G′ + iG′′
)

γeiωt,

where G∗ is a complex elastic modulus. We can also write

σ(t) = µ∗γ̇(t) =
(

µ′ + iµ′′
)

iωγeiωt

for a complex viscosity µ∗. The Cox-Merz rule states that µ = |µ∗| and N1 = 2G′.

3.7 Non-dimensional Parameters

All materials have a relaxation time τ , the time required to return to its base state after
being perturbed, for instance by stretching. This timescale can be seen in figure 3 as the

14



Figure 17: Dimensionless viscosity and first normal stress difference plotted against dimen-
sionless shear rate for a variety of temperatures.
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Figure 18: Dimensionless viscosity plotted against dimensionless shear rate for a series of
solutions with different solution concentrations.

reciprocal of the shear rate at which the graph of viscosity versus shear rate begins to turn
over. In non-Newtonian fluid flow the ratio of the timescales of deformation and relaxation
is important. Two important non-dimensional parameters that express this quantity are
the Weissenberg number and the Deborah number. The Weissenberg number is a measure
of the strength of the shear rate and is defined by

Wi = γ̇τ.

The Deborah number is the ratio of the characteristic time-scale of the flow to the relaxation
time,

De =
Uτ

L
.

Note that the Deborah and Weissenberg numbers are often the same (but not always) and
either can be used to quantify the importance of relaxation in the fluid. For De � 1 the
material relaxes relatively quickly and it behaves like a viscous fluid. Conversely, when
De � 1 the fluid does not relax on the timescale of the flow and so acts like an elastic solid.

Notes by Neil Burrell and Julia Mullarney
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Figure 19: Viscosity versus molecular weight for a variety of polymers.
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Figure 20: Illustration of the Cox-Merz rule. The curves compare properties under steady
shear to their oscillating equivalents.
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