GFD 07 Boundary layers:
Internal boundary layers in the ocean circulation.

We have limited attention until now to boundary layers that are
located on boundaries of the fluid.

Boundary layers can occur within a fluid as well.
Two examples:
1) Internal boundary layer in the oceanic thermocline

2) The equatorial undercurrent (EUC).



Consider flow in a pipe. For simplicity assume the flow is one
dimensional and has constant velocity U

At the entrance to the pipe, the temperature, considered a tracer is
held to a value, T,.

And that initially, and so at large distances from the entrance, the
temperature iIs T,

~
N
\
~
\
\
1
> ! O
)
|
1




2
oT U@T 0T

=K

_+ —_—
ot OX x>

For small xwe might ignore the diffusion term leading to the

discontinuous solution: T
TI
T=T,, x-Ut <0, T,
T=T,, x-Ut>0 —



New coordinates &= x-Ut
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In frame moving with the temperature front
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The internal boundary layer
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DEPTH (meters)

We are going to apply these ideas to the oceanic thermocline in the sub
tropical avres where the wind stress produces a downward Ekman pumping.
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Fig. 4.1.2. Zonally averaged potential density field for the Pacific Ocean. Note the change of
vertical scale at 1000 m, reflecting the decrease in gradient below this depth. (From Levitus 1982)

In analogy with the pipe, the bowl
shaped region is where fluid enters
the thermocline and is pumped
downward carrying the surface
density distribution to depth.

Some of the fluid flows to the
equator, a region requiring special
dynamics.

The deep water beneath the
thermocline is water of polar origin
that slowly upwells to establish a
temperature contrast with the
thermocline.



1) Why does the surface density forcing extend only to
about 1km?

2) Why does the bowl become shallow at low latitudes?

warm




Ekman Pumping

A

V=K ff =X HN6
pf
. < | 50~100m
o _
w, horizontal plane
7

pf This drives the entire wind driven
circulation. W, is O(10 cm/sec)



The bowl

We first need to explain the structure of the bowl.
(why is it shallow at the equator?). The LPS model:

. z=-h,
— " T
0, =0 z=-h,-h,
2

Ref Luyten, J.R., J. Pedlosky, and H. Stommel. 1983 The ventilated thermocline. J. Phys. Ocean. 13, 292-309.



Planetary geostrophy

U/pL? <<1 for large scales (greater than about

50-100 km)
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(uzhz )X T (Vzhz)y =—We Y>>V,
=0 y<Y,

(u1h1 )X + (Vlhl)y = —W, y<Y,

from integrating over each
layer

yields the potential vorticity equation
for each layer
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O(x)=1 x>0
i) _ =0, x<0

Is Heavyside fnc.
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— Is the potential vorticity of layer n
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Integrate to eastern boundary x = x, , where u, =0. We

2 2
oh, 2 f will satisfy that bc by taking h, =0 there (not necessary,
OX ,B Y, e it need only be a constant but it suffices for our
purposes)
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Fluid in layer 2 is driven southward
by Ekman pumping.

Aty =y, it subducts beneath layer 1.

It is then no longer driven directly by
the Ekman pumping which directly
forces layer 1 in that region south of

Y,



Streamlines in layer 2 are coincident with pressure field.
(Geostrophy). In layer 2 this means the streamlines are
lines of constant h=h, +h, Fory <y,

=0
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Potential vorticity is an arbitrary function of streamline.

f/h,= const.
h=const.



The determination of the function Q,




X=X

On streamline h = const. the relationship
established at the outcrop line is maintained
and is valid for all points reached by
streamlines emanating from the outcrop line.



The layer thicknesses in the 2-layer region
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The Sverdrup relation

,BZV h,=1tW,  With geostrophy, yields,
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The thermocline bowl

depth of upperand lower lavers W, = sin[ m*fifa)

2ot ]
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Layer thicknesses remain
finite as latitude goes to zero.
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Further references

Rhines, P.B. and W.R.Young, 1982. A theory of the wind-driven
circulation.l.Mid-Ocean gyres. J. Marine Res. 40 (Supplement)
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Depth (km)

The “continuous”model

Adding more layers one approaches a high resolution finite
difference form of the solution of the continuous model in z as

Huang (1989) has done.

0.0
e o
oAF——— Z——
e —-—-—"—“__—H___Ff#
: _
{)..‘?. =L -
Rl 7.4
-1.2 ______._._____________ 27.6
A 27.7
- .6:_7
oo 27.8
-2.0 o o 30 30 20

[LLongitude



Dominates as f goes to zero

2 2 |orf
Do :(Xe_x)_ — ] _
oy, | oY So the layer thicknesses remain
finite asy and f go to zero at the
equator
h? 4+ Lipn? =D, 2
Y 2
But v, oh becomes singular at equator
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.
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A opposite to Ekman transport. Need

to remove the singularity in v
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Pierre Welander

Veronis: J.Marine
Res.1997 .55, 1-vii




Equations of motion
Non dimensional

dropping primes
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Pressure-depth scaling

From geostrophy of u and the hydrostatic balance.

p=0(aUA*)=pA1" =0(y,H)
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Matching to the ventilated thermocline solution in the matching
region as we leave the equatorial zone.
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Further scaling

From the balance of transport between the Ekman
layer and the equatorial thermocline:
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Scaling results
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Pedlosky, J. An inertial theory of the equatorial undercurrent. J. Phys. Ocean.
17, 1978-1985
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Zonal geostrophy
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Conservation of B, and q,

from %V% — VBn
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P, =h p=h+T;h Hydrostatic relation (n.d.)
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For large y (bdy layer coordinate) must merge
with mid latitude dynamics
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ODEsonlyiny

need a relation between h and h,
but Sverdrup relation no longer
valid.



let y,>>1 be the northern latitude where the solution merges with the
mid-latitude solution.

One closure assumes: h(xy):q(xyn) for ally.

The second assumes

YR

or upper layer pressure gradient independent of y



Boundary condition at the equator

Fluid does not cross equator (pv conserved).

Ony =0 B, =const. = B,

and B, =h(0,y,)
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Solutions

Solutions obtained by a shooting method. Starting with h from the
mid-latitude solution, guess a starting u, at y=y,and integrate to the
equation and try to “hit” B,. Then adjust guess for u,.
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Fig. 6.4.2. Solutions of (6.4.26) for wu> (solid line), Ous /Oy (dashed line) and h (dash-dotted). In this
case the wind stress is a constant and I'j2 = 1. The three panels correspond to profiles at x = 0.25,
0.50, and 0.75, respectively. Bp — 1.265 and y> — 5. (From Pedlosky 1987)



Fig. 6.4.3. Base of the moving layer
representing the core of the under-
current shown as a solid line at the
equator and as a dashed line in the
matching region at y=y,. (From
Pedlosky 1987)




Fig. 6.4.4. Profiles of uy, duy /dy, h, and hy for the case in which (6.4.19) is used. The parameters are
otherwise as in Fig. 6.4.2. The calculation is at x = 0.5. The maximum velocity of the eastward

velocity is now 0.910
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Fig. 6.4.5. Several lines of constant By, i.e., streamlines for the flow calculated in Fig. 6.4.2. (From
Pedlosky 1987)



Fig. 6.4.6. Results of a four-layer
model showing the monotonic de-
crease of the velocity with depth in
the undercurrent solution. (Cour-
tesy of R. Samelson, pers. comm.)

A multi-layer model
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EUC observations
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Fig. 6.1.3. Temperature and zonal velocity profiles from the Atlantic and Pacific oceans. In each

Fig. 6.1.2. a C’f’“tours of zonal velocity in the EUC measured direc case the measurements represent 2-year means. (From Halpern and Weisberg 1989)
current meter in the Pacific at the same longitude as Fig. 6.1.1. T

between the actual and geostrophic velocities. b The density field 0 L. -

Note that the meridional density gradient vanishes at the equator. (From Johnson and Luther

1994)



Numerical calculations
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Fig. 6.7.2a,b. As in Fig. 6.7.1 except that the parameters of the calculation yield a shadow zone
boundary which strikes the equator within the basin. In this case the EUC is fed from the
subtropical gyre through the interior as well as the western boundary current. (From McCreary and
Lu 1994)

McCreary, J.P. Jr. and P. Lu 1994. The interaction between the
subtropical and equatorial circulations: The subtropical cell. J.Phys.

Ocean., 24, 466-497



from water
r gyre

Water that has sunk at the pole and,
rising slowly, fills the abyss




The diffusive internal layer
refs:

To smooth out the temperature difference between the
abyss and the thermocline a diffusive layer might be
expected as anticipated by Welander

Welander, P. 1971 The thermocline problem, Phil. Trans. R. Soc.
Lond. A. 270, 415-421

Salmon, R. 1990. The thermocline as an “internal boundary
layer”. J. Marine. Res., 48, 437-469.

Samelson, R.M. and G.K. Vallis, 1997. Large-scale circulation
with small diapycnal diffusion: The two thermocline limit. J.
Marine Res. , 55, 223-275.



Boundary layer equations

Following Samelson and Vallis (1997)
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Double structure to
thermocline and an interior

maximum in T,
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. ventilated thermocline
contribution.Note deep positive
w in the abyss with a zero at the
base of the thermocline

e 4. Vertical profiles of T (left panel), T, (center), and w (right) at the center of the domain,
y) = (0.5, 0.5), for the solution in Figure 2.



from oW B 'BV

07 f since w is O at the base of the adiabatic,
ventilated thermocline.

P
W = TU 0 The horizontal gradient of
buoyancy is determined by the
slope of the isopycnals in the

From thermal wind U, b, / ventilated thermocline solution

AIL=UID

D, is the vertical scale of FAN L
the adiabatic thermocline D?: e

a ’ mb




In the diffusive region of the internal thermocline, vertical

diffusion balances vertical advection.

In the
interior
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Figure 18. Wertical profiles of terms in the yTRImIC exualti for 0.7 << = << 1 for the solution
in Figure 11 (xs = 0.002) with , = 0.003 at (a) the center of the domain, {(x. ¥} = (0.5, 0.5), and

(b} near the western boundary. (x ¥} = (0,024, 0.5). The profiles for horizontal advection
(—uT, — v vertical advection { —wT). vertical diffusion {x.T.-). and horizontal (Laplacian plus
biharmonic) diffusion (HID) are labeled accordingly. The comesponding profiles of T are also
shown (right panels). The units are Tw/rs = 5.4 > 107° K yr— .
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The internal thermocline scale

W = gug AIL=UD
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Thickness, &;, &

Scaling law from calculations
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Figure 13. (a) Thickness of the internal peak of T, ((J) versus ,, from the profiles in Figure 11. The

internal boundary layer scale §; and the advective-diffusive scale & are also shown (dashed lines),
along with the corresponding thicknesses from solutions of the similarity equations (6.1) (X) and
(6.2) (+). (b) Maximum upward vertical velocity at (x, y) = (0.5, 0.5) versus k,, from the solutions
in Figure 11. The internal boundary layer scale W;, the asymptotic estimate W, = W, from Young
and Ierley (1986) for solutions of (6.1), and the advective-diffusive scale W, are also shown
(dashed lines).

Satisfies the /2 law.



An alternative picture

There have been calculations in which the entire thermocline is a dissipative
boundary layer.

A discussion that follows some ideas of Welander and especially Salmon,R.
1990. J.Mar.Res. 48, 437-469.
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Simple case when M=M(x,z) then horizontal
advection terms vanish. Equivalent to system:

Scales L,U,d,g’,\W

el \4=—?@,\09=w
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1 u_g _ K, (kFL)
U—ﬂW/d TE W= :L%_J

This gives a thicker bl and a weaker w



Depth

From Vallis 2006 Cambridge U. Press
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Fig. 16.4 Solution of the one-dimensional thermocline equation, (16.27), with bound-
ary conditions (16.28), for two different values of the diffusivity: & = 3.2 1073 (solid
line) and K = 0.4 x 1073 (dashed line), in the domain 0 = Z < —1. ‘Vertical velocity’ is
W, ‘temperature’ is —Wzz, and all units are the non-dimensional ones of the equation
itself. A negative vertical velocity, W, = —1, is imposed at the surface (representing
10. The internal boundary layer thickness increases as
'3, so doubling in thickness for an eightfold increase in &. The upwelling velocity
also increases with & (as £°/3), but this is barely noticeable on the graph because the
downwelling velocity, above the internal boundary layer, is much larger and almost
independent of kK. The depth of the boundary layer increases as W;fz, soif We =0

Ekman pumping) and By
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the boundary layer is at the surface, as in Fig. 16.5.
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