
GFD 07 Boundary layers:
Internal boundary layers in the ocean circulation.

We have limited attention until now to boundary layers that are 
located on boundaries of the fluid.

Boundary layers can occur within a fluid as well. 

Two examples:

1) Internal boundary layer in the oceanic thermocline

2) The equatorial undercurrent (EUC).



Model problem

Consider flow in a pipe. For simplicity assume the flow is one 
dimensional and has constant velocity U
At the entrance to the pipe, the temperature, considered a tracer is 
held to a value, TI.

And that initially, and so at large distances from the entrance, the 
temperature is TO
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Model Equation
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For small κ we might ignore the diffusion term leading to the 
discontinuous solution:

T = TI ,       x − Ut ≤ 0,

T = TO ,        x − Ut > 0
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The transition zone

New coordinates ξ = x − Ut
τ = t

In frame moving with the temperature front
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The internal boundary layer

Thickness of layer δ : κt



The ventilated thermocline

We are going to apply these ideas to the oceanic thermocline in the sub 
tropical gyres where the wind stress produces a downward Ekman pumping.

In analogy with the pipe, the bowl 
shaped region is where fluid enters 
the thermocline and is pumped 
downward carrying the surface 
density distribution to depth.

Some of the fluid flows to the 
equator, a region requiring special 
dynamics.

The deep water beneath the 
thermocline is water of polar origin 
that slowly upwells to establish a 
temperature contrast with the 
thermocline.



Two principal questions (at least)

1) Why does the surface density forcing extend only to 
about 1km?

2) Why does the bowl become shallow at low latitudes?
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Ekman Pumping

50~100m
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The bowl

We first need to explain the structure of the bowl. 
(why is it shallow at the equator?). The LPS model:
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Ref Luyten, J.R., J. Pedlosky, and H. Stommel. 1983 The ventilated thermocline. J. Phys. Ocean. 13, 292-309.
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Planetary geostrophy

U/βL2 <<1 for large scales (greater than about 
50-100 km)

ρn fun = −
∂pn

∂y
,

ρn fvn =
∂pn

∂x
,

∂un

∂x
+
∂vn

∂y
+
∂wn

∂z
= 0.

f = 2Ωsinθ

βvn = f
∂wn

∂z
           β = df

dy
Integrating over all moving layers:
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n
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ρng=−
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Continuity of wn



Layer equation for mass conservation

u2h2( )x + v2h2( )y = −we    y > y2

= 0       y < y2

u1h1( )x + (v1h1)y = −we        y < y2

y2

h1h2
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βvn = − f (unx + vny )

=
f

hn

run g∇hn + f
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y ≥ y2 ,n = 2
y ≤ y2 ,n = 1

else  0
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⎨
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⎩
⎪

from integrating  over each 
layer

yields  the potential vorticity equation 
for each layer



Potential vorticity equations
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 is the potential vorticity of layer n

Θ(x) = 1,  x > 0
= 0,  x < 0

Is Heavyside fnc.

fu2 =−γ 2
∂h
∂y

,

fv2 =   γ 2
∂h
∂x

.

h= h1 +h2,        γ 2 =
ρ3 −ρ2

ρo

g

Geostrophy and hydrostatic 
relation with layer 3 at rest.



Single moving layer region,
y >y2

βv2h2=fwe         v2=
γ2

f
∂h
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,       h2=h ,      h1=0

∂h2
2
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=

2 f 2

βγ 2

w e

Integrate to eastern boundary x = xe , where u2 =0. We 
will satisfy that bc by taking h2 =0 there (not necessary, 
it need only be a constant but it suffices for our 
purposes)
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∫ y ≥ y2
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The process of subduction

v2

y=y2

h2 h1

h2

Fluid in layer 2 is driven southward 
by Ekman pumping.

At y = y2 it subducts beneath layer 1.

It is then no longer driven directly by 
the Ekman pumping which directly 
forces layer 1 in that region south of 
y2



Conservation of potential vorticity

Streamlines in layer 2 are coincident with pressure field. 
(Geostrophy). In layer 2 this means the streamlines are 
lines of constant h=h1 +h2,For y <y2

 

ru 2 g∇ f
h2

= 0 f
h2

= Q 2 (h )

Potential vorticity is an arbitrary function of streamline.

h=const.
f/h2= const.



The determination of the function Q2

h1

h2

y = y2

By definition at y = y2, h2 = h so on that line

f
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=
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h = h1+h2



The conserved relation

f
h 2

=
f 2

h

y = y2
x=xe

On streamline h = const. the relationship 
established at the outcrop line is maintained 
and is valid for all points reached by 
streamlines emanating from the outcrop line.



The layer thicknesses in the 2-layer region
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The Sverdrup relation
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The thermocline bowl
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Layer thicknesses remain 
finite as latitude goes to zero.

y



The horizontal circulation
(with shadow zone)

Layer 2 
streamlines

Layer 1 
streamlines

Shadow zone
In shadow zone u2 =0



Further references

Rhines, P.B. and W.R.Young, 1982. A theory of the wind-driven 
circulation.I.Mid-Ocean gyres. J. Marine Res. 40 (Supplement) 
559-596
Pedlosky, J. and W.R. Young 1983 Ventilation, potential 
vorticity homogenization  and the structure of the ocean 
circulation. J.Phys.Ocean. 13, 2020-2037
Pedlosky, J. Ocean Circulation Theory. 1998. Springer Verlag. pp 
453
Huang, R.X. (1989) On the three dimensional structure of the 
wind-driven thermocline in the North Atlantic. Dyn. Atmos. and 
Oceans, 15, 117-159.



The “continuous”model

Adding more layers one approaches a high resolution finite 
difference form of the solution of the continuous model in z as
Huang (1989) has done.



The equatorial inertial boundary layer
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So the layer thicknesses remain 
finite as y and f go to zero at the 
equator

But 

Dominates as f goes to zero
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f
∂h
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becomes singular at equator

v1h1+v2h2=
τ
ρof

“geostrophic” transport equal and 
opposite to Ekman transport. Need 
to remove the singularity in v



Equations of motion in the equatorial region.
Layer model.
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Pierre Welander

Veronis: J.Marine 
Res.1997,55, i-vii



Equations of motion
Non dimensional
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dropping primes

As we approach the equator need to 
keep advective terms in second 
equation to heal singularity in vn

U = βl 2 Note zonal velocity 
remains in geostrophic 
balance



Pressure-depth scaling

From geostrophy of u and the hydrostatic balance.

 p=O(ρoUβl 2)=ρoβ
2l 4 =O(γ 2H)
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Matching to the ventilated thermocline solution in the matching 
region as we leave the equatorial zone.
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Further scaling

From the balance of transport between the Ekman
layer and the equatorial thermocline:

y = 0

 

Ve = τ
ρ f       f = β l

Vg H = U
l
L

H = −Ve

With geostrophic balance for U

 

ρ fU l = p = ργ H
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τ L = ργ H 2
Work potential energy balance



Scaling results
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Pedlosky, J. An inertial theory of the equatorial undercurrent. J. Phys. Ocean.
17, 1978-1985



Scaled boundary layer equations (1)

− y +ζn( )vn = −
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∂x
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Scaled boundary layer equations (2)
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∂pn

∂y
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Conservation of Bn and qn
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=0
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The equation of motion for layer 2

p2 = h,  p1 = h + Γ12h1,

Γ12 =
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Hydrostatic relation (n.d.)
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The determination of Q2
The link to mid-latitudes.

For large y (bdy layer coordinate) must merge 
with mid latitude dynamics

q2 ≈
y
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, B2 ≈ h

From the ventilated thermocline solution y
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The boundary layer differential equations

∂u 2

∂y
= y −

y2 h2
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1
2

u 2
2
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∂h
∂y

= − yu 2

h2 = h − h1

ODE s only in y

need  a relation between h and h2
but Sverdrup relation no longer 
valid.



Two closures: both sketchy

let yn>>1 be the northern latitude where the solution merges with the 
mid-latitude solution.

One closure assumes: h1(x,y)=h1(x,yn) for  all y.

The second assumes

h1(x,y)=h1(x,yn)+{h(x.yn)−h(x,y)}/Γ12
or upper layer pressure gradient independent of y



Boundary condition at the equator

Fluid does not cross equator (pv conserved). 

On y =0 B2 =const. = Bo

and Bo = h(0,yn)
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Solutions 

Solutions obtained by a shooting method. Starting with h from the 
mid-latitude solution, guess a starting u2 at y=ynand integrate to the 
equation and try to “hit” Bo. Then adjust guess for u2.

With the first closure



The equatorial thermocline



Results with second closure



The link to mid-latitudes



A multi-layer model



EUC observations



Numerical calculations

McCreary, J.P. Jr. and P. Lu 1994. The interaction between the 
subtropical and equatorial circulations: The subtropical cell. J.Phys. 
Ocean., 24, 466-497



An Internal boundary layer in the thermocline

Thermocline

Abyss

The coldest water in the subtropical thermocline comes from water 
downwelled from the southern boundary of the subpolar gyre

Water that has sunk at the pole and, 
rising slowly, fills the abyss



The diffusive internal layer 
refs:

To smooth out the temperature difference between the 
abyss and the thermocline a diffusive layer might be 
expected as anticipated by Welander

Welander, P. 1971 The thermocline problem, Phil. Trans. R. Soc. 
Lond. A. 270, 415-421

Salmon, R. 1990. The thermocline as an “internal boundary 
layer”. J. Marine. Res., 48, 437-469.

Samelson, R.M. and G.K. Vallis, 1997. Large-scale circulation 
with small diapycnal diffusion: The two thermocline limit. J. 
Marine Res. , 55, 223-275.



Boundary layer equations

Following Samelson and Vallis (1997)

− f v = −
∂ p
∂ x

− ε u ,

fu = −
∂ p
∂ y

− ε v ,

∂ p
∂ z

= b ,

∂ u
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+
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+
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ρo
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bt +ubx+vby+wbz =κvbzz+κH∇
2b−λ∇4b

∇2=
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The Result of the S&V calculation

Double structure to 
thermocline and an interior 
maximum in Tz

Upper maximum is the 
ventilated thermocline 
contribution.Note deep positive 
w in the abyss with a zero at the 
base of the thermocline



Scaling the internal thermocline (1)

W =
β
f

Uδ

since w is 0 at the base of the adiabatic, 
ventilated thermocline.

∂w
∂z

=
β
f

v
from

From thermal wind uz = −by / f

The horizontal gradient of 
buoyancy is determined by the 
slope of the isopycnals in the 
ventilated thermocline solution

Δb/L=fU/Da

Da is the vertical scale of 
the adiabatic thermocline Da

2 : f 2WeL
βΔb



Scaling the internal thermocline (2)

In the diffusive region of the internal thermocline, vertical 
diffusion balances vertical advection.

In the 
interior

wTz ≈κTzz

W/δ:κv/δ
2



The internal thermocline scale

W =
β
f

Uδ Δb/L=fU/Da
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1/4 Distinction is the 1/2 power law 
and not 1/3 as would obtain if δ
and not Da were used in thermal 
wind eqn.



Scaling law from calculations

Satisfies the κ1/2 law.



An alternative picture

There have been calculations in which the entire thermocline is a dissipative 
boundary layer. 

A discussion that follows some ideas of Welander and especially Salmon,R. 
1990. J.Mar.Res. 48, 437-469.
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=

f 2

β
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Implies the existence 
of a function M such 
that:

p
ρo
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f 2w
β

=Mx

∴   u=−Mzy / f ,  v=Mzx / f  ,  gρ /ρo =−Mzz



The M equation and scales

1
f
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f2MxMzzz=κvMzzzz

Simple case when M=M(x,z) then horizontal 
advection terms vanish. Equivalent to system:
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g
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This gives a thicker bl and a weaker w



Numerical calculations

From Vallis 2006 Cambridge U. Press
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