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1 Stochastic Resonance

It is possible to synchronize transitions when you have a periodic forcing on a double
potential well:
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Note that the fixed points location (defined by V ′(x) = 0 and V ′′(x) > 0) do not strongly
vary with τ if the amplitude ε is small (in which case the fixed points are given by x± ≈ ±1),
unlike the value of the potential V at this fixed points. For ε � 1, these two values are
approximately given by:
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Using the Laplace’s approximation, the transition times are approximately given by:
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The transition times vary with τ as the potential changes shape. Because the variance in
the transition time is very small compared to the transition time itself, the transition occurs
over a small time-interval. As a consequence, the Fourier spectrum has a strong peak at
the forcing frequency Ω. In the case of a small periodic forcing ε, the synchronization can
occur for moderate values of σ.

For example, if we take the small amplitude to be ε = 0.1, the shape of the potential
is very close to a double well. If we suppose that at τ = 0, the state of the system is near
x+ ≈ 1, the transition time < t1→−1 > at this τ is maximal, as the potential well is deepest.
If π

Ω �< t1→−1 > (τ = 0), then the well will change shape and the system will almost
surely exit the well at τ = π

Ω where the mean escape time < t1→−1 > is minimal:
The same reasoning can be applied when the system starts near x− ≈ −1 at τ = π

Ω .
Thus, for small amplitude, the transitions of the system approximately occur when τ is a



Figure 1: V (x) vs x for τ = 0 (left) τ = π
2Ω (middle) and τ = π

Ω (right). The state of the
system is represented by the red dot.

multiple of π
Ω , and the system stochastically resonates with the forcing of angular frequency

Ω:

Figure 2: V (x) vs x for τ = π
Ω (left) τ = 3π

2Ω (middle) and τ = 2π
Ω (right). The state of the

system is represented by the red dot.

The synchronization of transitions has applications in climatic models: If a periodic
forcing is imposed, it is possible to have synchronization in the transitions, which allows
for the existence of multiple equillibria. However, attributing this signal to stochastic res-
onance is a controversial topic. For instance, stochastic resonance has been suggested as a
mechanism for the Dansgaard-Oeschger events, but many questions/doubts remain:

• Did multiple states of the Meridional Overturning Circulation exist during glacial
times?

• What is the origin of the 1500 years period in the freshwater forcing?

2 Ocean Western Boundary Current Variability

2.1 Chaotic behavior of the Kuroshio current

We are now interested in systems that exhibit chaotic behaviors, and ask ourselves what to
do when the circulation is so hard to model directly? Looking at the Sea Surface Height



(SSH) variability, we can see that it is predominant in the Western boundaries of the
basins. In this lecture, we will focus on the Kuroshio current in Japan. Qiu et al. (2005)
have observed a strong interannual-decadal time scale transitions between different Kuroshio
paths (which look like spaghetti on the SSH contours), referred as path transitions. Looking
at the variation of the path length in time, you have a strong variability: we start with
a low path length, and then suddenly see a much bigger path lengths, corresponding to
a meandric current. In this case, due to the lack of data, it is hard to test for red noise;
instead they use a very simple reduced gravity shallow-water model for the wind:
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Taking a few points along the coast line, the wind profile τ is mimicked. As it is very
difficult to measure/determine the lateral friction AH , it is taken as a control parameter.
For AH = 220m2.s−1, Pierini et al. (2009) notice a strong transition in the behavior of the
model, which does not correspond to the observations anymore, if metrics such as SSH are
considered. The strong transition in the behavior of the system leads us to think that a
nonlinear transition occurs when AH becomes large enough.

2.2 Deterministic quasi-geostrophic barotropic model

To model this transition, we adopt a Quasi-geostrophic barotropic model, giving us an
evolution equation for the streamfunction ψ:

∂ζ
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+ u · ∇ζ + β

∂ψ

∂x
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∇2ζ

Re
+ αk · (∇∧ τ)

where the horizontal velocity u and the relative vorticity ζ are related to the streamfunction
ψ by:

u = k ∧∇ψ

ζ = ∇2ψ

We choose a double-gyre wind stress:

τ = − cos(2πy)i

so that we have eastwards wind in the Northern part of the domain and westwards wind in
the Southern part of the domain. The control parameters is now the Reynolds number of
the flow:

Re =
UL

AH
∝ A−1

H

Note that we have chosen the wind field to be symmetrical about the mean axis of the
domain, which implies meridional symmetry of the equations of motion about this axis.
We thus observe a Pitchfork bifurcation as the Reynolds number exceeds its critical value,
which is the only co-dim 1 bifurcation leading to symmetry breaking. The flow can indeed
break from a double-gyre configuration to:



• Steady-state streamfunction patterns.

• A jet-down configuration.

• A jet-up configuration.

At low-frequency, the two eigenmodes of the system (P and L) can merge to give interesting
periods depending on the choice of the parameters in the model; for instance, the period of
the gyre mode at Hopf bifurcation (Re ∼ 80) is approximately 1.5y whereas the period of
other Rossby-basin modes is much shorter, of order 2-4 months. Increasing Re and looking
at the bifurcation diagram in (Re, ψmin+ψmax

|ψmaix| ) space, the deterministic system undergoes in
this order:

• A Pitchfork bifurcation.

• A Hopf bifurcation.

• Gyre modes then appear.

• A homoclinic orbit then appears, connecting back the system to its initial fixed point.

Figure 3: Schematic bifurcation diagram for the double-gyre model

The central question of this lecture is then: What happens if noise is added to the
system? In the case of a chaotic system, such as the previous one, the PDEs are too hard
to tackle directly, and we thus need to derive a low-order model. We:

• Neglect the diffusive term 1
Re∇

2ζ and replace it with a Rayleigh drag −µζ.

• Choose the wind-stress strength as the control parameter.



We then truncate the system by focusing on the 4 first modes of the basin in the meridional
direction:

ψ(x, y, t) =
4∑

k=1

Ak(t)G(x) sin(ky)

where:
Gs(x) = exp(−sx) · sinx

and (x, y) ∈ [0, π]2. If we Galerkin project the equations for ψ, we obtain a low-order model,
consisting of 4 ODEs for the amplitudes Ak(t):

dA1

dt
= c1(A1A2 +A2A3 +A3A4)−A1

dA2

dt
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2
1 −A2 + c5α

dA3
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= c3A1(A4 −A2)−A3

dA4

dt
= −c4A

2
2 − 2c4A1A3 −A4

A wind-stress amplitude τ0 = 0.1Pa gives α = 20. It is possible to prove that this low-order
model exhibits a transition sequence as α increases:

• First, we have a Pitchfork bifurcation.

• Then, we have a Hopf bifurcation.

• Finally, a homoclinic orbit appears.

Numerically, we show that the previous system has a steady attractive set with a first
Lyapunov exponent λ1 > 0.

2.3 Stochastic low-order models for chaotic systems

We are now able to add noise in the system, by transforming the previous system of ODEs
in a system of SDEs:

dA1 = [c1(A1A2 +A2A3 +A3A4)−A1]dt

dA2 = [2c2(A1A3 +A2A4)− c2A
2
1 −A2]dt+ c5α(dt+ σ ◦ dW )

dA3 = [c3A1(A4 −A2)−A3]dt

dA4 = [−c4A
2
2 − 2c4A1A3 −A4]dt

Note that adding noise to a dynamical system changes the definition of what we call an
attractor. We study the very simple 1D example:{

ẋ = −x+ t

x(s) = x0



Figure 4: Numerical simulation of the low-order dynamical system with N = 106 initial
conditions for a wind-stress τ = 0.1hPa

Adding noise to this equation will not change its monotony. The solution of this system is
given by:

x(t) = exp(s− t) · [x0 − s+ 1] + t− 1

If we wanna look at the attractor in terms of asymptotic limit, we start by noticing that all
the trajectories eventually go to t− 1. If you consider the following flow:

ϕ(t, s)[x] = exp(s− t) · [x− s+ 1] + t− 1

you are forced to go backwards in time and define an attractor differently.

lim
s→−∞

|ϕ(t, s)[x]−A(t)| → 0

where:
A(t) = t− 1

Indeed, the noise might make the system change attractor, which prevents us of going
forward in time to define the attractor. Similarly to what we did for the previously derived
low-order model, we can add noise to the Lorenz model:

dX = s(Y −X)dt+ σXdW

dY = (rX − Y −XZ)dt+ σY dW

dZ = (−bZ +XY )dt+ σZdW



Numerically, we initiate the system with many initial conditions (typically N ∼ 106 − 109)
and perturb each initial condition with a single noise realization. We then look at the density
of trajectories in phase space. To study the effects of noise in the wind-stress forcing on the
intrinsic variability in this PDE model, three methods exist:

1. Study the local PDF through linearized dynamics (cf Kuehn et al. 2012)

2. Use dynamical orthogonal field theory (cf Sapsis et al. 2009 and Sapsis et al. 2013)

3. Use non-Markovian model reduction techniques (cf Chekroun et al. 2015)

We will study the second method and apply it to our stochastic barotropic QG model:

∂u

∂t
= −∇p+

∇2u

Re
− (u · ∇)u− fk ∧ u+ τW (x, t)

∇ · u− 0

where we separate the wind in its deterministic double-gyre part and a stochastic part:

τW = τDG(y)i+ στstochastic(x, y, t)i

2.4 The dynamical orthogonal field method

They dynamical orthogonal field equation can be derived following Sapsis and Lermusiaux
(2009). Starting from a general SDE of the form:

∂u(x, t, ω)

∂t
= L[u(x, t, ω), ω]

where:
(x, t, ω) ∈ D × T × Ω

We define the mean of the field u as:

u(x, t) = Eω[u(x, t, ω)] =

∫
(Ω)

u(x, t, ω)dP(ω)

where P is a probability measure on ω. From the covariance matrix:

Cu(·,t)u(·,t)(x, y) = Eω[(u(x, t, ω)− u(x, t))(u(y, t, ω)− u(y, t))T ]

we can define the integral operator:

T C(ϕ) =

∫
(D)

Cu(·,t)u(·,t)(x, y) · ϕ(x, t)dx

and prove that it is compact, self-adjoint and positive. It follows that any random field
u has a Karhuven-Loeve expansion at a given time t:

u(x, t, ω) = u(x, t) +
+∞∑
i=1

Yi(t, ω)ui(x, t)

where:



• ui(x, t) are the eigenfunctions of T C

• Yi(t, ω) are zero-mean stochastic processes with variance Eω[Y 2
i (t, ω)] which are eigen-

values of the following eigenvalue problem:

T C [ui(x, t)] = Eω[Y 2
i (t, ω)]ui(y, t)

In many physical problems of interest (including ours), Eω[Y 2
i (t, ω)] ∼ exp(−ci) where

c > 0, so that to a good approximation, we can truncate the Karhuven-Loeve expansion to
a finite number of terms:

u(x, t, ω) = u(x, t) +

s∑
i=1

Yi(t, ω)ui(x, t)

We can see that the variation of the stochastic coefficients Yi can express exclusively the
evolution of the uncertainty within the stochastic space VS = span(ui|i ∈ [1, s]). However,
the evolution of the stochastic basis ui itself allows the uncertainty to cover VS and V ⊥S . To
avoid redundancy in the evolution of the uncertainty, we impose that the evolution of the
basis ui stays in V ⊥S , ie:

dVS
dt
⊥ VS ⇔ <

∂

∂t
ui|uj >= 0

This is the dynamically orthogonal condition (DO condition). We can now derive the DO
field equations by inserting the DO representation in the initial evolution equation:

∂

∂t
u+

dYi
dt
ui + Yi

∂

∂t
ui = L[u(x, t, ω), ω]

Applying Eω to the previous equation, we obtain an evolution equation for the mean part
of the representation:

∂

∂t
u = Eω{L[u(x, t, ω), ω]}

Taking the inner product of the evolution equation with uj , applying the orthonormality
condition of the ui, and the DO condition, we obtain:

dYj
dt

=<
∂

∂t
u|uj >=< L(u)|uj >

Applying Eω to the previous equation and using the evolution equation for the mean part of
the representation, it is possible do derive an equation for the zero-mean stochastic processes
Yi:

dYi
dt

=< L[u, ω]− Eω{L[u, ω]}|ui >

Finally, it is also possible to derive an equation for the basis vectors:

∂

∂t
ui = ΠV ⊥

S
[Eω{L[u, ω]Yj}] · C−1

Yi(t)Yj(t)

where the operator ΠV ⊥
S

is defined as:

ΠV ⊥
S

[F (x)] = F (x)− < F (x)|uk(x, t) > uk(x, t)



2.5 Application to the quasi-geostrophic barotropic model

We come back to our BT QG model and apply the DO analysis following Sapsis and Dijkstra
(2013). We first expand the horizontal velocity and the pressure:

u(x, t, ω) = u(x, t) +
s∑
i=1

Yi(t, ω)ui(x, t)

p = p0 + Yipi − YiYjpij + Zrbr

where Zr are the coefficients of the noisy part of the wind:

στa(x, y, t) =
s∑

k=1

Zk(t, ω)σk(x, t)

The DO mean equations can be written:

∂u

∂t
= −∇p0 +

∇2u

Re
− (u · ∇)u− fk ∧ u+ τd(x, t)− CYiYj · [−∇pij +

1

2
(ui · ∇)uj +

1

2
(uj · ∇)ui]

0 = ∇ · u

Projecting on the DO modes, it is possible to obtain a solvable system of (s+1) PDEs. The
stochastic wind stress forcing follows the bulk formula for the momentum flux:

τstochastic = ρairCD|u′|u′

where ρair is the air density, u′ the near-surface wind’s velocity and CD the drag coefficient.
The near-surface wind is taken to be stochastic:

u′ = f(x, y)η(t)

where η(t) is a white/colored noise vector depending on the experiment, with mean 0 and
variance σ. The weight function f parametrizes the spatial structure of the atmospheric
variability with a Gaussian shape, whose origin is placed at the center of the basin:

f(x, y) = α[πλxλyerf(
Lx
2λx

)erf(
Ly
2λy

)]−
1
2 exp(

x2

2λ2
x

+
y2

2λ2
y

)

Looking at the resulting 3D contours of the PDF, we can see that the main effect of the
noise is to allow for multiple equillibria of the system. Looking at the effect of the noise in
more detail, we can see significant differences if the noise is chosen to be white or colored:

• If we choose a white-noise excitation η(t) ∝ dW (t) where W is a vectorial Wiener
process, then the stochastic excitation has zero effect on the instantaneous evolution
of the mean field, and the shape of the stochastic subspace VS . As a consequence, it
will not influence the general statistics of the double-gyre flow.



• More generally, we can choose a colored noise excitation, for instance through the
Ornstein-Uhlenbeck process:

τdη(t) = −η(t) +
√

2τdW (t)

where τ is the decorrelation time scale (τ � 1 corresponds to the deterministic case
and τ � 1 to the white-noise case). This does not only allow to internally transfer
energy between the DO modes, but it also allows the stochastic modes to directly
absorb energy from the stochastic forcing. Depending on the value of τ , colored noise
can either destabilize some DO modes and push the system in a statistically steady
regime (small memory⇔ small τ), or reduce the complexity of the system by bringing
it to a single unstable mode (long memory ⇔ large τ).

3 Conclusion

Is summary, it is possible to add noise to a chaotic system and still solve for a low order
equivalent system. We can see that the noise adds a lot of variability, helping us explore new
flavors of the climatic system. To study the effect of the noise on a PDE system with more
precision, we have introduced the method of the dynamical-orthogonal field. Under certain
condition, this method reduces the analysis of a general continuous stochastic field to a
finite number of orthonormal mode, which define a stochastic subspace where the solution
lives. In the special case of the BT QG model , we have seen that white-noise has a minimal
effect on the reduced dynamics, whereas colored noise can significantly change the behavior
of the system.


