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We will talk about stochastic processes in general but focusing on differential equations
with white noise coefficients in them. We will try to give an intuitive feeling for this field.
There is actually some sense in the whole thing. By the end of the lectures you should have
a clue of how to model systems with white noise.

When we are dealing with many-body nonlinear systems, there are too many variables.
They are too high dimensional to extract useful information, forcing us to use reduced
models. In applied math there is a great tradition of getting reduced models from large or
small parameters in equations or a separation of scales in time or length. We also model
things with noise. How do we know the difference between random and complicated? Well
we don’t. This is a difficult concept.

The great victory of this approach is statistical mechanics. Settling for bulk quantities
of interest as opposed to 1023 degrees of freedom was tractable and has stimulated people
in the physics community to try to take this concept to the extreme. There are a lot of
specific successes and examples, but no general theory.

Specifically what we be talking about:

1. Markov diffusion processes

2. Brownian motion

3. Gaussian white noise

4. Stochastic differential equations

5. Fokker-Planck equations or Forward Kolmogorov equations

6. Mean first passage times

SDEs are what you write down and the Fokker-Planck equations are what you can actually
solve. The latter equations give you the evolution for a probability density function.

A random variable X is characterized by its cumulative distribution function (CDF)
which is the probability that a random variable is below some scalar. In symbols (P(X ≤ x)).
It is a monotonically increasing function with values between 0 and 1. It is “continuous
from the right”. The probablity distribution function is the derivative of the probability
with respect to x.

PDF =
dCDF

dx
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Another way to say it is PDF = P(x ≤ X ≤ x+ dx)/dx where dx is an infinitesimal or

P(a < x < b) =

∫ b

a
PDF(x)dx

Stochastic Processes are a random functions of an “index set” which we will call time.

X(t) = Random variable

We can plot X(t) (for a given realization of the random variable), which we will assume to
be continuous. We can ask the question “what is the probability that X(t)” falls in some
window. We will now introduce some notation

PDF of X(t) = ρ(x, t)

This is not enough to answer all the statistical questions that we would like to pose. We also
need the joint distribution functions (ρ(x1, t1;x2, t2) 2-time) and ρ(xn, tn;xn−1, tn−1; ...;x1, t1)
n-time. A property of white noise is that ρ(x1, t1)ρ(x2, t2). This type of process does not
have enough structure for us to do modeling. We don’t need an uncountable number of
joint distributions to have a well-defined probability space. Smooth things tend to have a
memory associated with them, thus white noise won’t be continuous. The condition

1 =

∫ ∞
−∞

ρ(x, t)dx

says that “I exist” and the compatibility condition is

ρ(x1, t1) =

∫ ∞
−∞

ρ(x1, t1;x2, t2)dx2.

This says that the probability of going through one window is the same as going through
the same window as well as an infinitely large window. See Figure 1.

To answer sensible questions about the random process we need all of the joint prob-
ability functions. Suppose that we just give the joint probabilities, then we need to check
the compatibility conditions.

ρ(x1, t1) (1)

ρ(x1, t1;x2, t2) (2)

ρ(x1, t1;x2, t2, ;x3, t3) (3)

... (4)

We need to define expectations, averages, and moments of the random variables. The
expectation of a random variable is

E(X) =

∫ ∞
−∞

xρ(x)dx = 〈x〉 = X̄.
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dx2
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Figure 1: ρ(x1, x2; t1, t2)dx1dx2 is the probability that the process X(t) passes through
windows of sizes dx1 and dx2 at times t1 and t2 respectively.

We can also calculate

E(f(X)) =

∫ ∞
−∞

f(x)ρ(x)dx

and get moments

E(XN ) =

∫ ∞
−∞

xNρ(x)dx.

Furthermore we have

E

 N∏
j=1

X(tj)

 =

∫
· · ·

∫ N∏
j=1

xjρ(x1, t1; ...;xN , tN )dx1 · · · dxN

which are known as the n-point correlation functions. The two point correlation function
is sometimes known as THE correlation function. The moments DO NOT determine the
probability distribution (in general). If it is the case that

E(X(t)X(s)) = E(X(t))E(X(s))

we say the variables are uncorrelated. This does not imply independence, but independence
does imply uncorrelated.
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One more thing. Let’s talk about this idea of independence. Suppose that two events
A and B happen. We can look at P(A),P(B) and P(A∩B) and P(A|B) = P(A∩B)/P(B).
If the variables are independent then P(A|B) = P(A). For stochastic processes we may
want to know things like “given that my random variable went through window 1, what
is the probability that it goes through window 2?” We write this as ρ(x2, t2|x1, t1) =
ρ(x2, t2;x1, t1)/ρ(x1, t1).

We have all these joint probability functions

ρ(xn, tn|xn−1, tn−1; ...;x1, t1) ≡
ρ(xn, tn;xn−1, tn−1; ...;x1, t1)

ρ(xn−1, tn−1; ...;x1, t1)

which is the probability of going through my latest window given that I went through all
the other windows. We are now in a position to define Markov processes. If

ρ(xn, tn|xn−1, tn−1; ...;x1, t1) = ρ(xn, tn|xn−1, tn−1),

we can reconstruct the n-point distribution function

ρ(xn, tn;xn−1, tn−1; ...;x1, t1) = ρ(x1, t1)

j=N∏
j=2

ρ(xj , tj |xj−1, tj−1).

A Markov process is independent of the past, given the present. An example of a Markov
process is a first order ODE.

Brownian motion (which is the same as Wiener process) is our next topic. These are
random functions of time denoted by

W (t) = Wt.

The probability density at t = 0 is a delta function, ρ(ω, 0) = δ(ω). The transition density
is

ρ(ω, t|ω′, t′) =
1√

2π(t− t′)
e
− 1

2
(w−w′)2

t−t′

We have

ρ(ω, t) =

∫ ∞
−∞

ρ(ω, t|ω′, 0)ρ(ω′, 0)dω′ =
1√
2πt

e−
1
2

ω′2
t

There are some properties of Brownian motion that
white noise which we will talk about next time.

are absolutely essential to understanding
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