How top-down effects influence predator:prey ratios and planktonic community diversity in a size-structured model of phyto- and microzooplankton

Darcy A. A. Taniguchi1, Michael J. Follows1, Susanne Menden-Deuer2
1Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 02139, 2University of Rhode Island, Graduate School of Oceanography, Narragansett, Rhode Island, USA, 02882

Introduction
Many fundamental characteristics of plankton are strongly modulated by cell size in predictable and meaningful ways.
The size-dependency of properties also simplifies modeling the detailed diversity of planktonic assemblages.
In this study we:
I. Describe allometrically scaled rates and properties in a nutrient-phytoplankton-microzooplankton model
II. Examine planktonic community structure and predatory-prey size ratios in a zero- and one-dimensional model
III. Analyse solutions for grazing preference

Many studies assume a fixed 1:1 predator:prey size ratio, and here we investigate if we can recreate that ratio using a trait-based approach

Ia. Model equations

Phytoplankton

\[
dP(t) = P(t) \left(\mu P(t) \frac{N}{N + k} - m P(t) - \frac{1}{h} \frac{P(t)}{P(t) + k} \right) + Z(t)
\]

Microzooplankton

\[
dZ(t) = Z(t) \left(\gamma P(t) - R(t) - \frac{m Z(t)}{R(t) + 1} \right)
\]

Nutrients

\[
N = N + \sum P(t) \frac{Z(t)}{h}
\]

Ib. Phytoplankton parameterization

- Empirical relationships were used to determine allometric relationships for phytoplankton parameters
- Maximum growth rate and nutrient half-saturation constant were allometrically scaled

Ic. Microzooplankton parameterization

- Empirical and theoretical relationships were used to determine the microzooplankton size scalings
- Maximum grazing rate and grazing half saturation constant were formulated using an analogy from enzyme kinetics, using the following equations:

\[
\gamma \propto \frac{1}{s^2} \\
R \propto \frac{1}{s^3}
\]

- Many of these parameters are dependent on the size of both the predator and the prey

IIa. Model results: planktonic size spectra, biomass values, and prey size classes grazed

- The allometric parameters were implemented in a zero-dimensional nutrient-phytoplankton-microzooplankton model
- The simulations were run separately for three different sized microzooplankton and also in a multi-grazer system with all three predators
- Microzooplankton were allowed to graze the prey that led to the greatest intake
- For all simulations, there was not a consistent predator:prey size ratio
- The larger the microzooplankton, the more advantageous to consume a wide prey size range
- The greater the phytoplankton size range consumed, the greater the resulting prey size diversity
- The largest microzooplankton outcompeted the smaller grazers in the multi-grazer system

IIb. Model results: planktonic biomass values for one-dimensional model

- The biological nutrient-phytoplankton-microzooplankton model was coupled with a one-dimensional biogeochemical model
- As in the zero-dimensional case, the same set of single and multi-grazer systems were run
- Each model was run for 5 years, with the last two years shown

Qualitatively similar results to the zero-dimensional model, with the addition of seasonal cycles, emerged

Conclusions
- Consistent with field data and previous modeling efforts, small phytoplankton were relatively more abundant than larger microzooplankton in all model simulations
- Microzooplankton consumed a wide variety of prey sizes, including prey larger than the grazers
- Larger microzooplankton are able to increase the size diversity of the phytoplankton by consuming a wider size range of prey
- Several key size relationships are still unconstrained, which have a strong influence on the model results, such as the exclusion of small predators