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Is	
  phylogeny	
  predic5ve	
  of	
  traits?	
  

Ø We	
  are	
  rapidly	
  cataloguing	
  the	
  phylogene5c	
  
diversity	
  of	
  the	
  oceans	
  
Ø Will	
  this	
  inform	
  us	
  of	
  ocean	
  func5oning?	
  

Ø Microbial	
  diversity	
  is	
  immense	
  
Ø Can	
  phylogene5c	
  rela5onship	
  be	
  used	
  for	
  
predic5ng	
  traits?	
  



Is	
  phylogeny	
  predic5ve	
  of	
  traits?	
  

W.	
  Ford	
  DooliMle:	
  NO!	
  
	
  



Is	
  phylogeny	
  predic5ve	
  of	
  trait?	
  

W.	
  Ford	
  DooliMle:	
  NO!	
  
	
  



Many	
  studies	
  have	
  shown	
  	
  
lateral	
  gene	
  transfer	
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Synechococcus genome comparison<p>Local niche occupancy of marine <it>Synechococcus</it> lineages is facilitated by lateral gene transfers. Genomic islands act as repos-itories for these transferred genes.</p>

Abstract

Background: The picocyanobacterial genus Synechococcus occurs over wide oceanic expanses, having colonized most
available niches in the photic zone. Large scale distribution patterns of the different Synechococcus clades (based on 16S
rRNA gene markers) suggest the occurrence of two major lifestyles ('opportunists'/'specialists'), corresponding to two
distinct broad habitats ('coastal'/'open ocean'). Yet, the genetic basis of niche partitioning is still poorly understood in this
ecologically important group.

Results: Here, we compare the genomes of 11 marine Synechococcus isolates, representing 10 distinct lineages.
Phylogenies inferred from the core genome allowed us to refine the taxonomic relationships between clades by revealing
a clear dichotomy within the main subcluster, reminiscent of the two aforementioned lifestyles. Genome size is strongly
correlated with the cumulative lengths of hypervariable regions (or 'islands'). One of these, encompassing most genes
encoding the light-harvesting phycobilisome rod complexes, is involved in adaptation to changes in light quality and has
clearly been transferred between members of different Synechococcus lineages. Furthermore, we observed that two
strains (RS9917 and WH5701) that have similar pigmentation and physiology have an unusually high number of genes in
common, given their phylogenetic distance.

Conclusion: We propose that while members of a given marine Synechococcus lineage may have the same broad
geographical distribution, local niche occupancy is facilitated by lateral gene transfers, a process in which genomic islands
play a key role as a repository for transferred genes. Our work also highlights the need for developing picocyanobacterial
systematics based on genome-derived parameters combined with ecological and physiological data.
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Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest
known oxygenic phototroph. Numerous isolates from diverse areas of the world’s oceans have been studied and
shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly
clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of
the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of
genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes
of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the
core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the
flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes.
They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a
phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each
non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each
gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and
nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL
ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in
Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands
that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially
those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from
the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus,
reconstruction of past gene gains and losses shows that much of the variability exists at the ‘‘leaves of the tree,’’
between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome
comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean
metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the
wild.

Citation: Kettler CG, Martiny AC, Huang K, Zucker J, Coleman ML, et al. (2007) Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet
3(12): e231. doi:10.1371/journal.pgen.0030231

Introduction

The oceans play a key role in global nutrient cycling and
climate regulation. The unicellular cyanobacterium Prochlor-
ococcus is an important contributor to these processes, as it
accounts for a significant fraction of primary productivity in
low- to mid-latitude oceans [1]. Prochlorococcus and its close
relative, Synechococcus [2], are distinguished by their photo-
synthetic machinery: Prochlorococcus uses chlorophyll-binding
proteins instead of phycobilisomes for light harvesting and
divinyl instead of monovinyl chlorophyll pigments. Although
Prochlorococcus and Synechocococcus coexist throughout much of
the world’s oceans, Synechococcus extends into more polar
regions and is more abundant in nutrient-rich waters, while
Prochlorococcus dominates relatively warm, oligotrophic re-
gions and can be found at greater depths [3]. The
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Is	
  phylogeny	
  predic5ve	
  of	
  traits?	
  

Norm	
  Pace:	
  YES!	
  



Is	
  phylogeny	
  predic5ve	
  of	
  func5on	
  

Norm	
  Pace:	
  YES!	
  

“The (16S rRNA) tree can be considered a rough 
map of the evolution of the genetic core of the 
cellular lineages that led to the modern organisms.”



Many	
  other	
  studies	
  have	
  demonstrated	
  that	
  phylotypes	
  are	
  
distributed	
  or	
  responding	
  in	
  predictable	
  manners	
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The cyanobacterium Prochlorococcus

1,2 is the dominant oxygenic
phototroph in the tropical and subtropical regions of the world’s
oceans1,3,4. It can grow at a range of depths over which light
intensities can vary by up to 4 orders of magnitude. This broad
depth distribution has been hypothesized to stem from the
coexistence of genetically different populations adapted for
growth at high- and low-light intensities4–6. Here we report

direct evidence supporting this hypothesis, which has been
generated by isolating and analysing distinct co-occurring popu-
lations of Prochlorococcus at two locations in the North Atlantic.
Co-isolates from the same water sample have very different light-
dependent physiologies, one growing maximally at light inten-
sities at which the other is completely photoinhibited. Despite
this ecotypic differentiation, the co-isolates have 97% similarity in
their 16S ribosomal RNA sequences, demonstrating that
molecular microdiversity, commonly observed in microbial
systems7–12, can be due to the coexistence of closely related,
physiologically distinct populations. The coexistence and distri-
bution of multiple ecotypes permits the survival of the population
as a whole over a broader range of environmental conditions than
would be possible for a homogeneous population.

Using sea-going flow cytometry for studying picoplankton popu-
lations, we and others4,13,14 have observed multiple populations
of Prochlorococcus in single water samples, as distinguished by
their chlorophyll fluorescence intensities. These populations could
be derived from the mixing together of genetically identical
Prochlorococcus cells which have acclimated to different past light

Figure 1 Properties of the euphotic zone and flow cytometric signatures of the

Prochlorococcus populations and isolates. a, b, The physical features of the

water columns were similar at the Gulf Stream station, 378 30.89N, 688 14.49W, and

the Sargasso Sea station, 348 45.59N, 66811.19W. c, d, Flow cytometry signatures of

coexisting Prochlorococcus populations from 135m in the Gulf Stream and 100m

in the Sargasso Sea from which the isolates were obtained. e–h, Flow cytometry

signatures of the cultured isolates maintained at an irradiance of 9 mmolQm−2 s−1.

Numbers in parentheses refer to the mean chlorophyll fluorescence per cell (FL)

and FALS per cell. Differences in the absolute values of the flow cytometry

parameters between natural populations and isolates result from unmatched

growth conditions.
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ABSTRACT

Aim To test whether within-species and among-species patterns of abundance
and latitudinal range in marine bacteria resemble those found for macro-

organisms, and whether these patterns differ along latitudinal clines.

Location Global pelagic marine environments.

Methods Taxon-specific sequence abundance and location were retrieved
from the open-access V6-rRNA pyrotag sequence data base VAMPS (http://

vamps.mbl.edu/), which holds a massive collection of marine bacterial commu-

nity data sets from the International Census of Marine Microbes sampling
effort of global ocean water masses. Data were randomly subsampled to correct

for spatial bias and for differences in sampling effort.

Results We show that bacterial latitudinal ranges are narrower than expected by

chance. When present in both Northern and Southern hemispheres, taxa occupy

restricted ranges at similar latitudes on both sides of the equator. A significant and
positive relationship exists between sequence abundance and latitudinal range,

although this pattern contains a large amount of variance. Abundant taxa in the

tropics and in the Northern Hemisphere generally have smaller ranges than those
in the Southern Hemisphere. We show that the mean latitudinal range of bacterial

taxa increases with latitude, supporting the existence of a Rapoport effect in mar-

ine bacterioplankton. Finally, we show that bacterioplankton communities contain
a higher proportion of abundant taxa as they approach the poles.

Main conclusions Macroecological patterns such as the abundance–range
relationship, in general, extend to marine bacteria. However, differences in the

shape of these relationships between bacteria and macro-organisms call into

question whether the processes and their relative importance in shaping global
marine bacteria and macro-organism distributions are the same.

Keywords
Abundance–range relationship, bacterioplankton, latitudinal gradient, macro-

ecology, macro-organisms, marine microbes, micro-organisms, Rapoport’s
rule, rarity.

INTRODUCTION

A growing body of evidence suggests that micro-organisms

exhibit large-scale biogeographical patterns that resemble

those of macro-organisms. For example, using DNA sequenc-

ing techniques to identify molecular operational taxonomic

units (OTUs), comparisons of microbial communities often

show positive taxa–area relationships (e.g. Horner-Devine

et al., 2004; Bell et al., 2005), latitudinal species richness gra-

dients (e.g. Pommier et al., 2007; Fuhrman et al., 2008), and

isolation-by-distance patterns (e.g. Bell, 2010; Martiny et al.,

2011) comparable (though not identical) to those of macro-

organisms (Soininen, 2012).

Until recently, limited throughput and the high cost of

DNA sequencing constrained molecular-based descriptions of

microbial biogeography. The emergence of high-throughput

ª 2012 Blackwell Publishing Ltd http://wileyonlinelibrary.com/journal/jbi 1
doi:10.1111/jbi.12034

Journal of Biogeography (J. Biogeogr.) (2012)



Are	
  func5onal	
  traits	
  linked	
  to	
  organismal	
  
phylogeny	
  in	
  microorganisms:	
  Yes	
  or	
  No!	
  

No:	
  
Clear	
  evidence	
  of	
  lateral	
  gene	
  transfer	
  and	
  other	
  ways	
  
of	
  convergent	
  evolu5on	
  in	
  most	
  (if	
  not	
  all)	
  bacterial	
  
lineages	
  
	
  
Yes:	
  
Clear	
  biogeography	
  of	
  most	
  bacterial	
  lineages	
  
Community	
  oUen	
  changes	
  when	
  perturbed	
  
Some	
  metabolic	
  basis	
  for	
  classifica5on	
  



What	
  is	
  the	
  phylogene5c	
  distribu5on	
  
of	
  func5onal	
  traits?	
  

Martiny et al., in press, Martiny et al., 2013 



Oxygenic	
  photosynthesis	
  

Based	
  on	
  SEED	
  subsystem	
  annota5on	
  
and	
  16S	
  rRNA	
  tree	
  (Silva	
  alignment)	
  



Oxygenic	
  photosynthesis	
  

Average	
  distance	
  



Oxygenic	
  Photosynthesis	
  

16S rRNA similarity 



Nitrogen	
  fixa5on	
  



Nitrogen	
  fixa5on	
  

16S rRNA similarity 



Carbon	
  source	
  

Based	
  on	
  growth	
  in	
  Biolog	
  plates	
  



Carbon	
  source	
  

16S rRNA similarity 



Hierarchy	
  of	
  trait	
  depths	
  



What	
  controls	
  this	
  varia5on	
  in	
  
phylogene5c	
  dispersion?	
  



Predic5on:	
  

Complex traits are associated with deep clades 
 
 
Simple traits are associated with tips of tree 



Implica5ons	
  for	
  biogeography	
  

Electron acceptor 
Carbon substrate use 

Phylum Genus 

Taxonomic/genetic resolution 

Phylogeny of trait 



Implica5ons	
  for	
  biogeography	
  

E-acceptor Carbon sub. 

Phylum Genus 

Taxonomic/genetic resolution 

Phylogeny of trait  ->  Community change 

Range of C substrates 

R
ed

ox
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tia
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Case:	
  Prochlorococcus	
  biogeography	
  

Phylogeny of traits   

Martiny et al., 2009 



Case:	
  Prochlorococcus	
  biogeography	
  

Phylogeny of trait  ->  Community change 

Martiny et al., 2009 



This	
  concept	
  is	
  important	
  for	
  
understanding	
  microbial	
  biogeography	
  

You	
  say:	
  “Light	
  and	
  temperature	
  controls	
  the	
  
distribu5on	
  of	
  microbial	
  diversity	
  in	
  the	
  
ocean”	
  

I	
  say:	
  “At	
  the	
  taxonomic	
  defini5on	
  you	
  use,	
  yes,	
  
but	
  at	
  other	
  levels	
  of	
  phylogene5c	
  divergence	
  
carbon	
  substrate	
  availability	
  or	
  nutrient	
  
supply	
  ra5os	
  might	
  be	
  important”	
  



Conclusion	
  

•  The Norm Paces and Ford Doolittles of this world are 
both right 

•  Traits in microbes are associated with a continuum of 
phylogenetic depths 

•  The dispersal and depth of clades that contain a trait 
are connected with the trait’s complexity 

•  Phylogenetic dispersal of traits is important for 
biogeography (case of Prochlorococcus) 



Thank	
  You	
  

Topic for discussion Tuesday afternoon (w. Jorn Bruggeman) 


