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Adjustment of a wind-driven two-layer system with
mid-basin topography
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ABSTRACT
A linear primitive equations model is used to simulate spin-up of a two-layer ocean bisected by a

meridional ridge. The ocean is forced with steady zonal winds east of the ridge. When wind-driven
barotropic planetary Rossby waves propagate across the ridge, barotropic and baroclinic anomalies are
generated as the barotropic flow adjusts. These ridge-generated anomalies propagate westward from
the ridge as planetary Rossby waves and their arrival along the basin’s western boundary modulates
the western boundary current (WBC) transport and vertical structure. Model results suggest that at
short (<1 year) and long (>10 years) delay relative to a change in wind stress curl, net WBC transport,
TWBC, is that predicted by the Sverdrup balance for a flat ocean, TSv, but at intermediate delay this
balance is disrupted by arrival of the additional barotropic ridge-generated anomalies. The magnitude
of the anomalous transport, T ′

WBC, depends on the meridional deflection of the flow at the ridge relative
to the length-scale over which wind stress curl varies. The timescale, tBT, associated with adjustment
at the ridge is a function of latitude, density contrast between layers and ridge width.

1. Introduction

During spin-up of a two-layer flat ocean, wind forcing generates barotropic and baro-
clinic responses, which propagate westward as long planetary Rossby waves (Veronis and
Stommel, 1956). Barotropic responses propagate rapidly and establish a barotropic western
boundary current (WBC), while baroclinic responses propagate westward slowly, eventu-
ally leaving an arrested lower layer and intensified upper layer in their wake (Anderson and
Gill, 1975; Gill, 1982). When baroclinic signals arrive at the western boundary, they do not
change the net transport there, but simply redistribute transport so it is carried in the upper
layer. Despite this change in the vertical structure of the WBC during spin-up of a flat ocean
to an equilibrium state, the WBC transport continually balances the interior Sverdrup flow
throughout spin-up. This meridional WBC transport at a given latitude, TSv, is a function
of the wind stress curl at that latitude, y:

TSv(y) = 1

βρo

∫ xE

xW

�k · ∇ × �τ(x, y)dx. (1)
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Here β is the meridional gradient of the Coriolis parameter, ρo is the ocean’s reference
density, and �k is the unit vertical vector. Wind stress, �τ(x, y), is applied over a zonal width,
Ww, with an eastern limit xE and a western limit xW .

Observations provide evidence of the baroclinic component of the ocean’s wind-forced
response. Satellite-observed sea surface height anomalies (SSHa) have been hindcast suc-
cessfully using a 11/2-layer reduced-gravity model (Qiu, 2003). Sea level variability as
measured by tide gauge data from Bermuda is also well explained by a model of wind-
driven first baroclinic mode Rossby waves (Sturges and Hong, 1995). In addition to this
evidence from sea surface measurements, slow westward progression of wind-driven baro-
clinic Rossby waves is observed in the sub-surface ocean with historical hydrography (Price
and Magaard, 1986; Deser et al., 1999). This slow adjustment gives rise to a long delay
between changes in the wind forcing over the ocean interior and responses in the basins’
WBCs and their extensions. Such delay is observed, for example, in the Kuroshio Exten-
sion’s strength and position relative to wind stress curl anomalies over the eastern North
Pacific (Qiu and Chen, 2005).

There is also observational evidence of the barotropic component of the ocean’s response
to wind forcing with observed ocean variability coherent with non-local wind forcing (Brink,
1989). Recent analysis of altimetry and hydrography from the western North Pacific’s
marginal seas suggests the baroclinic response (evident in sea surface- and pycnocline-
slopes across the Kuroshio that lag the remote wind forcing by several years), is preceded
by a rapid barotropic response with barotropic Kuroshio transport variability which is about
one-third of the mean (Andres et al., 2011). This implies that fractured mid-basin topography
like the Izu Ridge does not effectively block barotropic Rossby waves from reaching a
basin’s WBC.

Despite observational evidence of baroclinic and barotropic responses to wind forcing,
each consistent with the Anderson and Gill (1975) formulation for a flat-ocean, there are
unresolved issues related to the role of topography in shaping the ocean’s response to wind-
forcing. First, observations from the South Pacific subtropical WBC, the East Australia Cur-
rent, suggest the delay between wind forcing and WBC response is too short to result from
baroclinic Rossby wave propagation from the wind-forced region to the western boundary
(Hill et al., 2008). Those observations suggest a three-year lag when 10 years are expected.
While this observed lag is too short to result from the wind-forced baroclinic response, it is
also too long to be associated with a purely barotropic response. This implicates interesting
dynamics beyond those captured by Anderson and Gill (1975). Second, some modeling stud-
ies suggest that topography effectively blocks barotropic signals (Tanaka and Ikeda, 2004)
thereby preventing them from reaching the WBC. Such results indicate either the obser-
vations of a rapid barotropic response along the North Pacific’s western boundary noted
above (Andres et al., 2011) are misinterpreted, or the barotropic mode is misrepresented by
some models. Finally, there are regions where the 11/2-layer reduced-gravity model, which
excludes the barotropic mode by design, has insufficient skill to hindcast SSHa (Qiu, 2003).
This suggests that processes in addition to wind-forced baroclinic Rossby wave propagation
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Figure 1. Center: Pacific bathymetry (Smith and Sandwell, 1994). Red lines indicate sections along
which Hovmöller diagrams are shown. These cross the Emperor Seamount Chain at 34–35◦N (left
panel) and the East Pacific Rise at 47–48◦S (right panel); shading indicates SSHa (cm). Depth
sections showing the topography are above the respective Hovmöller diagrams.

contribute significantly to the SSHa signal. Propagation of barotropic Rossby waves and
their interaction with topography may be such a process.

Satellite altimetry suggests that mid-ocean topography, like ridges and seamount chains,
may modify the ocean’s wind-driven response. Figure 1 shows Hovmöller diagrams of SSHa
around the Emperor Seamount Chain and the East Pacific Rise, two major topographic fea-
tures in the Pacific. In both cases, even though the sloped phase lines suggest that baroclinic
activity is present throughout the region, it seems enhanced west of the topography. Genesis
of baroclinic SSHa along ridges has also been noted by Chelton and Schlax (1996).

This altimetry and the unresolved issues noted above motivate the following questions,
which are the focus of this paper. How does barotropic flow in a layered ocean contend
with topography, especially mid-ocean ridges? What causes variability in WBC transport
that appears related to wind-forcing, but with the “wrong” delay (i.e., too short to mark the
arrival of wind-driven baroclinic Rossby waves but too long to be due to the arrival of wind-
driven barotropic Rossby waves)? Does the interaction of barotropic flow with topography
have a detectable expression in SSHa?

If the basin’s western boundary is separated from the wind-forced region by a merid-
ional ridge, first the wind-driven barotropic response and later the baroclinic response must
contend with the ridge. Here we consider that part of the spin-up process during which a
wind-driven barotropic signal interacts with the ridge and the flow in the two layers slowly
adjusts due to the layers’ coupled response to topography. (The eventual arrival of slowly
propagating wind-driven baroclinic signals at a ridge and the subsequent adjustment have
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been investigated for various cases—Barnier, 1988; Pedlosky and Spall, 1999; Tallieux and
McWilliams, 2000; and Owen et al., 2002, 2005—and are not explored here.) We show
that the adjustment to the wind-driven barotropic signal generates barotropic and baroclinic
anomalies that propagate westward from the ridge (called ridge-generated anomalies here,
to distinguish them from wind-forced responses generated directly under the wind patch).
Arrival of barotropic ridge-generated anomalies at the western boundary disrupts WBC
transport set by the Sverdrup balance and the baroclinic ridge-generated anomalies affect
the WBC’s vertical structure.

We use an idealized numerical model to explore 1) dynamics controlling this adjustment
(locally at the ridge and remotely at the western boundary); 2) the timescale over which
the adjustment occurs; and 3) the magnitude of the resulting disruption to the Sverdrup
balance. The model is introduced in Section 2. Model results are presented in Section 3
and interpreted in context of baroclinic and barotropic ridge-generated anomalies. Section
4 discusses the underlying mechanisms and presents scales for the adjustment’s duration
and the associated WBC transport anomaly. Section 5 discusses implications of the model
results for ocean observations.

2. Two-layer model

A linear primitive equations model is used to consider the spin-up of a two-layer ocean in
response to a zonal wind stress. The model, detailed in Appendix A.1, has a free surface and
both layers are active (the simplest form that can resolve the barotropic- and first baroclinic-
modes in the presence of topography). In each layer, i, the model solves the depth-integrated
linear shallow water equations on a beta-plane subject to mass conservation, where i = 1
for the upper layer and i = 2 for the lower layer.

Model variables are shown in Figure 2 and model parameters with their values are listed
in Table 1. Wind forcing is applied away from topography where the unperturbed layer
thicknesses are Hi and the bottom falls along z = −H . Bottom elevation over this reference
level is ηb and is confined to the lower layer. The perturbed sea surface and interface
elevations are η1 and η2, respectively. Layer thicknesses, hi , are H1 + η1 − η2 in the upper
layer and H2 − ηb + η2 in the lower layer. Initially (before wind forcing is applied), these
are h1(0) = H1 and h2(0) = H2 − ηb. Layer thickness anomalies about this, h′

i , are η1 −
η2 in the upper layer and η2 in the lower layer. Total thickness, h1 + h2, is denoted as h.

The domain is a rectangular basin on a beta-plane centered on θ0 = 30◦N(y = 0 km).
The basin’s meridional extent, Y , is 5,000 km. Results are first considered for an ocean
whose zonal width, X, is similar to that of Pacific (X = 10,000 km). Then the analysis is
continued with an ocean twice as wide (X = 20,000 km), to isolate those processes related
to the impingement of the wind-driven barotropic flow on the ridge. This zonally-expanded
basin geometry serves to delay the arrival of the wind-forced baroclinic signal at the ridge,
as this shuts down lower-layer flow, thereby arresting the processes of interest in this study.
The ocean reaches a maximum depth, H = 4,000 m with H1 = 800 m and H2 = 3,200
m. Reduced gravity, g′, is 0.01 m s−2 (Δρ = 1 kg m−3).
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Figure 2. Model variables for a wind-forced two-layer ocean with a meridional ridge. Beneath the
wind patch (grey rectangle) the unperturbed layer thicknesses are H1 and H2 and the total water
thickness is H. Bottom elevation over a reference level (z = −H) is ηb and the ridge reaches to
a crest height, R (R = 0 m for the flat-bottom model runs). Anomalies in sea surface and layer
interface level are η1 and η2. The schematic is not drawn to scale: η1 is O(1 cm) while η2 is
O(10 m).

The bottom is configured either with a uniformly deep flat-bottom (ηb = 0), or with a
Gaussian-shaped meridional ridge reaching to a crest of height, R, (Fig. 2) that spans the
entire basin at x = xR:

ηb = R exp

⌊−(x − xR)2

2W 2
R

⌋
. (2)

The scale for the ridge’s zonal width, WR , is 500 km.
The basin is forced with a time-invariant zonal wind stress on the upper layer, τx, initiated

at t = 0. The stress has a Gaussian profile, and is centered on 30◦N so wind stress curl
is positive north and negative south of 30◦N to generate a northern “subpolar gyre” and a
southern “subtropical gyre”. The wind is applied east of the ridge in a band whose zonal
width, Ww, is 2,000 km:

τx(x, y) = 0.2 Nm−2 exp

[−y2

2L2
w

]
(3)

for xW ≤ x ≤ xE. In Equation 3, y = −2,500 to 2,500 km and Lw, a meridional length
scale for the wind, is 500 km. This forcing pattern, located well away from the boundaries,
serves to minimize any waves excited along the boundaries that propagate very quickly
around the basin as Kelvin waves.
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Table 1. Model parameters.

variable definition value(s) used

A Horizontal viscosity coefficient 2,000 m2s−1

a Earth’s radius 6,378 km
B Biharmonic viscosity coefficient 1012 m4 s−1

dt Model timestep 15 s
H Ocean thickness 4,000 or 4,800 m
H1 Thickness of unperturbed upper layer 800 or 1,600 m
H2 Thickness of unperturbed lower layer

(away from topography)
3,200 m

Lw Meridional length scale for the windstress 500, 1,000, 1,500, or 2,000 km
R Ridge height 0, 300, 600 or 900 m
WR Scale for ridge’s zonal width 500 or 1,000 km
Ww Zonal width over which wind stress is

applied
2,000 km

X Zonal extent of ocean 10,000 or 20,000 km
xE Eastern edge of wind patch 8,000 or 19,000 km
xR Ridge location 2,500, 3,600, 5,600 or 7,600 km
xW Western edge of wind patch 6,000 or 17,000 km
Y Meridional extent of ocean 5,000 km
Δρ Density contrast between layers 1, 2 or 3 kg m−3

Δx Model resolution in x 100 km
Δy Model resolution in y 100 km
θo Model domain’s central latitude 30◦N
ρo Reference density 1,028 kg m−3

τx Maximum zonal windstress 0.2 N m−2

Ω Earth’s rotation rate 7.2722 × 10−5 s−1

The model is used to investigate 1) propagation of barotropic and baroclinic anomalies
(both those directly wind-forced and those generated at the ridge) and 2) the ocean’s response
to these anomalies in its WBC transport and vertical structure. Model output is used to track
evolution of η1, η2, and WBC transport. The model is coarse resolution (Δx = Δy = 100
km), so WBC flow is tracked across a span of four grid points (400 km) to capture the
model’s whole boundary layer. With a higher model resolution and lower model viscosity,
the WBC would be narrower, but the net transport would remain unaffected (Yang, 2003).
Figure 3 shows the model domain and, as an example, η1 and η2 200 days after the wind is
initiated. η1 signals (red and blue contour lines) stretch west from the wind-forced region
and are deflected southward over the ridge. η2 signals (red and blue shading) are present
both beneath the wind patch and where the η1 contours intersect the ridge.

3. Model results

a. Differences between a flat ocean and an ocean with a ridge

First, to contrast how the ocean spins up with and without topography, model results from
a flat ocean are compared with those from an ocean with a meridional ridge at xR = 2,500
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Figure 3. Model domain for a two-layer ocean with a meridional ridge. Dashed lines at xw and xE
define region over which the wind stress is applied and the Gaussian zonal wind profile, τx, is
denoted with the black curve. Colors show an example model-response 200 days after the wind
is initiated: η1 (contour-lines at 1 cm interval with red indicating elevated and blue indicating
depressed surface) and η2 (shaded surfaces with the vertical scale exaggerated by a factor of 10).

km. In both cases, X = 10,000 km and steady wind forcing, applied in the eastern basin
from xW = 6,000 km to xE = 8,000 km, is initiated at t = 0.

i. Effects of a ridge on the WBC. The WBCs in both configurations exhibit a rapid wind-
forced barotropic response followed years later by a wind-forced baroclinic response, but
there are interesting differences in the configurations’ WBCs that arise from the interaction
of the (wind-forced) barotropic planetary Rossby waves with the meridional ridge. Figure 4
shows the 20-year transport time series at two 400 km sections spanning the WBCs for
a flat-bottom ocean (panel a) and an ocean with a ridge of R = 600 m (panel b). These
transport-sections lie 500 km north and south of the central latitude and fall along lines of
maximum and minimum wind stress curl, respectively, in the “subpolar” and “subtropical”
gyres. Since a WBC serves as return flow for interior transport, transport across the northern
section is southward (negative transport, grey lines) while transport crossing the southern
section flows northward (positive transport, black lines). Net (upper- plus lower-layer) WBC
transports, TWBC, from each configuration’s southern section are shown in Figure 5.

With a flat bottom, the model-run is like the ocean considered by Anderson and Gill
(1975). The model’s barotropic response along the western boundary is fully developed
rapidly, with velocities in the upper and lower layers that are equal and a ratio of layer-
transports that is proportional to H1/H2 (Fig. 4a). When the wind-forced baroclinic Rossby
waves arrive at the respective sections, the lower layer starts to shut down and transport
becomes confined to the upper layer. The barotropic velocity structure persists until year-
five in the southern section and year-nine in the northern section. This difference reflects
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Figure 4. Time series of WBC transports for the northern gyre (grey lines) and southern gyre (black
lines). Thin lines are upper layer transports and heavy lines are lower layer transports. Note, the
x-axis time scale is stretched before day 180 to highlight the evolution of the barotropic response.
Panels show results for (a) a flat-bottom ocean and (b) an ocean with a meridional ridge (R =
600 m).

Figure 5. TWBC at y = −500 km for a flat-bottom ocean (black curve) and an ocean with a meridional
ridge of R = 600 m (grey curve). T′

WBC, indicated by the arrow, is TWBC − TSV.

the latitudinal dependence of baroclinic Rossby wave group speed, c. For long baroclinic
Rossby waves, theory predicts:

c = −β (Ld)
2 (4)
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where Ld is the internal deformation radius. In the two-layer formulation:

Ld =
(

g′ H1H2

H1 + H2

)1/2
/

f. (5)

At the model’s southern section, where Ld = 39 km, the speed is about 3.3 km day−1 while
at the northern section, where Ld = 30 km it is about 1.8 km day−1. These model values
are consistent with theoretical values predicted by Equation 4 (3.0 km day−1 and 1.8 km
day−1, respectively, with β = 1.975 × 10−11 m−1s−1).

Since baroclinic Rossby waves carry no net transport, their arrival at the western bound-
ary does not change TWBC, just how this is distributed between upper- and lower- layers,
consistent with Anderson and Gill (1975). This is demonstrated for the southern section
with the black curve in Figure 5, which shows no change in TWBC around year-five, despite
arrival at the western boundary of the baroclinic signal.

For a flat ocean, a rapidly-established barotropic WBC is an expected result, however,
the effect of topography on this mode is not obvious a priori and is considered next. As with
the flat-bottom case, the barotropic response in an ocean with a ridge reaches the western
boundary rapidly (Fig. 4b). Further, the lower layer throughout the domain is eventually
shut down by baroclinic processes, thereby isolating the upper layer from the influence of
topography. Hence TWBC and the velocity-structure of the ocean’s response within the first
year and upon the final equilibrium state (achieved after year-10) are essentially identical
between the cases (Figs. 4a and b).

Despite similarities with the flat-bottom model, the model with a ridge has two striking
differences in its WBC, which occur between the initial response and the final equilibrium
state. First, for a time, TWBC is not TSv predicted by Eq. 1 (Fig. 5). Anomalous transport,
T ′

WBC = TWBC − TSv, is manifested at the southern section as a marked increase in TWBC

beginning in year-one and peaking around year-three. At the northern section a similar
response (with opposite sign) peaks around year-four (compare Figs. 4a and b, heavy grey
lines). Since the barotropic mode carries the transport, this result implies the arrival of an
additional barotropic response at the western boundary. Second, the vertical structure of
the WBC becomes bottom-intensified before lower-layer flow is eventually shut down by
the arrival of baroclinic waves from the wind-forced region (Fig. 4, compare heavy lines in
panel a to those in panel b).

These two differences are not confined to latitudes of maximum and minimum wind stress
curl plotted in Figures 4 and 5, but are present along the whole western boundary. This is
evident in space-time diagrams that compare evolution of the WBCs’ lower-layer transport
and TWBC (upper plus lower layer) with and without topography (Fig. 6). In contrast to a
flat ocean, where TWBC = TSv throughout spin up, TWBC for the ocean with a ridge is not
that predicted by the Sverdrup balance (Eq. 1) until the lower layer has been shut down
by the wind-forced baroclinic Rossby waves and the system reaches final equilibrium. In
the ocean with the ridge, this “equilibration time”, tEQ, for TWBC to reach TSv (i.e., when
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Figure 6. Space-time diagrams for WBC transport in a flat ocean (left panels) and an ocean with
R = 600 m (right panels). Upper panels show transport carried in the lower layer. Lower panels
show total transport (TWBC). Black curves represent tEQ for the ocean with a ridge (from Eq. 6).

T ′
WBC = 0) depends on the baroclinic Rossby wave speed and can be expressed in terms of

Ld (Eq. 5) and the distance from the western boundary to the wind patch, xW :

tEQ = xW

βL2
d

. (6)

As can be seen both from the model results contoured in Figure 6 and the theoretical
prediction from Equation 6 (black curve), tEQ increases poleward only if there is a ridge
(panel d). In contrast, in the flat ocean, (TWBC) reaches TSv well before lower-layer shut down
(panel c) because the Sverdrup balance holds throughout spin-up and tEQ is essentially zero
(because – in contrast to an ocean with a ridge – for a flat ocean tEQ depends on the very fast
barotropic Rossby wave speed rather than on the slower baroclinic Rossby wave speed).
While lower-layer shut-down is slower towards the north whether or not there is a ridge
(panels a and b), latitude is only important for controlling tEQ in the system with a ridge
(via the dependence of Ld in Eq. 6 on f ).

ii. Effects of a ridge on η1 and η2. The WBC’s bottom-intensified vertical structure and
anomalous transport (T ′

WBC) result from westward propagating anomalies in sea surface
height and interface depth that are generated where the wind-forced barotropic flow
impinges on the ridge. At first, rapidly established η1 signals stretch from the wind-forced
patch to the western boundary (Figs. 7a and 8a). In the model with the ridge, these are
deflected south across the ridge along f /h contours; in a flat ocean these are zonal. In both
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Figure 7. Snapshots of model output for flat-bottom ocean. Top row shows η1 and bottom row shows
η2 with zero contour for each indicated with light blue curve. Red and blue lines highlight latitude
of maximum and minimum wind stress curl, respectively (and latitudes for which WBC transports
in Fig. 4 are plotted). X = 10,000 km, R = 0, xW = 6,000 km and xE = 8,000 km.

Figure 8. As in Figure 7, but for a model domain with a meridional ridge at xR = 2,500 km indicated
with dashed line. X = 10,000 km, R = 600 m, xW = 6,000 km, and xE = 8,000 km.

cases, these are eventually followed by larger amplitude wind-forced baroclinic η1 signals
(Figs. 7c and 8c), which propagate westward slowly together with η2 signals of opposite sign
(Figs. 7f and 8f). If there is a ridge however, this is preceded by the following: η1 undulations
at the ridge (generated where the initial barotropic flow followed f/h contours across the
ridge) propagate towards the western boundary (Fig. 8b) in concert with η2 anomalies (Fig.
8e) as baroclinic ridge-generated anomalies. In addition to these propagating baroclinic
ridge-generated anomalies, a set of stationary η2 anomalies is locked to the ridge, centered
on the crest as a series of alternating high and low anomalies. These have no anomalous
expression in the sea surface over the ridge. When the wind-forced baroclinic signals finally
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Figure 9. Response of WBC at y = −500 km to different ridge locations, xR (indicated in legend in
km), but the same forcing location (xW = 17,000 km; xE = 19,000 km). Panel (a) shows TWBC.
T′

WBC and tBT, indicated on the plot, are both independent of xR (see Section 4b for discussion of
tBT). Panel (b) shows the transport shear (TBC = H1u1 – H2u2). For each xR, tBC is indicated on
the plot. In these model runs X = 20,000 km.

do arrive at the ridge, lower-layer flow is shut down there and pressure associated with η2

simply compensates that from η1 so there is no pressure gradient in the lower layer (Fig. 8f).

b. Barotropic and baroclinic ridge-generated anomalies

The change in vertical structure shown in Figure 4 is caused by arrival of baroclinic
ridge-generated anomalies at the western boundary while the increase in TWBC shown in
Figure 5 results from arrival of barotropic ridge-generated anomalies. (The subsequent
decrease in TWBC back to TSv is related to the wind-driven baroclinic waves’ arrival at
the ridge, but details of this process are not considered further here.) These barotropic
and baroclinic ridge-generated anomalies are generated by interaction of barotropic (wind-
forced) flow with topography. This is best demonstrated with a very wide basin (X= 20,000
km) in which the wind-forced region is far from the ridge (this delays the impingement
of wind-forced baroclinic Rossby waves on the ridge). Figure 9 shows timeseries of TWBC

(“barotropic” or total, transport) and H1u1–H2u2 (transport shear) at y = −500 km for
various ridge locations (xR) but the same forcing location. In all three cases: 1) the magnitude
and timing of TWBC is the same (T ′

WBC reaches a steady level of 5 Sv around t = 2.5
yrs) and 2) transport shear is negative, indicating bottom-intensified flow (in contrast to
positive transport shear, which occurs when wind-forced baroclinic Rossby waves arrest
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the lower-layer and redistribute transport into the upper layer, beyond the time frame plotted
in Fig. 9). Timing, tBC , of the negative peak in transport shear, however, does vary with xR

and can be estimated by a form similar to Equation 6, but with xW replaced with xR:

tBC = xR

βL2
d

(7)

According to this equation, the ridge-anomaly behaves as a long baroclinic Rossby wave
propagating from the ridge to the western boundary. In Figure 9 tBC = 3.5, 5.7 and 8.1 yr,
respectively, as xR increases from 3,600 to 5,600 to 7,600 km. The slope of xR versus tBC

(not shown) gives an empirical speed of 2.4 km day−1, in reasonable agreement with the
theoretical long baroclinic Rossby wave speed at y = −500 km calculated from Equations
4 and 5 (c = 3.0 km day−1).

4. Discussion

The model results presented above suggest the following spin-up/adjustment process as
the initial wind-forced barotropic (i.e., vertically-uniform) signal arrives at a ridge. During
adjustment the layer-interface over the ridge deforms so the two layers no longer move as
a barotropic column and, as a consequence, barotropic and baroclinic anomalies are gener-
ated at the ridge. The barotropic ridge-generated anomaly grows in amplitude throughout
adjustment and propagates rapidly from the ridge crest to the western boundary where it
causes anomalous transport (T ′

WBC). In concert with this, the baroclinic ridge-generated
anomaly develops and the interface displacement, together with the surface displacement,
propagates westward as a baroclinic Rossby wave. When these baroclinic displacements
arrive at the western boundary, they redistribute the WBC so transport is carried dispropor-
tionately by the lower layer, but their arrival does not change net WBC transport. Hence the
anomalous transport remains steady until the eventual arrival of the wind-driven baroclinic
Rossby waves causes a final adjustment and transport is finally that predicted by Equation 1
(TWBC = TSV ).

This progression is illustrated with Hovmöller diagrams of η1 and η2 (Fig. 10). Along
y = −500 km the fast initial wind-forced barotropic signal is evident only in η1 (panel a)
before t = 0.25 yrs (see the yellow shading stretching from the wind patch to the western
boundary, highlighted with the solid black line). The shallow slope of the phase line indicates
rapid propagation. This wind-driven barotropic flow impinges on the ridge at xR (= 5,600
km), where three additional signals are evident: 1) a stationary η2 anomaly with vertical
phase line (i.e., not propagating) centered on the ridge crest and with no corresponding
anomalous η1 expression; 2) a baroclinic anomaly with η1 and η2 signals that slowly
propagate together towards the western boundary as indicated by the steeply sloped phase
lines (these arrive at the western boundary around tBC = 6 yr, consistent with the green
curve in Fig. 9b); and 3) a barotropic signal (evident by the shallow phase lines with orange
shading in η1, but not discernable in η2) radiating from the ridge with the amplitude of this
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Figure 10. Hovmöller diagrams along y = −500 km showing η1 in panel (a) and η2 in panel (b).
Dashed lines indicate ridge crest (xR = 5,600 km) and edges of wind patch. tBT and tBC are indicated
on the plots (see Sections 4b and 3b, respectively). Solid black line in (a) highlights propagation
of the wind-driven barotropic signal from the wind patch to the western boundary before t = 0.25
yr. X = 20,000 km, R = 600 m, xR = 5,600 km, xW = 17,000 km, xE =19,000 km.

barotropic signal increasing until t = 2.5 yr. While this barotropic ridge-generated anomaly
is subtle (its maximum amplitude is only a few centimeters), it is critical since it is the cause
of the anomalous WBC transport that peaks at t = 2.5 yr (Fig. 9a).

To explain why the flow at the ridge must evolve as described above, we consider the
dynamics in each layer and the coupling between the layers. Coupling occurs via vertical
velocities w that displace the layer interface causing water column stretching and squashing.
Once the interface no longer moves (i.e., when ∂η2/∂t = 0), flow in each layer is at
equilibrium and the system is fully-adjusted at the ridge. In this sense, there are two different
equilibria at the ridge during spin-up: 1) the first is reached after the adjustment to the
rapid wind-driven barotropic signal and remains until the arrival of the slow wind-driven
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baroclinic signal when t ≈ tEQ (i.e., with t given by Eq. 6, but with the distance between the
wind patch and the ridge, xW − xR , in the numerator) and 2) the second is reached after the
adjustment to the slow wind-driven baroclinic signal. (The latter is the analog to Anderson
and Gill, 1975 lower-layer shut-down for a flat ocean and is not considered further here.)
For an ocean with a ridge, the upper-layer flow over the ridge is zonal in both equilibrium
states. In contrast, the lower-layer flow is along f/h2 contours in the first equilibrium but
it is at rest in the final equilibrium. Below we consider the details of the first equilibrium
state and then describe how the adjustment to this equilibrium occurs. Furthermore, we use
scaling to determine what sets 1) the adjustment time scale tBT (given in Eq. 11) and 2) the
magnitude of the anomalous WBC transport T ′

WBC (given in Eq. 19).

a. The barotropic flow’s adjustment at the ridge

The adjusted flow at the ridge is geostrophic (and non-divergent with ∂η2/∂t = 0) and
is dictated by potential vorticity conservation in each layer (friction is weak everywhere
except along the western boundary). Thus, as mentioned above, flow in the upper layer is
along f/h1 contours while that in the lower layer is along f/h2 contours (Fig. 11, lower
right panel). The upper layer’s path is independent of the ridge, oriented zonally as if flowing
over a flat ocean (implicit in the linear model used here, is that interface displacements are
small relative to the thickness of layer-1: η2 << H1 so h1 ≈ H1). Where the lower layer
thins over the ridge flank, fully-adjusted lower-layer flow is deflected southward and its
speed must increase due to mass conservation. (Since the distance of southward deflection
at the crest, Δy, is latitude-dependent, the flow’s cross-sectional area is constricted not only
by topography but also by horizontal compression of f/h2 contours over the ridge; see
Appendix A.2 for the derivation of Eq. A-6 describing this.) This increased flow must be
supported by a pressure gradient. This cannot be provided by a tilted sea surface as this
would cause increased flow in both layers, but is provided instead by a tilted layer interface.
On the downstream side of the ridge crest where h2 increases along the flank and the flow
slows, this tilting is relaxed. This is consistent with the stationary η2 anomalies, with no
concomitant expression in η1, centered on the ridge crest as observed in the model results
during the first equilibrium (Fig. 11, upper-right panel).

To reach this equilibrium, the flow must evolve from the initial barotropic (vertically
uniform) state (Fig. 11, lower left panel). This initial flow along f/h contours is supported
by pressure gradients that arise from the sea-surface height (η1) gradients. Furthermore, this
initial flow must be faster at the crest than in the flat regions (due to mass conservation) in both
layers because the flow is vertically uniform. With topography only in the lower layer, this
causes convergences and divergences in the upper layer over the ridge, thereby deforming
the layer interface so ∂η2/∂t �= 0 and coupling the layers through w (Fig. 11, upper-left
panel). As the interface gets deformed and η2 anomalies continually provide more of the
pressure gradient required to support lower-layer flow, the upper-layer gradually decouples
from topography (long before the arrival of the wind-forced baroclinic Rossby waves),
flow in the upper-layer slows, and the sea surface tilts across the ridge relax somewhat. η1
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Figure 11. Flow evolution at a ridge from an initial state (left panels) to the fully-adjusted state (right
panels). Upper panels show plan view of η2 (heaved surfaces shaded red and depressed surfaces
blue) straddling the meridional ridge crest (dashed line) on day-200 (left panel) and year-four (right
panel); contours at 10 m interval. Constant f/h (purple) and f/h2 (blue) are shown. Lower panels
indicate schematically the flow in each layer. Initial flow: black arrows in the upper left panel
indicate the vertically-uniform initial barotropic flow constrained to follow an f/h contour; bottom
left panel shows the flow along an f/h contour with black arrows indicating upper- and lower-layer
(vertically uniform) flows resulting from sloped η1. This flow is divergent/convergent in the upper
layer and leads to vertical flow on the ridge flanks thereby deforming the layer interface (indicated
with red and blue arrows). This decouples the layers, allowing the upper-layer η1-anomaly to
propagate westward with the η2-anomaly from the ridge’s western flank (see Fig. 12). Adjusted
flow: in the right upper panel the arrows indicate the lower-layer flow, which speeds up over the
crest. Right lower panel shows flow along contour A (or C) in both layers with lower layer flow
deflected along f/h2 contours and the upper layer flowing zonally across the ridge along f/h1. Model
parameters as in Figure 10.
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Figure 12. Snapshots showing evolution of stationary and propagating baroclinic ridge-anomalies.
Shading indicates η2: blue is depressed interface, due to convergence in the upper layer; red is
heaved interface due to divergence in the upper layer. Sea surface elevation is indicated by red and
blue η1-contours at 1 cm and 2 cm (red) and −1 cm and −2 cm (blue). Dashed line indicates ridge
crest. Model parameters as in Figure 10.

anomalies propagate westward, together with η2 anomalies, as baroclinic ridge-generated
anomalies (Fig. 12). Throughout this adjustment, the barotropic part of the total η1 signal
grows and radiates rapidly along f/h contours towards the western boundary leading to
anomalous transport there (T ′

WBC).

b. Adjustment time scale

From the description of the adjustment process in section 4a, it is clear that tBT, the time
scale for the initially-barotropic flow to fully adjust to the first equilibrium, is related to
build up of interface displacements over the ridge. At t = tBT, η2 at the ridge crest reaches
steady values (i.e., ∂η2/∂t = 0). In addition, since the propagation of the barotropic signal
from the ridge to the western boundary is very fast, T ′

WBC on the western boundary has
grown to its peak amplitude at t ∼ tBT (Fig. 9a). These consequences of adjustment, both
regulated by the same tBT, each occur at a different latitude (y at the western boundary and
yS at the ridge crest) connected by a common f/h contour. In the following we develop
the procedure for deriving a scale for tBT (the final result is given in Eq. 11) and discuss the
implication of this scale.

To develop scaling for tBT, we consider the layer interface at the ridge. The adjustment
time here depends on the magnitude and rate of interface displacement, Δη2 and w̄, as
follows:

tBT = Δη2

w̄
. (8)

Here w̄ is a measure of the interface’s average vertical velocity over the ridge flank during
adjustment. The scale for w̄ is determined from mass conservation applied to the adjusting
flow in layer-1:

w̄ = w(0) + w(tBT)

2
∼ H1(u1(xR, yS, t = 0) − u1(xF , y, t = 0))

WR

(9)
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where w(0) is the interface’s initial vertical velocity and w(tBT) is the interface’s vertical
velocity after adjustment, which is by definition zero. Upper-layer horizontal velocities
at the ridge crest (xR) and in the flat region between the wind patch and the ridge (xF )
associated with the initial flow are u1(xR , yS , t = 0) and u1(xF , y, t = 0), respectively
(Fig. 11, left panels). The velocity difference in the R.H.S. of Eq. 9 leads to the divergence
or convergence in the upper layer over the ridge flank that drives the interface displacement.
WR is a length scale for the zonal width of the ridge flank (see Eq. 2); this is the distance
over which this divergence or convergence occurs.

To determine Δη2 in Equation 8, the thermal wind equation for a layered system (Mar-
gule’s relation) is applied to the fully-adjusted flow at the ridge crest. This scales to give:

∂η2

∂y
= f

g′ ∂u ∼ Δη2

Lw

∼ f

g′ (u2(xR, yS, tBT) − u1(xR, yS, tBT)), (10)

where ∂y ∼ Lw. Lw is the meridional length scale over which the wind stress varies (see
Eq. 3). The velocity difference on the R.H.S. of Equation 10 is the vertical shear of the
adjusted flow at the ridge crest.

Plugging Equations 10 and 9 into Equation 8 gives a time scale for the adjustment to the
first equilibrium:

tBT ∼ LwWR

2H1

f

g′ u
∗. (11)

Here u∗ is the ratio of the vertical shear of the adjusted zonal flow at the ridge crest to
the initial horizontal divergence or convergence in layer-1 on the ridge’s flank. (The full
expression for u∗ is given in Appendix A.3 as Eq. A-9) At a given latitude y, u∗ is related to
the zonal flow in the flat region between the wind patch and the ridge (xF ) at three different
latitudes and thereby also to the wind stress curl at three different latitudes (Fig. 13): yS (the
latitude of zonal steady-state flow in layer-1), yN (the latitude at which steady-state flow
in layer-2 originates following f/h2) and y (the latitude at which initial deflected flow in
layer-1 originates following f/h). These connections between ui at the ridge with ui at xF

are developed in Appendix A.3 and described by Equation A-10.
We compare the scaling for tBT in Equation 11 with output from the numerical model for

a range of parameters (Fig. 14, Table 2). For a few tests, the ratio of modeled tBT to that
predicted from Equation 11 reaches 2.2 (e.g., experiments 5 and 7 listed in Table 2) and the
scaling in Equation 11 under predicts tBT. For these cases, it is likely that the simple estimate
of w̄ (Eqs. 8 and 9) does not capture the essential details of the evolution of ∂η2/∂t during
adjustment and the initial convergence or divergence in layer-one w(0) is an overestimate
for the interface’s average vertical velocity during adjustment. For most tests, however, the
ratio of modeled tBT to that predicted from Equation 11 is close to one and the scaling is
consistent with the numerical model output.

Next we consider the implications of the dependence of tBT on f , Δρ and R implied
by Equation 11 and compare these with the numerical model output. First, Equation 11
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Figure 13. Left: Geostrophic contours connecting the western boundary with the wind patch through
a common latitude at the ridge crest: f/h (purple), f/h1 (red), and f/h2 (blue). Right: shows the
normalized wind stress curl with the curls at yN, y, and yS (see text) highlighted. The length scale
associated with wind stress curl variations, LW, is also indicated.

Figure 14. Time for flow to adjust, tBT, predicted by scaling in Equation 11 relative to that output by
the model (yr). See Table 2 for the complete list of parameters tested.

predicts longer tBT at high latitudes because f increases poleward. This is consistent with
model results in Figures 4, 6 and 12, which show slower adjustment towards the north.
Second, according to Equation 11, tBT is lower for cases with a greater density contrast
between layers (larger g′). The dependence of Equation 11 on Δρ is consistent with the
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Table 2. Test of tBT scaling.

y LW WR H1 Δρ R tBT model tBT
test (km) (km) (km) (m) (kg/m3) (m) u* (yr) pred.1

1 −800 2000 500 800 1 600 2.64 2.3 1.1
2 −1000 2000 500 800 1 600 4.19 2.0 1.6
3 −800 1500 500 800 1 600 3.85 2.0 1.2
4 −1000 1500 500 800 1 600 5.34 1.8 1.5
5 −800 1000 500 800 1 600 5.57 2.5 1.1
6 −1000 1000 500 800 1 600 7.51 1.8 1.4
7 −800 500 500 800 1 600 11.07 2.5 1.1
8 −1000 2000 500 1600 1 600 5.31 1.0 1.0
9 −800 1000 500 800 1 900 5.12 2.3 1.0
10 −1000 2000 1000 800 1 600 4.19 3.0 3.2
11 −800 1000 500 800 2 600 5.57 1.0 0.6
12 −800 1000 500 800 3 600 5.57 0.8 0.4
13 −800 2000 1000 800 1 600 2.64 3.5 2.1
14 −1000 1000 500 800 1 900 7.51 2.0 1.4
15 −1000 1000 500 800 2 600 7.51 0.8 0.7
16 −1000 1000 500 800 3 600 7.51 0.5 0.5
17 −800 1000 500 800 1 300 8.64 2.0 1.7

1Values are from Eq. 9, normalized by results from test 8.

model results. For Δρ = 1 kg m−3, the interface displacement at y = −400 km takes
about 700 days to develop to η2 = −90 m (Figure 15a, solid curve). Running the model
with Δρ = 2 kg m−3 and 3 kg m−3 (Fig. 15a dashed and dotted curves, respectively) leads
to shorter tBT (400 and 250 days, respectively). Furthermore, the associated displacements
(η2 = −40 m and −30 m) are smaller magnitude than for the case with Δρ = 1 kg m−3.
This is because the same pressure gradient is achieved with smaller magnitude interface
displacements, Δη2, when Δρ is greater.

In contrast to its dependence on f and Δρ, model results show tBT is only weakly
dependent on ridge height. While R doesn’t appear in Equation 11 explicitly, u∗ is weakly
dependent on R,in part because the deflections of f/h and f/h2 contours at the ridge – and
hence y, yS and yN – do depend on R. (In Appendix A.3, Eqs. A-9 and A-10 demonstrate
a direct dependence of u∗ on R due to constriction of the flow’s cross-sectional area at the
ridge and an indirect dependence due to deflection of geostrophic contours.) This rather
weak dependence of tBT on R predicted by the scaling and born out by the model results
is somewhat counterintuitive since for a larger R there clearly must be a larger Δη2 (and
larger pressure gradient) to support the velocity change in the more constricted lower layer.
This is demonstrated by running the model with R = 300 m and 900 m in addition to the
standard run with R = 600 m (Figure 15b). Clearly, Δη2 increases with R (and the latitude
of maximum |η2| is farther south for greater R because f/h2 contours are deflected farther
south). However, in all three cases, |η2| is fully developed by day-700 suggesting tBT is
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Figure 15. Evolution of −η2 for the stationary ridge anomaly that forms on the ridge crest at y =
−400 km. Results in panel (a) are for R = 600 m and three different Δρ values (1 kg m−3, 2 kg m−3,
and 3 kg m−3). Results in panel (b) are for Δρ = 1 kg m−3 and three different R values (600 m,
300 m, and 900 m) with tBT (which is independent of R) indicated. In both cases xR = 2,500,
xW = 6,000 km, xE = 8,000 km and X = 10,000 km.

indeed largely independent of R. To establish why this increase in Δη2 with increasing R

is not accompanied by an increase in tBT as superficially suggested by Equation 8, one must
also consider the vertical velocity of the interface. Figure 15b shows the slope, ∂η2/∂t (i.e.,
the interface velocity w), does depend on R: larger R leads to greater |∂η2/∂t | due to stronger
convergence or divergence over the ridge flank. Since the increase in |w| is compensated
by a commensurate increase in Δη2, the ratio in Equation 8 remains essentially unchanged
with tBT relatively insensitive to R.

c. Amplitude of T ′
WBC

During adjustment (i.e., when 0 < t < tBT) as the initial flow evolves towards the first
equilibrium, a barotropic signal develops at the ridge and propagates west along f/h con-
tours (Fig. 10a) resulting in anomalous WBC transport (Fig. 9a). This anomalous transport
grows during adjustment and then remains steady from t = tBT until lower-layer flow at
the ridge is finally shut down by arrival of the wind-driven baroclinic signal after which
the anomalous transport ceases (when t = tEQ as given by Eq. 6, beyond the time frame
plotted in Fig. 9). In the previous section we developed a scaling for tBT (Eq. 11). Here
we develop a scaling for the magnitude of this anomalous transport, T ′

WBC, relative to the
transport expected for a flat ocean, TSv where T ′

WBC = TWBC − TSv (the final result is given
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in Eq. 19). Below we show that the critical parameter for setting T ′
WBC is not the wind stress

curl, but the meridional variation in the wind stress curl.
Two points about adjustment at the ridge provide guidance for the derivation of a scale

for T ′
WBC. First, as flow adjusts and the interface over the ridge gets deformed, η1 at the crest

evolves from its initial barotropic state where η1 = η1BT to a state where both barotropic and
baroclinic components contribute to total sea surface height at the crest (η1 = η1BC +η1BT ).
Second, while the initial net flow at the crest (at latitude = yS) is a response to the wind stress
curl at only one latitude (y) connected to the wind-patch by an f/h contour, the adjusted net
flow at the crest is a response to wind stress curl at different latitudes (yS and yN) connected
to the wind patch by f/h1 and f/h2 contours in the upper and lower layers, respectively
(Fig. 13). Thus, we anticipate that T ′

WBC will be sensitive to the meridional differences in the
wind-stress curl. In the following scale derivation, since it is the barotropic mode that carries
transport, we first relate T ′

WBC to the anomalous, barotropic component of η1 (i.e., η′
1BT ) on

the offshore edge of the WBC (Eq. 12). Then we relate this η′
1BT , which is generated at the

ridge, to horizontal velocities at the ridge (Eqs. 13–14). Finally, we connect these velocities
at the ridge to the wind forcing over the eastern ocean (Eqs. 15–17) to derive the scaling
that relates T ′

WBC on the western boundary to the wind forcing over the eastern ocean (Eqs.
18 and 19).

We start with the x-momentum equation in each layer and integrate vertically from the
surface to z = −H and zonally across the width of the WBC, ΔxBL, to obtain an expression
for WBC meridional transport. Isolating the anomalous piece of the transport (i.e., T ′

WBC

which is associated with η′
1BT ) and scaling gives:

T ′
WBC = gHΔxBL

f

∂η′
1BT

∂x
∼ gH

f
η′

1BT (12)

where H is the depth of the WBC and η′
1BT on the R.H.S. of Equation 12 is the value at

the eastern edge of the western boundary layer at latitude = y. (This scaling assumes that
η′

1BT directly on the western boundary (x = 0) is small, which is a good approximation
with the no-slip boundary condition.)

Since η′
1BT on the R.H.S. of Equation 12 arrives at the offshore side of the WBC by

propagating from the ridge along an f/h contour, we next evaluate η′
1BT at the ridge crest

at latitude = yS by relating it to the zonal velocities (ui) over the crest. First we use
the thermal wind relationship to determine the baroclinic component of sea surface slope
(∂η1BC/∂y) of the adjusted flow at the crest and then we use geostrophy, applied to the
upper layer, to determine the adjusted flow’s total sea surface slope (∂η1/∂y). Subtracting
(∂η1/∂y − ∂η1BC/∂y) to isolate the barotropic piece of the sea surface slope gives:

∂η1BT

∂y
= f

2g
(u1(xR, yS, tBT) + u2(xR, yS, tBT)). (13)

Equation 12 emphasizes that it is always the barotropic mode that carries the net transport
with this mode characterized by that part of the sea surface slope that is not compensated



2012] Andres et al.: Adjustment of a wind-driven two-layer system 873

by the interface slope. The anomalous part of Equation 12, (i.e., that associated with T ′
WBC)

is given by:

∂η′
1BT

∂y
= f

g

(
u1(xR, yS, tBT) + u2(xR, yS, tBT)

2
− u1(xR, yS, t = 0)

)
, (14)

where u1(xR, ys, 0) is the initial, barotropic flow in the upper layer at the ridge crest.
With η′

1BT at the crest cast as a function of the zonal flow at the crest in Equation 14,
we next relate the layer velocities in Equation 14 to the wind forcing by considering the
geostrophic contours that connect the ridge to the wind patch (Fig. 13) and then calculating
the interior zonal Sverdrup flow in the flat region between the forcing and the ridge along
these contours (e.g., Vallis, 2006, p. 590). The adjusted upper-layer flow at the crest in
Equation 14 depends on the wind stress curl (applied upstream where xW < x < xE) at yS :

u1(xR, ys, tBT) = − ∂

∂y

xE∫
xW

�k · ∇ × ⇀
τ(yS)

ρoβH
dx. (15)

The initial barotropic flow in the upper layer at the ridge crest in Equation 14 has a more
complicated form than that in Equation 15 since it depends not only on the wind stress curl
at y, but also on the constriction of the total flow’s cross-sectional area due to the ridge.
(An expression for the latter is derived in Appendix A.2 resulting in Eq. A-7.) The initial
barotropic flow in the upper layer at the ridge crest is:

u1(xR, ys, 0) = −
(

H

H − R

)2
∂

∂y

xE∫
xW

�k · ∇ × ⇀
τ(y)

ρoβH
dx. (16)

Likewise, the adjusted lower-layer flow at the crest in Equation 14 depends not only on the
wind stress curl at yN , but also on the constriction of the lower-layer’s cross-sectional area.
The adjusted lower-layer flow at the crest is:

u2(xR, ys, tBT) = −
(

H2

H2 − R

)2
∂

∂y

∫ xB

xW

�k · ∇ × ⇀
τ(yN)

ρoβH
dx. (17)

Combining Equations 15, 16 and 17 with Equation 14 and scaling produces an expression
for η′

1BT which we then plug into the R.H.S. of Equation 12 to arrive, finally, at the scale
for T ′

WBC:

T ′
WBC ∼ WW

ρoβ

⎛
⎜⎝−�k · ∇ × τ(yS) −

(
H2

H2−R

)2 �k · ∇ × τ(yN)

2
+

(
H

H − R

)2
�k · ∇ × τ(y)

⎞
⎟⎠ .

(18)
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Here Ww is the zonal width of the wind patch (see Eq. 1). For modest ridges, where
(H2/(H2 − R))2 and (H/(H − R))2 approach 1, Eq. 18 can be simplified:

T ′
WBC ∼ Ww

ρoβ

(
−�k · ∇ × τ(yS) − �k · ∇ × τ(yN)

2
+ �k · ∇ × τ(y)

)
. (19)

In Equation 19, y, yS and yN reflect the flow deflection that occurs at the ridge. (An expres-
sion for this deflection, which depends on R and latitude, is given in the Appendix A.2 as
Eq. A-4).

According to Equation 19, T ′
WBC is independent of Δρ between layers. (This is in contrast

to tBT , which decreases with increasing Δρ, Eq. 11). However, T ′
WBC does depend on R and

on the wind stress curl field. We briefly explore this dependence below and then test the
scaling in Equation 19 with several numerical model runs by varying the wind field (Lw),
R and Δρ.

For modest ridges, if wind stress curl is uniform with latitude, Equation 19 reduces to
zero. In this limit, there is no anomalous transport at the western boundary. However, there
will be a WBC transport anomaly, even for modest ridges, if the wind stress curl varies over
scales that are small relative to the deflection that occurs over the ridge (Δy = ys − y). At
y = 0 (the central latitude of the basin, where f = fo) this deflection scales as:

Δy ∼ foR

βH
. (20)

Towards the poles, Δy approaches infinity (because β approaches zero), so essentially any
meridional variation in wind stress curl will lead to anomalous WBC transport at high
latitudes, even for quite small ridges.

We test the scaling in Equation 19 by comparing the scaling predictions with the numerical
model output. Equation 19 is consistent with the model results for a range of parameters
(Fig. 16, Table 3). These tests demonstrate the effects on T ′

WBC of 1) the wind field (by
varying the length scale of the wind stress, Lw, see Eq. 3); 2) the deflection (by varying R);
and 3) Δρ. Considering first the effect of the wind field with R = 300 m, the modeled T ′

WBC

at y = −500 km (yellow filled symbols in Fig. 16) decreases as Lw increases (1,000, 1,500
to 2,000 km). This is because the meridional variation in wind stress curl decreases as Lw

increases, and is consistent with the scaling prediction from Equation 19. Considering next
the effect of R, for Lw = 1,500 km as R increases (300, 600 to 900 m; yellow, orange and
red filled squares, respectively, in Fig. 16) both the modeled T ′

WBC and that predicted from
Equation 19 increase at y = −500 km, reflecting the increased deflection of geostrophic
contours as R increases. Furthermore, this dependence on R is also apparent in Figure 17,
which shows the time-evolution of TWBC for different R. (In addition, this plot reiterates
that tBT is largely independent of R, consistent with Eq. 11.) Finally, modeled T ′

WBC is
independent of density difference, consistent with Equation 19 in which Δρ does not appear.
This is confirmed by the evolution of TWBC plotted in Figure 18: though tBT varies with Δρ,
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Figure 16. Transport anomaly, T′
WBC, predicted by scaling in Equation 19 relative to that output by

the model (Sv). Some experiments are highlighted (see text): yellow filled symbols are R = 300 m,
orange is R = 600 m and red is R = 900 m. See Table 3 for the complete list of parameters tested.

T ′
WBC does not (these experiments would fall on top of one another if they were included in

Fig. 16).
In some numerical experiments, the deflection is large relative to the meridional extent

of the Gaussian wind patch. In these cases, the scaling in Equation 19 under-predicts the
modeled T ′

WBC (e.g., points falling above a 1:1 line in Fig. 16). This is most likely because
the deflection at the ridge is so large (relative to the wind patch) that the f/h1 contour that
passes through ys is outside of the wind patch at xW < x < xE . In these cases, Lw is not
the appropriate length scale for ∂y in Equation 15 and the scaling for T ′

WBC in Equations 18
and 19 should take a more complicated form.

5. Summary

Despite significant simplifications (linear equations, idealized forcing and topography),
the two-layer model used here is useful for exploring phenomena that may have analogs in
the real ocean. With the modest ridge heights modeled here, interaction of wind-forced
barotropic planetary Rossby waves with topography does not lead to blocking of the
barotropic response (though we note, with taller ridges: 1) f /h contours may stretch into
an equatorial waveguide, thereby blocking the westward propagation of the barotropic
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Table 3. Test of T′
WBC scaling.

test1 R (m) LW (km) y (km) Δy (km) T′
sv model (Sv) T′

sv predicted2

1 300 2000 −1000 −201 0.1 0.1
2 600 2000 −1000 −402 0.5 0.2
4 300 2000 −800 −216 0.2 0.2
5 600 2000 −800 −432 0.7 0.5
6 900 2000 −800 −649 1.7 0.4
7 300 2000 −500 −239 0.2 0.3
8 600 2000 −500 −477 1.0 1.0
9 900 2000 −500 −716 2.6 1.4
10 300 1500 −1000 −201 0.1 0.0
11 600 1500 −1000 −402 0.6 0.1
13 300 1500 −800 −216 0.3 0.1
14 600 1500 −800 −432 1.0 0.3
16 300 1500 −500 −239 0.3 0.5
17 600 1500 −500 −477 1.5 1.2
18 900 1500 −500 −716 2.3 1.8
19 300 1000 −1000 −201 0.1 0.0
20 600 1000 −1000 −402 0.6 0.0
22 300 1000 −800 −216 0.3 0.0
25 300 1000 −500 −239 0.6 0.5
26 600 1000 −500 −477 2.5 1.1

1All tests were with Δρ = 1 kg m−3, WR = 500 km, H1 = 800 m, H2 = 3200 m.
2Values are from Eq. 19, normalized by results from test 8.

Figure 17. Evolution of TWBC at y = −500 km for the three different R values (300 m, 600 m and
900 m). For each run: Δρ = 1 kg m−3, xR = 3,600 km, xW = 17,000 km, xE = 19,000 km and
X = 20,000 km. Eventually, beyond the time plotted here, TWBC for all three cases equals TSV
predicted by Equation 1 when the lower layer is shut-down by arrival of the wind driven baroclinic
Rossby waves and flow no longer interacts with the topography.
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Figure 18. Evolution of TWBC at y = −500 km for the three different Δρ values as indicated on the
plot. The magnitude of the anomalous T′

WBC (which is independent of Δρ) is also indicated. For
each run: R = 600 m, xR = 3, 600 km, xW = 17, 000 km, xE = 19, 000 km and X = 20,000 km.

response and 2) the linear assumptions in the model will break down). Rather than being
blocked by modest ridges, barotropic Rossby waves establish TWBC rapidly in the model.
Further, this interaction causes stationary and propagating ridge-generated anomalies as
the flow adjusts. Based on these model results, one expects evidence in ocean observations
of 1) a rapid WBC response to remote wind forcing and 2) baroclinic variability gener-
ated along mid-ocean ridges. Indeed such rapid (barotropic) responses to wind forcing are
reported based on observations from the Pacific marginal seas (Gordon and Giulivi, 2004;
Han and Huang, 2008; Andres et al., 2011). The model result that the barotropic mode inter-
acts with mid-basin topography to generate at least some of the ocean’s ubiquitous slow,
westward propagating features as propagating ridge-generated anomalies may account for
satellite altimetry observations in which baroclinic anomalies can be traced back to a ridge
or seamount chain (Fig. 1 and Chelton and Schlax, 1996). Despite their effect on WBCs,
the ocean’s barotropic responses (whether wind-driven or ridge-generated) are difficult to
observe in the ocean interior because 1) η1BT << η1BC and 2) barotropic wave fronts
propagate very rapidly.

According to the model, TWBC transport in a flat ocean obeys the Sverdrup balance and
is given by Equation 1. For an ocean with mid-basin topography, however, this Sverdrup
balance is disrupted due to the arrival of propagating ridge-generated anomalies. These
ridge-generated anomalies affect both the vertical structure of the WBC (via baroclinic
anomalies), and also the net transport there (via barotropic anomalies), such that, for a time
(until the wind-driven baroclinic Rossby waves reach the ridge), the balance in Equation
1 does not hold. In the ocean, arrival of propagating ridge-generated anomalies along the
western boundary might explain anomalous lags observed between wind-forcing and WBC



878 Journal of Marine Research [70, 6

responses which are too long to be due to barotropic waves and too short to be due to
wind-forced baroclinic Rossby waves (Hill et al., 2008). This suggests that at intermediate
delays relative to shifts in the wind forcing (at interannual scales) it is important to consider
the coupling between barotropic and baroclinic modes in the presence of topography.

Finally, we note that the model used here is linear so the adjusted flow in either layer
is along f/hi contours. In a high-resolution and nonlinear model, eddies likely play an
important role. Convergence of eddy potential vorticity flux is effective in forcing transport
over a topographic barrier, as demonstrated in a two-layer model by Kida et al. (2009). In
addition, while the model here is forced with a steady wind, periodic wind-forcing may
result in the blocking of some frequencies at the ridge. Periodic forcing has been examined,
for example, by Veronis and Stommel (1956) for a flat ocean and by Wang and Koblinsky
(1994) for an ocean with a top hat shaped ridge. The higher order, non-linear dynamics and
the effects of periodic forcing will be considered further in future studies.
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APPENDIX

A.1 Model formulation

The model used here is a linear primitive equations model on a beta plane with two active
layers and topography that extends only into the lower layer. Ui and Vi are depth-integrated
zonal and meridional velocities, respectively, for each layer. In the linear formulation Ui =
ui ·hi(0) and Vi = vi ·hi(0) where ui and vi are zonal and meridional velocities, respectively,
in each layer.

The depth-integrated x and y components of the linear momentum equations in each
layer are:

∂Ui

∂t
− (fo + βy)Vi = −hi(0)

ρo

∂pi

∂x
+ A∇2Ui − B∇4Ui + τx

i

ρo

(A-1)

∂Vi

∂t
+ (fo + βy)Ui = −hi(0)

ρo

∂pi

∂y
+ A∇2Vi − B∇4Vi + τ

y

i

ρo

(A-2)

The Coriolis parameter at a reference latitude, θ0, is f0 = 2Ω sin θ0 where Ω is the earth’s
rotation rate (7.2722 × 10−5 s−1). The variation of Coriolis parameter about that latitude
is β, where β = 2Ω cos θ0/a and a is the earth’s radius (6,378 km). The reference density,
ρ0, is 1,028 kg m−3. Pressure in each layer is pi . The zonal and meridional components of
stress in each layer are τx

i and τ
y

i . A and B are the constant coefficients for the Laplacian
and biharmonic viscosity terms, respectively. The pressure terms in Equations (A-1) and
(A-2) are obtained by solving the hydrostatic balance in each layer.
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Wind stress is applied at the surface and since the lower layer does not outcrop, τx
2 = τ

y

2 =
0. No-slip and no-normal-flow boundary conditions are applied on the vertical boundaries
of the model domain, but bottom friction is not included.

The depth-integrated continuity equation for each layer is:

∂h′
i

∂t
= −

(
∂Ui

∂x
+ ∂Vi

∂y

)
. (A-3)

Calculations are performed on a C-grid (Arakawa and Lamb, 1977). The model time-step,
dt, is 15 seconds. Such a small time step is required for stability, satisfying the CFL condition
(Courant et al., 1928).

Horizontal viscosity, A, is 2,000 m2s−1 and the biharmonic viscosity coefficient, B, is
1012 m4 s−1 (though for the coarse model resolution used here, results are insensitive to this
parameter). Use of large A is common in coarse resolution models to help resolve the width
of the frictional Munk boundary layer along the basin’s western boundary. The model does
not include vertical viscosity.

A.2 Deflection over the ridge on a beta-plane

Contours of constant f /h and f /h2 are curved southward over a ridge to a maximum
deflection, Δy, at the crest (Fig. A1). On a beta-plane, Δy increases linearly with latitude:

Δy = − R

H

(
y + fo

β

)
. (A-4)

Therefore, f /h contours (or f /h2 contours) are more closely packed over the ridge than
over the flat ocean. The ratio of spacing between neighboring f /h contours in the flat region,
LF , to their spacing at the crest, LR , is

LF

LR

= H

H − R
. (A-5)

This is independent of latitude on a beta plane. In the analogous relationship for f /h2

contours, H in Equation A-5 is replaced with H2.
When barotropic flow contained between neighboring f /h contours encounters the ridge,

the area perpendicular to the horizontal flow is decreased not only in the vertical dimension
(because of the ridge), but also in the horizontal (because LR < LF ). The ratio of the area
in the flat region AF to that at the ridge crest AR (assuming η1 << H) is:

AF

AR

=
(

H

H − R

)2

(A-6)

Hence, for non-divergent horizontal flow, the ratio of zonal velocity, u, in the flat region
(xF , y) to that at the crest (xR , y + Δy) must be:

u(xF , y)

u(xR, y + Δy)
=

(
1 − R

H

)2

. (A-7)
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Figure A1. Deflection of f/h contours over a ridge centered at xR. Δy = ys − y, LR is the spacing
of f/h contours at the crest where x = xR, and LF is the spacing of f/h contours in the flat region
where x = xF.

Analogous equations can be written for lower-layer flow, u2, contained between neighboring
f /h2 contours (assuming η2 << H2 − ηb) with H replaced by H2 in A-6 and A-7.

A.3 Recasting u∗ as a function of velocities in the flat region

The ratio of the vertical shear of the adjusted (t = tBT) zonal flow at the ridge crest to
the initial (t = 0) horizontal divergence or convergence in layer-one on the ridge’s flank is:

u∗ = u2(xR, yS, tBT) − u1(xR, yS, tBT)

u1(xR, yS, t = 0) − u1(xF , y, t = 0)
. (A-8)

Rearranging the denominator of A-8 and combining with A-7 gives:

u1(xR, yS, t = 0) − u1(xF , y, t = 0) = u1(xF , y, t = 0)

((
H

H − R

)2

− 1

)
(A-9)

Then considering the numerator of Equation A-9, we note that: 1) u1(xR , yS , tBT) = u1(xF ,
ys , tBT) because there is no divergence in the upper layer once equilibrium is reached at tBT

and 2) u1(xF , y, tBT) = u2(xF , y, tBT) because the flow between the topography and the
wind patch is barotropic (until the wind-driven baroclinic signal arrives). Using this with
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Equation A-7 cast for the lower layer and combining the result with Equations A-8 and A-9
gives:

u∗ =
u1(xF , yN)

(
H2

H2−R

)2 − u1(xF , yS)

u1(xF , y)
[(

H
H−R

)2 − 1
] (A-10)

In Equation A-10, we treat the velocities at xF as independent of time since we restrict
our analysis to the region east of the topography where the wind-driven baroclinic Rossby
waves have not yet arrived.
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