
Lecture 8: Horizontal Convection

Geoff Vallis; notes by Daniel Mukiibi and Paige Martin

June 19

1 The Ocean: Constraints on a Thermal Circulation

We now turn our attention to the ocean. Our goal in this lecture and the next is to describe
a theory for the deep circulation of the ocean, sometimes called the meridional overturning
circulation (MOC) and occasionally the thermohaline circulation. We begin in this lecture
by showing that there have to be winds or some other form of mechanical forcing in order
to drive a substantial deep ocean circulation. The root effect goes back to Sandström, and
although his rigour was suspect it seems his intuition was right.

2 Sandström’s Effect

We first give an argument that is similar in spirit to the one that Sandström gave in his
original papers (Sandström, 1908, 1916).

2.1 Maintaining a steady baroclinic circulation

The Boussinesq equations are

Dv

Dt
= −∇φ+ bk + F,

Db

Dt
= Q̇, ÷v = 0, (1a,b,c)

where F represents frictional terms and Q̇ = J + κ∇2b (that is, the heating term here
includes the effects of diffusion). The circulation, C, changes according to

DC

Dt
=

D

Dt

∮
v · dr =

∮ (
Dv

Dt
· dr + v · dv

)

=

∮
bk · dr +

∮
F · dr,

(2)

(Note that rotation does no work.) Furthermore, we can write rate of change of circulation
itself as

DC

Dt
=

∮ (
∂v

∂t
+ v · ∇v

)
· dr =

∮ (
∂v

∂t
+ ω × v

)
· dr. (3)

Let us assume the flow is steady, so that ∂v /∂t vanishes. Let us further choose the path
of integration to be a streamline, which, since the flow is steady, is also a parcel trajectory.
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The second term on the right-most expression of (3) then also vanishes and (2) becomes
∮
bdz = −

∮
F · dr = −

∮
F

|v | · v dr, (4)

where the last equality follows because the path is everywhere parallel to the velocity. Let
us now assume that the friction retards the flow, and that

∮
F · v /|v | dr < 0. (One form

of friction that has this property is linear drag, F = −Cv where C is a constant. The
property is similar to, but not the same as, the property that the friction dissipates kinetic
energy over the circuit.) Making this assumption, if we integrate the term on the left-hand
side by parts we obtain ∮

z db < 0. (5)

Now, because the integration circuit in (6) is a fluid trajectory, the change in buoyancy db
is proportional to the heating of a fluid element as it travels the circuit db = Q̇dt = dQ,
where the heating includes diffusive effects.

∮
z dQ < 0. (6)

Thus, the inequality implies that the net heating must be negatively correlated with height:
that is, the heating must occur, on average, at a lower level than the cooling in order that a
steady circulation may be maintained against the retarding effects of friction.

A compressible fluid

A similar result can be obtained for a compressible fluid. We write the baroclinic circulation
theorem as

DC

Dt
=

∮
pdα+

∮
F · dr =

∮
T dη +

∮
F · dr, (7)

where η is the specific entropy. Then, by precisely the same arguments as led to (6), we are
led to the requirements that

∮
T dη > 0 or equivalently

∮
p dα > 0. (8a,b)

Equation (8a) means that parcels must gain entropy at high temperatures and lose entropy
at low temperatures; similarly, from (6b), a parcel must expand (dα > 0) at high pressures
and contract at low pressures.

For an ideal gas we can put these statements into a form analogous to (6) by noting
that dη = cp(dθ/θ), where θ is potential temperature, and using the definition of potential
temperature for an ideal gas. With these we have

∮
T dη =

∮
cp
T

θ
dθ =

∮
cp

(
p

pR

)κ
dθ, (9)

and (8a) becomes ∮
cp

(
p

pR

)κ
dθ > 0. (10)
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Because the path of integration is a fluid trajectory, dθ is proportional to the heating of
a fluid element. Thus [and analogous to the Boussinesq result (6)], (10) implies that the
heating (the potential temperature increase) must occur at a higher pressure than the cooling
in order that a steady circulation may be maintained against the retarding effects of friction.

These results may be understood by noting that the heating must occur at a higher
pressure than the cooling in order that work may be done, the work being necessary to
convert potential energy into kinetic energy to maintain a circulation against friction. More
informally, if the heating is below the cooling, then the heated fluid will expand and become
buoyant and rise, and a steady circulation between heat source and heat sink can readily
be imagined. On the other hand, if the heating is above the cooling there is no obvious
pathway between source and sink.

2.2 A rigorous result

Following Paparella & Young (2002), we now show more rigorously that, if the diffusivity
is small, the circulation is in a certain sense weak. Now including molecular viscosity and
diffusivity, the equations of motion are

∂v

∂t
+ (f + 2ω)× v = −∇B + bk + ν∇2v , (11a)

Db

Dt
=
∂b

∂t
+÷(bv ) = Q̇ = J + κ∇2b, (11b)

÷v = 0, (11c)

Multiply the momentum equation by v and integrate over a volume to give

d

dt

〈
1

2
v 2

〉
= 〈wb〉 − ε, (12)

where angle brackets denote a volume average and

ε = −ν
〈
v · ∇2v

〉
= ν

〈
ω2
〉
, (13)

after integrating by parts. The dissipation, ε, is a positive definite quantity.
Write the buoyancy equation as

Dbz

Dt
= z

Db

Dt
+ b

Dz

Dt
= zQ̇+ bw, (14)

whence
d

dt
〈bz〉 =

〈
zQ̇
〉

+ 〈bw〉 . (15)

Subtracting (15) from (12) gives the energy equation

d

dt

〈
1

2
v 2 − bz

〉
= −

〈
zQ̇
〉
− ε. (16)

In a steady state: 〈
zQ̇
〉

= −ε < 0. (17)
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This is an analogue of our earlier results. It says that if we want to have a dissipative,
statistically steady flow there has to be a negative correlation between heating and z. Put
simply, the heating has to be below the cooling. But note that the heating and cooling
include the diffusive terms.

With diffusion only

Take Q̇ = κ∇2b whence (17) becomes

κ

V

∫
z∇2bdV = −ε (18)

The horizontal part of the integral vanishes so that

κ

H

∫ 0

−H
z
∂2b

∂z2
dz = −ε. (19)

where an overbar is a horizontal average. Integrating the LHS by parts gives

κ

H

[
b(0)− b(−H)

]
= ε. (20)

The LHS is bounded by the surface buoyancy gradient, so the KE dissipation goes to zero
as κ→ 0.

The result is (at least from a physicist’s point of view) quite rigorous. It can also be
extended to a nonlinear equation of state (Nycander, 2010). It tells us that the dissipation
of kinetic energy in a fluid diminishes with the diffusivity, and that if κ = 0 then dissipation
vanishes. It doesn’t say there is no flow at all, but it is hard to envision a flow in a finite
domain that does not dissipate kinetic energy. The result is often characterized as saying
that the flow is non turbulent.

3 Buoyancy and Mixing Driven Scaling Theories

Now we talk about scaling, becoming a bit less rigorous. Interestingly the scaling, dating
from Rossby (1965), predates the rigorous theories, and it also provides much stronger
bounds. However, it is a scaling and not a rigorous result and therefore open to dispute.

3.1 Equations of motion

A non-rotating Boussinesq fluid heated and cooled from above obeys the equations.

Dv

Dt
= −∇φ+ ν∇2v + bk, (21)

Db

Dt
= κ∇2b (22)

∇ · v = 0. (23)

with boundary conditions
b(x, y, 0, t) = g(x, y), (24)
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For algebraic simplicity consider the two-dimensional version of these equations, in y and
z . We can define a streamfunction

v = −∂ψ
∂z

, w =
∂ψ

∂y
, ζ = ∇2

xψ =

(
∂2ψ

∂y2
+
∂2ψ

∂z2

)
, (25)

Taking the curl of the momentum equation gives

∂∇2ψ

∂t
+ J(ψ,∇2ψ) =

∂b

∂y
+ ν∇4ψ (26a)

∂b

∂t
+ J(ψ, b) = κ∇2b (26b)

where J(a, b) ≡ (∂ya)(∂zb)− (∂za)(∂yb).

Non-dimensionalization and scaling

We non-dimensionalize (26) by formally setting

b = ∆b b̂, ψ = Ψψ̂, y = Lŷ, z = Hẑ, t =
LH

Ψ
t̂, (27)

where the hatted variables are non-dimensional, ∆b is the temperature difference across the
surface, L is the horizontal size of the domain, and Ψ, and ultimately the vertical scale H,
are to be determined. Substituting (27) into (26) gives

∂∇̂2ψ̂

∂t̂
+ Ĵ(ψ̂,∇2ψ̂) =

H3∆b

Ψ2

∂b̂

∂ŷ
+

νL

ΨH
∇̂4ψ̂, (28a)

∂b̂

∂t̂
+ Ĵ(ψ̂, b̂) =

κL

ΨH
∇̂2b̂, (28b)

where ∇̂2 = (H/L)2∂2/∂ŷ2+∂2/∂ẑ2 and the Jacobian operator is similarly non-dimensional.
If we now use (28b) to choose Ψ as

Ψ =
κL

H
, (29)

so that t = H2t̂/κ, then (28) becomes

∂∇̂2ψ̂

∂t̂
+ Ĵ(ψ̂, ∇̂2ψ̂) = Ra σα5 ∂b̂

∂ŷ
+ σ∇̂4ψ̂, (30)

∂b̂

∂t̂
+ Ĵ(ψ̂, b̂) = ∇̂2b̂, (31)

and the non-dimensional parameters that govern the behaviour of the system are

Ra =

(
∆bL3

νκ

)
, (the Rayleigh number), (32a)

σ =
ν

κ
, (the Prandtl number), (32b)

α =
H

L
, (the aspect ratio). (32c)
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3.2 Rossby’s Scaling

For steady non-turbulent flows, and also perhaps for statistically steady flows, then we can
demand that the buoyancy term in (30) is O(1). If it is smaller then the flow is not buoyancy
driven, and if it is larger there is nothing to balance it. Our demand can be satisfied only if
the vertical scale of the motion adjusts appropriately and, for σ = O(1), this suggests the
scalings

H = Lσ−1/5Ra −1/5 =

(
κ2L2

∆b

)1/5

, Ψ = Ra 1/5σ−4/5ν = (κ3L3∆b)1/5. (33a,b)

The vertical scale H arises as a consequence of the analysis, and the vertical size of the
domain plays no direct role. [For σ � 1 we might expect the nonlinear terms to be small
and if the buoyancy term balances the viscous term in (30) the right-hand sides of (33) are
multiplied by σ1/5 and σ−1/5. For seawater, σ ≈ 7 using the molecular values of κ and ν.
If small scale turbulence exists, then the eddy viscosity will likely be similar to the eddy
diffusivity and σ ≈ 1.] Numerical experiments (Figs. 1 and 2, taken from Ilicak & Vallis
2012) do provide some support for this scaling, and a few simple and robust points that
have relevance to the real ocean emerge, as follows.

• Most of the box fills up with the densest available fluid, with a boundary layer in
temperature near the surface required in order to satisfy the top boundary condition.
The boundary gets thinner with decreasing diffusivity, consistent with (33). This is a
diffusive prototype of the oceanic thermocline.

• The horizontal scale of the overturning circulation is large, being at or near the scale
of the box.

• The downwelling regions (the regions of convection) are of smaller horizontal scale
than the upwelling regions, especially as the Rayleigh number increases.

3.3 The importance of mechanical forcing

The above results do not, strictly speaking, prohibit there from being a thermal circulation,
with fluid sinking at high latitudes and rising at low, even for zero diffusivity. However,
in the absence of any mechanical forcing, this circulation must be laminar, even at high
Rayleigh number, meaning that flow is not allowed to break in such a way that energy can
be dissipated — a very severe constraint that most flows cannot satisfy. The scalings (33)
further suggest that the magnitude of the circulation in fact scales (albeit nonlinearly) with
the size molecular diffusivity, and if these scalings are correct the circulation will in fact
diminish as κ → 0. For small diffusivity, the solution most likely to be adopted by the
fluid is for the flow to become confined to a very thin layer at the surface, with no abyssal
motion at all, which is completely unrealistic vis-à-vis the observed ocean. Thus, the deep
circulation of the ocean cannot be considered to be wholly forced by buoyancy gradients at
the surface.

Suppose we add a mechanical forcing, F, to the right-hand side of the momentum
equation (11a); this might represent wind forcing at the surface, or tides. The kinetic
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energy budget becomes

ε = 〈wb〉+ 〈F · v 〉 = H−1κ[b(0)− b(−H)] + 〈F · v 〉 . (34)

In this case, even for κ = 0, there is a source of energy and therefore turbulence (i.e.,
a dissipative circulation) can be maintained. The turbulent motion at small scales then
provides a mechanism of mixing and so can effectively generate an ‘eddy diffusivity’ of
buoyancy. Given such an eddy diffusivity, wind forcing is no longer necessary for there
to be an overturning circulation. Therefore, it is useful to think of mechanical forcing as
having two distinct effects.

1. The wind provides a stress on the surface that may directly drive the large-scale
circulation, including the overturning circulation.

2. Both tides and the wind provide a mechanical source of energy to the system that
allows the flow to become turbulent and so provides a source for an eddy diffusivity
and eddy viscosity.

In either case, we may conclude that the presence of mechanical forcing is necessary for
there to be an overturning circulation in the world’s oceans of the kind observed.

4 The Relative Scale of Convective Plumes and Diffusive Up-
welling

Why is the downwelling region narrower than the upwelling? The answer is that high
Rayleigh number convection is much more efficient than diffusional upwelling, so that the
the convective buoyancy flux can match the diffusive flux only if the convective plumes
cover a much smaller area than diffusion. (Tom Haine explained this to me.) Suppose
that the basin is initially filled with water of an intermediate temperature, and that surface
boundary conditions of a temperature decreasing linearly from low latitudes to high latitudes
are imposed. The deep water will be convectively unstable, and convection at high latitudes
(where the surface is coldest) will occur, quickly filling the abyss with dense water. After
this initial adjustment, the deep, dense water at lower latitudes will be slowly warmed by
diffusion, but at the same time surface forcing will maintain a cold high latitude surface,
thus leading to high latitude convection. A steady state or statistically steady state is
eventually reached with the deep water having a slightly higher potential density than the
surface water at the highest latitudes, and so with continual convection, but convection that
takes place only at the highest latitudes.

To see this more quantitatively consider the respective efficiencies of the convective
heat flux and the diffusive heat flux. Consider an idealized re-arrangement of two parcels,
initially with the heavier one on top as illustrated in Fig. 3. The potential energy released
by the re-arrangement, ∆P is given by

∆P = Pfinal − Pinitial (35)

= g [(ρ1z2 + ρ2z1)− (ρ1z1 + ρ2z2)] (36)

= g(z2 − z1)(ρ1 − ρ2) = ρ0∆b∆z (37)
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where ∆z = z2 − z1 and ∆b = g(ρ1 − ρ2)/ρ0.
The kinetic energy gained by this re-arrangement, ∆K is given by ∆K = ρ0w

2 and
equating this to (35) gives

w2 = −∆b∆z. (38)

Note that if the heavier fluid is initially on top then ρ2 > ρ1 and, as defined, ∆b < 0. The
vertical convective buoyancy flux per unit area, Bc, is given by Bc = w∆b and using (38)
we find

Bc = (−∆b)3/2(∆z)1/2. (39)

The upwards diffusive flux, Bd, per unit area is given by

Bd = κ
∆b

H
(40)

where H is the thickness of the layer over which the flux occurs. In a steady state the total
diffusive flux must equal the convective flux so that, from (39) and (40),

(−∆b)3/2(∆z)1/2δA = κ
∆b

H
, (41)

where δA is the fractional area over which convection occurs. Thus If we set ∆z = H, we
get

δA =
κ

(∆b)1/2H3/2
(42)

This is a small number, although it is not quite right yet — we don’t really know H. Let
us use (33a), namely H = (κ2L2/∆b)1/5 then

δA =
κ

(∆b)1/2(κ2L2/∆b)3/10

=

(
κ2

∆bL3

)1/5

= (Ra σ)−1/5.

(43)

For geophysically relevant situations this is a very small number, usually smaller than 10−5.
Although the details of the above calculation may be questioned (for example, the use of
the same buoyancy difference and vertical scale in the convection and the diffusion), the
physical basis for the result is clear: for realistic choices of the diffusivity the convection
is much more efficient than the diffusion and so will occur over a much smaller area. This
result almost certainly transcends the limitations of its derivation.
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Figure 1: Temperature (left) and streamfunction (right) fields. From the top, the Rayleigh
numbers are 106, 107, 108.

110



x [m]

z 
[m

]

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

1026.5

1027

1027.5

x [m]

z 
[m

]

 

 

0 5 10 15 20
0

2

4

6

8

10

−3

−2

−1

0

1

2

3
x 10

−3

x [m]

z 
[m

]

 

 

0 5 10 15 20
0

2

4

6

8

10

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

x [m]

z 
[m

]

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

1026.5

1027

1027.5

x [m]

z 
[m

]

 

 

2 4 6 8 10 12 14 16 18

2

4

6

8

1026.5

1027

1027.5

x [m]

z 
[m

]

 

 

0 5 10 15 20
0

2

4

6

8

10

−6

−4

−2

0

2

4

6

x 10
−4

f)

a) b)

d)

e)

c)

Figure 2: Temperature (left) and streamfunction (right) fields. From the top, the Rayleigh
numbers are 109, 1010, 1011.

z2

z1ρ1
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Δz

Figure 3: Two fluid parcels, of density ρ1 and ρ2 and initially at positions z1 and z2

respectively, are interchanged. If ρ2 > ρ1 then the final potential energy is lower than the
initial potential energy, with the difference being converted into kinetic energy.
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