
Lecture 2: Energy Balance and the Troposphere

Geoff Vallis; notes by Shineng Hu and Alexis Kaminski

June 17

The philosophy throughout these lectures is that in order to understand a complex
system we must have a description of it at multiple levels, from a back-of-the-envelope
calculation through idealized numerical models to a comprehensive simulation with all the
bells and whistles. Because this is Walsh we will always try to include a back-of-the-envelope
calculation and go from there, but other approaches are possible.

1 What are we trying to explain?

A schematic of the overall structure of the atmosphere and ocean is given in Fig. 1, with
some pictures of the real atmosphere from observations given in Fig. 2 and Fig. 3. In Fig. 1
we sketch the troposphere, where temperature decreases with height, and the stratosphere,
where temperature increases with height, and the dividing tropopause which is fairly high
over the tropics (15km) and lower over polar regions (8km). We might immediately ask,
what determines this structure? What determines the height of tropopause? Why is it
about 10 km , and not 100 km or 1 km ? And what determines the width of the tropics
where the tropopause is high? And so on.

Turning to the ocean, we have, again very schematically, warm water in the upper ocean
and cold water below. The layer between them, where temperature varies very fast verti-
cally, is called the thermocline. Sometimes we make an analogy between the thermocline
and the tropopause, but actually the thermocline is more like the whole troposphere be-
cause they are both characterized by large vertical temperature gradients and relatively
fast dynamics. Questions for oceanographers include what determines this structure of the
ocean? What is the nature of the circulation that maintains it? More specifically, what
determines the depth of the thermocline?

These are the kinds of questions we will consider in these lectures. We’ll try to answer
some of them, but not all. The philosophy throughout is that in order to understand a
complex system we must have a description of the system at multiple levels, from a back-of-
the-envelope calculation through idealized numerical models to a comprehensive simulation
with all the bells and whistles. Because this is Walsh we will always try to include a
back-of-the-envelope calculation and go from there, but other approaches are possible.

Our goals in this lecture are fairly fundamental:

• Understand at an elementary level what determines the surface temperature of Earth.

• Understand the need for a troposphere, and what determines its thickness.

To answer that we begin with a tutorial on radiation.
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mark the tropopause and the base of the thermocline, and the near-vertical dashed lines
are representative profiles of temperature.

2 Radiative Balance

2.1 The very basics

All macroscopic bodies except those at absolute zero (are there any?) emit thermal radi-
ation. The black body emission per unit wavelength or per unit frequency are given by
Planck’s function which is, for the two cases respectively,

Bλ(T ) =
2πhc2

λ5
1

exp(hc/λkBT )− 1
, Bν(T ) =

2hν3

c2
1

exp(hν/kBT )− 1
(1)

where c is the speed of light, h is the Planck constant and kB is the Boltzmann constant.
Conventions for frequency and wavelength are such that c = ω/k = ωλ/2π = νλ. Inte-
grating either of the above expressions over wavelength or frequency, respectively, gives the
Stefan–Boltzmann law

B(T ) = σT 4, (2)

where σ is Stefan’s constant,

σ =
2π5k4B
15h3c2

= 5.6704× 10−8 W m −2 K −4. (3)

The maximum of Planck’s function occurs at a wavelength λm = b/T where b = 2.898 ×
10−3 m K . This is Wien’s displacement law, and it means that the higher the temperature
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Figure 2: Overturning circulation of the atmosphere during a Northern Hemisphere winter.
The contours and shading indicate an overturning streamfunction, rising just south of the
equator. The top plot shows a conventional Eulerian average and the bottom plot is a
residual circulation. Three measures of the tropopause are indicated with the more nearly
horizontal solid lines.
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Figure 3: Temperature profiles in the atmosphere. On the left is the ‘US standard atmo-
sphere’ and on the right are some observed profiles.

the shorter the wavelength at which emission predominantly occurs. For the Sun, at T ≈
6000 K , λm = 5× 10−7 m , which is in the visible range; solar radiation is also sometimes
called shortwave. For Earth, at T = 280 K , λm = 1 × 10−5 m , which is in the so-
called infra-red, sometimes called longwave. The radiation itself is in units of W m −2,
and so is a flux of energy. The radiation reaching Earth from the Sun has an intensity of
S∗ = 1366 W m −2, varying by about 1 W m −2 over the 11-year sunspot cycle.

2.2 Earth’s global energy budget

The simplest model that gives the temperature of the Earth is to suppose that the incoming
solar radiation is balanced by an outgoing flux of infra-red radiation at a single temperature
so that

S0(1− α) = σT 4, (4)

where S0 = S∗/4 = 342 W m −2 and α is the Earth’s albedo, the fraction of solar radiation
reflected and measurements show that α ≈ 0.3. The resulting temperature, Te is variously
called the effective emitting temperature, the radiation temperature or the bolometric tem-
perature. Plugging in numbers we find

Te =

(
342× 0.7

5.67× 10−8

)1/4
= 255 K . (5)

The actual surface temperature on Earth averages 288 K . If you think 255 K is a good
estimate of 288 K , you are at heart a planetary scientist. If you think it is a bad estimate,
you are a climate scientist or a meteorologist.

[Needed: table of emitting temperature and actual surface temperature for all planetary
bodies in the solar system.]

A simple feedback we can put into such a model is the ice-albedo feedback, whereby we
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suppose that α is a function of temperature. For example, we might suppose that

α =

{
0.3 for T > T0

0.8 for T < T0
(6)

2.3 Effects of the atmosphere

The clear-sky atmosphere is largely transparent to solar radiation, but not to infra-red
radiation. Most (but not all) of the solar radiation impinging on the atmosphere that is not
reflected by clouds is thus absorbed at the Earth’s surface, whereas most of the infra-red
radiation emitted at the Earth’s surface is absorbed by the atmosphere.

Given this, the next simplest model is to suppose there is an absorbing atmosphere
above the surface, as illustrated in Fig. 4. If it is in equilibrium then the energy balance
equations are:

Top: S0(1− α) = σT 4
a , (7)

Surface: S0(1− α) + σT 4
a = σT 4

g . (8)

(From these we also see the atmospheric balance, 2σT 4
a = σt4g.) The solution is

Ta =

(
(1− α)S0

σ

)1/4
, Tg = 21/4Ta. (9)

So that Ta = 255 K (as it has to be) and Tg = 303 K , This is now too warm. One solution
is to suppose the atmosphere has a finite emissivity, εa (which is less than one). This is
getting ad hoc, but it will allow us to illustrate a nice effect. Thus,

Top: S0(1− α) = εaσT
4
a + (1− εa)σT 4

g , (10)

Surface: S0(1− α) + εaσT
4
a = σT 4

g + F. (11)
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Figure 5: Temperature as a function of emissivity in the EBM

where we also introduce a flux F from surface to atmosphere. The solution for the surface
temperature is

σT 4
g =

S0(1− α)− F/2
1− εa/2

(12)

which, for F = 0 and ε = 0.77, gives Tg = 288 K . The surface temperature obviously
increases with εa as expected (Fig. 5).

3 Water Vapour Feedback

3.1 Saturation vapour pressure

The two main greenhouse gases are water vapour and carbon dioxide. Carbon dioxide is
well mixed and is not volatile (it does not condense at Earthy temperatures). Its value is
determined by geological and anthropogenic processes, and we can suppose its value to be
specifiable. Water vapour levels are determined by the relative humidity of the atmosphere
and, above all else, by the temperature through the Clausius–Clapeyron relation. This
states that the saturation vapour pressure of water, es, or indeed of nearly any condensing
material, varies as

des
dT

=
L

T (ρ−1g − ρ−1c )
≈ L

RwT 2
es, (13a,b)

where the second expression follows if ρg � ρc (the density of the gas phase is much less
than that of the condensed phase) and using the ideal gas law. The parameter L is the
‘latent heat of condensation’ and Rw is the gas constant for the gas in question, which for
us is water. If L is constant (not a quantitatively good assumption, but good enough for
now) we get

es(T ) = es0 exp

[
Ls
Rs

(
1

T0
− 1

T

)]
. (14)
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Figure 6: Saturation vapour pressure as a function of temperature

Evidently, saturation vapour pressure is a strongly increasing function of temperature. A
liquid will boil when the temperature is sufficiently high that the saturation vapour pressure
equals the ambient pressure, and for water at sea-level this occurs at 100◦C . A good, semi-
empirical approximation for saturation water vapour pressure is the Tetens–Bolton formula,

es = 6.112 exp

(
17.67 ∗ Tc
Tc + 243.3

)
(15)

where Tc is temperature in Celsius and pressure is in hecto-Pascals (the same as millibars).
This is actually a better approximation than (14) because it includes the variation of L with
T . In any case, the main point is that water vapour content in the atmosphere increases
fairly rapidly with temperature, at about 7% K −1 (Fig. 6).

3.2 Radiative feedback and runaway greenhouse

Returning now to the EBM of the previous section, if we differentiate (12) we obtain

4 dTg
Tg

=
dεa

2− εa
. (16)

Now, εa may vary both because we add CO2 (which we will denote as c) and because water
vapour content may changes, so we write

dεa = Adc+ B des (17)

where A and B are quantities that reflect the radiative properties of CO2 and water vapour.
If the main reason water vapour changes is because of the change in saturation vapour
pressure with temperature then, using (13b) and (17), (16) becomes

(8− 4εa)
dTg
Tg

= Adc+ B des = A,dc+
BL
RwT 2

es dTg. (18)
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or (
8− 4εa
Tg

− BLes
RwT 2

g

)
dTg = Adc (19)

Note that changes in atmospheric temperature is proportional to changes in surface tem-
perature. Thus

dTg
dc

=
ATg

8− 4εa

(
1

1− y

)
where y =

BesL
RwTg(8− 4εa)

. (20)

This is a rather interesting equation. It is not to be believed at a quantitative level, but it
is perhaps the simplest model that captures in a physically plausible way the greenhouse-gas
effects of both water vapour and CO2 . The following is apparent:

• Adding carbon dioxide to the atmosphere causes temperature to go up (because 4εa <
8), providing y < 1, so the model delineates between forcing and feedback.

• The feedback is captured by the terms involving y, and it can be larger than the direct
effect depending on the size of B.

• As y → 1 the feedback becomes very large, and this is called the runaway greenhouse
effect. As the temperature increases the water vapour content increases, temperature
further increases and so on.

• There is no a priori reason why y should be less than unity. For example, it will be
large if the temperature is high, and so if es is high. It seems then that that Tg will
decrease as c increases!

The last item seems totally unphysical, and to see what is going on we need to construct an
explicit model of the greenhouse effect with water vapour feedback. We will do that soon
but it will be easier if we must look in a bit more detail about radiation.

4 Radiative Transfer in a Grey Atmosphere

4.1 Assumptions

Radiative intensity, I is the radiative flux per solid angle and when dealing with radiation in
three-dimensional problems we have to deal with directionality. We also have to deal with
the dependence of absorption on wavelength, and with scattering. In dealing with radiation
in the Earth’s atmosphere we will make a number of main simplifications.

1. We can have completely separate treatments of solar and infra-red radiation.

2. Much of the time we can assume there is no solar absorption in the atmosphere. This
is not quantitatively true but if it were the case, most of the atmosphere would be
about the same.

3. We integrate over solid angles in the upward pointing hemisphere and again in the
downward pointing atmosphere, so that we have two streams of radiation.
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4. We’ll integrate over wavelength in the infra-red and assume that a single emissivity
suffices.

5. There is no scattering of infra-red radiation.

4.2 Equations of radiative transfer

Consider a monochromatic beam of radiation passing through a gas, and suppose for a
moment the gas does not emit any radiation but only absorbs it. For a thin layer of gas the
change in intensity of the beam is then

dI = −Idτ (21)

where τ is the optical depth. The equation may be regarded as a definition of optical depth
— it is the fraction of the incoming radiation absorbed — with the difficulty then arising
in relating it to the physical properties of the gas. Eq. (21) can be formally integrated to
give I = I0 exp(−τ), where the factor T = exp(−τ) is the transmittance of the layer. The
optical depth of two layers is the sum of their optical depths and the total transmittance is
the product of the two transmittances.

The optical depth of a gas is related both to the amount of gas and to its properties,
and for a thin layer of gas of thickness ds we can write

dτ = kAρds (22)

where kA is the mass absorption coefficient. In general the optical depth will depend on
the wavelength but we shall assume it does not; that is, the atmosphere is grey. In the
atmosphere if the pressure is hydrostatic then, in the vertical direction, dτ = kAρdz = kAdp
so that

τ(p1, p2) = kA(p1 − p2) (23)

In fact the mass absorption coefficient increases with pressure so that in the atmosphere a
somewhat better approximation is to write

τ ≈ τr
(p1 − p2)(p1 + p2)/2

p2r
(24)

where pr is a reference pressure and τr is a reference optical depth, a function of the
properties of the gas in question.

The slab of gas will also emit radiation, so taking this into account (21) becomes

dI = (B − I)dτ (25)

This is known as the Schwarzschild equation and it applies at each wavelength, but if
we assume τ is not a function of wavelength and we integrate over all wavelengths then
B = σT 4. (You can either take this to be obvious or do a bit of algebra involving integrations
over solid angles to convince yourself, or consult a radiation book like Goody or Petty or
Pierrehumbert.) In terrestrial applications we assume that (25) applies in the infra-red, and
do a separate calculation for solar radiation.
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Now, in the atmosphere under two-stream approximation in the atmosphere we have
upward, U , and downward, D, radiation and we write

−dU

dτ
= B − U, dD

dτ
= B −D. (26a,b)

The convention we have chosen here is that τ increases downwards. This is convenient for
atmospheric applications, for then we have τ = 0 at the top of the atmosphere, but it is not
mandated. We could choose it the other way and flip the signs of the right-hand sides and
no physical result depends on this choice, or on the origin of τ . We will use these equations
for the infra-red radiation and in what follows assume that solar radiation is all absorbed
at the surface.

4.3 Solutions

Formal Solution

Consider the generic equation for radiation travelling in the direction of increasing τ or
decreasing τ , B and U respectively

dD

dτ
= B −D, dU

dτ
= U −B. (27)

Multiplying by the integrating factors exp(τ) and exp(−τ)gives

d

dτ
(Deτ ) = Beτ ,

d

dτ
(U e−τ ) = −Be−τ (28)

Integrating between τ = 0 and τ ′ we obtain

D(τ ′)eτ
′ −D(0) =

∫ τ ′

0
B(τ)eτ dτ, U(τ ′)e−τ

′ − U(0) = −
∫ τ ′

0
B(τ)e−τ dτ (29)

or

D(τ ′) = e−τ
′
[
D(0)−

∫ τ ′

0
B(τ)eτ dτ

]
, U(0) = U(τ ′)e−τ

′
+

∫ τ ′

0
B(τ)e−τ dτ (30)

The first term in each solution is the attenuation of incoming radiation and the second is
the cumulative emission. There are other ways to write the solution, but in general the
solution of radiative problems can be written only in the form of integrals. Nevertheless, in
some important special cases we can get a local solution as below.

Radiative equilibrium in planetary atmospheres

Consider an atmosphere with net incoming solar radiation Snet and suppose the planet is in
radiative equilibrium with the incoming solar balanced by outgoing infra-red. The radiative
transfer equations are thus to be solved with the boundary conditions that

D = 0, U = Ut at τ = 0, (31)
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Figure 7: Radiative equilibrium temperature (solid curve) calculated using (36), with an
optical depth of τ0 = 8/3, Ha = 2 km and a net incoming solar radiation of 239 W m −2.

where Ut = Snet is the net outgoing long-wave radiation (OLR) at the top of the atmosphere.
There are still too many variables as we don’t know B, but we can obtain a radiative
equilibrium solution if we assume there is no longwave heating in the column. The heating
is proportional to the divergence of the net flux, so that if this is presumed zero then
∂(U −D)/∂z = 0 so that

∂(U −D)

∂τ
= 0. (32)

Let us rewrite (26) as

∂

∂τ
(U −D) = U +D − 2B, (33a)

∂

∂τ
(U +D) = U −D. (33b)

A solution of these equations that satisfies the boundary conditions is

D =
τ

2
Ut, U =

(
1 +

τ

2

)
Ut, B =

(
1 + τ

2

)
Ut. (34)

where Ut is the outgoing longwave radiation at the top of the atmosphere. The only thing
remaining is to relate τ to z, and a simple recipe that is similar to (23) is to suppose that
τ has an exponential profile.

τ(z) = τ0 exp(−z/Ha) (35)

where typical values are τ0 ≈ 4 and Ha ≈ 2 km . The temperature then goes like

T 4 = Ut

(
1 + τ0e

−z/Ha

2σ

)
, (36)

as illustrated in Fig. 7. Note the following aspects of the solution.
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1. Temperature increases rapidly with height near the ground.

2. The upper atmosphere is nearly isothermal.

3. The temperature at the top of the atmosphere, Tt is given by

σT 4
t =

Ut
2

(37)

Thus, if we define the emitting temperature, Te, to be such that σT 4
e = Ut, then

Tt = Te/2
1/4. Note also Bt/Ut = 1/2.

In fact, the temperature gradient near the ground varies so rapidly it is likely to be convec-
tively unstable, which we come to in the next lecture. Also, note that we do not need to
impose a temperature boundary condition at the ground; in fact there is no ground in this
problem! — but what happens if we add one? That is, suppose that we declare that there
is a black surface at some height, say z = 0, and we require that the atmosphere remain in
radiative equilibrium. What temperature does that surface have to be?

From (34) the upward irradiance and temperature at any height z are related by

U =

(
2 + τ

1 + τ

)
σT 4. (38)

At z = 0 the surface will have to supply upwards radiation equal to that given by (38), and
therefore its temperature, Tg is given by

σT 4
g =

(
2 + τ

1 + τ

)
σT 4

s , (39)

where Ts is the temperature of the fluid adjacent to the ground (the ‘surface temperature’).
That is, Tg > Ts and there is a temperature discontinuity at the ground. Sometimes in very
still conditions a very rapid change of temperature near the ground can in fact be observed,
but usually the presence of conduction and convection will ensure that Tg and Ts are equal.

In the limit in which τ = 0 in the upper atmosphere (let us prematurely call this the
‘stratosphere’) then we see that

D = 0, U = Ut, B =
Ut
2
. (40)

That is, the atmosphere is isothermal, there is no downwelling irradiance and the upward
flux is constant. The stratospheric temperature, Tst and the emitting temperature are
related by

Tst =
Te

21/4
. (41)

Summary Points

To sum up, what have we found?

1. If we suppose the atmosphere is grey, and we know how optical depth varies with
height, then if the atmosphere is in longwave radiative equilibrium we can construct
an explicit solution for the temperature as a function of height.
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2. The temperature will typically decrease very rapidly in height away from the surface.
So much so it is likely to be convectively unstable, as we discuss in the next lecture.

3. The radiative equilibrium temperature does not care or know whether a surface (i.e.,
the ground) is present. If a surface is present, and we require that radiate equilibrium
still hold, the temperature of the ground must be higher than the temperature of
the air adjacent to it. This is because the ground must supply the same amount
of radiation as would be supplied by an infinite layer of air below that level. Thus,
there is a temperature discontinuity at the ground, which in reality would normally
be wiped out by convection.

5 An explicit model of the Runaway Greenhouse Effect

We now come back to the greenhouse effect and construct an explicit model of runaway
greenhouse. (The term ‘runaway greenhouse’ was coined by Ingersoll (1969).) Suppose
the atmosphere is in radiative equilibrium. From the derivations above, we can relate the
surface and ground temperatures to the incoming solar radiation through the relation

T 4
s =

T 4
e

2
(1 + τ0), T 4

g = T 4
e (1 +

τ0
2

) (42)

Thus, if τ0 = 1.254 then, for Te = 255 K we find Tg = 288 K and Ts = 262 K . The as-
sumption of radiative equilibrium and the ensuing temperature discontinuity are unrealistic
but the model will illustrate and important point. We’ll construct a more realistic model
in the next lecture.

Suppose that we let τ0 be a function of temperature, increasing with the saturation
vapor pressure at the surface. Thus, let

τ0 = A+Bes(Tg) (43)

where A and B are semi-empirical constants, and es is the saturation vapor pressure as
given by the solution of the Clausius–Clapeyron equation, (15). We will tune their values
such that Tg = 288 when Te = 255, and with some experience of hindsight we set the ratio
A/B = 8, whence we obtain A = 1.12 and B = 0.14. The reason for such a seemingly high
ratio is that a grey model is too prone to give a runaway greenhouse because of its lack of
windows in the infra-red. Thus, in reality, even as temperature and water vapor content
increase some infra-red radiation can escape from the surface.

Putting the above together, the ground temperature is solution of

T 4
g = T 4

e

(
1 +

1

2
[A+Bes(Tg)]

)
. (44)

This algebraic equation is quite nonlinear and must be solved numerically but a few points
are apparent.

1. For any given Te we can obtain a graphic solution by plotting Tg and T 4
e (1 + τ0/2)1/4

and seeing where the two curves intersect. For a range of values of Te we will obtain
two solutions, as illustrated in Fig. 8. However, if Te is too high there will be no
intersection of the curves because the value of T 4

e (1 + τ0/2) will always be larger than
Tg.
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(43). Solutions occur at Tg ≈ 288 K and Tg = 350 K .

2. If Te increases and Bes is much smaller than A, then a solution is found by increasing
Tg.

3. If Te increases and Bes is suitably large then we can imagine that a solution will be
found with a lower value of Tg.

Numerical solutions, found iteratively, are illustrated in Fig. 9, and as expected there
are two branches to the solution. [A much more detailed discussion with many extensions
is to be found in the report by P. Martin in this volume.] For the parameters plotted, there
is no solution if Te > 269 K . That is to say, if a planet obeying the model above were in
an orbit such that Te > 269 K then infra-red radiation would not be able to escape from
the surface, and the surface temperature would keep on rising. All the water on the planet
surface would boil, and eventually the water vapor would escape to space. Such a scenario
may have occurred on Venus in the past.

5.1 Stability of solutions

The upper branch of the solution plotted in Fig. 9 runs counter to our intuition, in that
temperature decreases as emitting temperature increases. The situation arises because the
greenhouse effect is so strong, so that an increase in emitting temperature can lead to a
decrease in surface temperature if the greenhouse effect also falls considerably. However,
this solution is unstable as we now show.

We add a time dependence to the energy balance model and write

C
dTg
dt

= σT 4
e − σ

T 4
g

1 + τ0/2
(45)
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Figure 9: Solutions the energy balance model (44) obtained numerically. Plotted are values
of Tg as a function of The dashed curve is Tg and the solid curve plots values of T 4

e (1 +
τ0(Tg)/2)1/4, with τ0 given by (43) .

We perturb the system about an equilibrium point and so obtain

C
dT ′g
dt

=
−4σT 3

g T
′
g

1 + τ0
+

σT 4
g τ
′
0

(1 + τ0)2
, (46a)

=

(
Tg

1 + τ0/2

dτ0
dTg
− 4

)
T ′g (46b)

Thus, the solution will be stable or unstable according as whether the term in brackets is
negative or positive, respectively.

A tiny bit of algebra will reveal that the ratio of the two terms in brackets in (46b)
precisely the same as the ratio of the gradients of the solid curve and the dashed curve
at the intersection points in Fig. 8. Thus, the solution at the higher temperature (about
350 K in the graph) is unstable, because the gradient of the blue curve is greater than the
gradient of the dashed curve. Similarly, the solution at the lower temperature (288 K ) is
stable. All of the solutions on the upper branch on Fig. 9 are therefore unstable.
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