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Carbon and climate 

•  The goal for this science area – the Carbon-
Climate System - is to significantly improve our 
understanding of, and our ability to predict, the 
likely future trajectory of the atmospheric 
carbon fraction. 

•  What we have: a sparse, exploratory framework. 
•  What we need: a dense, robust and sustained 

system. 



What is the carbon budget and 
where is the missing carbon going? 



Carbon cycle feedbacks 

βL 

βO γL 

γO 

β : Concentration 
carbon cycle feedback 
γ : Climate carbon 
cycle feedback 



Our observing system is weakest where 
feedbacks are likely strongest 

Remote sensing must focus on the critical regions 



Stock and fluxes versus in situ 
observations 

GPP and ET, compared to 
FLUXNET


Biomass and total carbon 
storage compared to 
forest inventory plots




Carbon cycle feedbacks 
Concentration carbon 

feedback 
 

•  Existence known for 
decades: 
–  60-70’s for the ocean 

(Bolin, Oeschger, 
Siegenthaler,… ocean C 
box-diffusion models) 

–  80-90’s for the land 
(Esser,Mooney, Melillo, 
Friedlingstein, … 
global land C models) 

•  Direct observations: 
–  Ocean : YES(-ish) 
–  Land: NO 

•  Processes understood 
•  Magnitude very uncertain 

(esp. land) 

βL 

βO 

β : Concentration carbon cycle feedback 
γ : Climate carbon cycle feedback 



Carbon cycle feedbacks 

γL 

γO 

β : Concentration carbon cycle feedback 
γ : Climate carbon cycle feedback 

Climate carbon feedback 

•  Existence suspected for 
decades 
–  Couple of early 

papers 
–  Ice core data 

•  Rediscovered in the late 
90s-2000’s 

•  No direct observations 
•  Process understanding 

missing 
•  Magnitude very 

uncertain (esp. land) 



Climate -γ- effects from variability 



Model uncertainty: at the time of 
IPCC AR4 

CMIP3 

•  More than 20 
climate models 
(AOGCM) 

•  No ESMs 

•  11 C4MIP models, 
but not officially 
part of CMIP3 

IPCC, AR4, 2007 

IPCC AR4 
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AR4 WG1 SPM: “Warming tends to reduce land and ocean 
uptake of atmospheric carbon dioxide, increasing the fraction 
of anthropogenic emissions that remains in the atmosphere.” 

> 
25

0 
pp

m
 



And in IPCC AR5 

CMIP5 

•  More than 40 climate 
models (AOGCMs) 

•  10  Earth System 
Models (ESMs) 

•  All part of CMIP5 

IPCC, AR5, 2013 

IPCC AR5 
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there is medium confidence in these numbers as are the ones on the 
amount of carbon released (see Section 12.5.5.4) (MacDougall et al., 
2012; Schneider von Deimling et al., 2012).

12.4.8.2 Changes in Vegetation Cover

Vegetation cover can also be affected by climate change, with forest 
cover potentially being decreasing (e.g., in the tropics) or increasing 
(e.g., in high latitudes). In particular, the Amazon forest has been 
the subject of several studies, generally agreeing that future climate 
change would increase the risk tropical Amazon forest being replaced 
by seasonal forest or even savannah (Huntingford et al., 2008; Jones 
et al., 2009; Malhi et al., 2009). Increase in atmospheric CO2 would 
partly reduce such risk, through increase in water efficiency under ele-
vated CO2 (Lapola et al., 2009; Malhi et al., 2009). Recent multi-model 
estimates based on different CMIP3 climate scenarios and different 
dynamic global vegetation models predict a moderate risk of tropical 
forest reduction in South America and even lower risk for African and 
Asian tropical forests (see also Section 12.5.5.6) (Gumpenberger et al., 
2010; Huntingford et al., 2013).
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Figure 12.36 |  Simulated changes in (a) atmospheric CO2 concentration and (b) global averaged surface temperature (°C) as calculated by the CMIP5 Earth System Models (ESMs) 
for the RCP8.5 scenario when CO2 emissions are prescribed to the ESMs as external forcing (blue). Also shown (b, in red) is the simulated warming from the same ESMs when directly 
forced by atmospheric CO2 concentration (a, red white line). Panels (c) and (d) show the range of CO2 concentrations and global average surface temperature change simulated by 
the Model for the Assessment of Greenhouse Gas-Induced Climate Change 6 (MAGICC6) simple climate model when emulating the CMIP3 models climate sensitivity range and the 
Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP) models carbon cycle feedbacks. The default line in (c) is identical to the one in (a).

Figure 12.37 |  Uncertainty in global mean temperature from Met Office Hadley Centre 
climate prediction model 3 (HadCM3) results exploring atmospheric physics and ter-
restrial carbon cycle parameter perturbations under the SRES A1B scenario (Murphy et 
al., 2004; Booth et al., 2012). Relative uncertainties in the Perturbed Carbon Cycle (PCC, 
green plume) and Perturbed Atmospheric Processes (PAP, blue plume) on global mean 
anomalies of temperature (relative to the 1986–2005 period). The standard simulations 
from the two ensembles, HadCM3 (blue solid) and HadCM3C (green solid) are also 
shown. Three bars are shown on the right illustrating the 2100 temperature anomalies 
associated with the CMIP3/AR4 ensemble (black) the PAP ensemble (blue) and PCC 
ensemble (green). The ranges indicate the full range, 10th to 90th, 25th to 75th and 
50th percentiles.
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there is medium confidence in these numbers as are the ones on the 
amount of carbon released (see Section 12.5.5.4) (MacDougall et al., 
2012; Schneider von Deimling et al., 2012).

12.4.8.2 Changes in Vegetation Cover

Vegetation cover can also be affected by climate change, with forest 
cover potentially being decreasing (e.g., in the tropics) or increasing 
(e.g., in high latitudes). In particular, the Amazon forest has been 
the subject of several studies, generally agreeing that future climate 
change would increase the risk tropical Amazon forest being replaced 
by seasonal forest or even savannah (Huntingford et al., 2008; Jones 
et al., 2009; Malhi et al., 2009). Increase in atmospheric CO2 would 
partly reduce such risk, through increase in water efficiency under ele-
vated CO2 (Lapola et al., 2009; Malhi et al., 2009). Recent multi-model 
estimates based on different CMIP3 climate scenarios and different 
dynamic global vegetation models predict a moderate risk of tropical 
forest reduction in South America and even lower risk for African and 
Asian tropical forests (see also Section 12.5.5.6) (Gumpenberger et al., 
2010; Huntingford et al., 2013).
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Figure 12.37 |  Uncertainty in global mean temperature from Met Office Hadley Centre 
climate prediction model 3 (HadCM3) results exploring atmospheric physics and ter-
restrial carbon cycle parameter perturbations under the SRES A1B scenario (Murphy et 
al., 2004; Booth et al., 2012). Relative uncertainties in the Perturbed Carbon Cycle (PCC, 
green plume) and Perturbed Atmospheric Processes (PAP, blue plume) on global mean 
anomalies of temperature (relative to the 1986–2005 period). The standard simulations 
from the two ensembles, HadCM3 (blue solid) and HadCM3C (green solid) are also 
shown. Three bars are shown on the right illustrating the 2100 temperature anomalies 
associated with the CMIP3/AR4 ensemble (black) the PAP ensemble (blue) and PCC 
ensemble (green). The ranges indicate the full range, 10th to 90th, 25th to 75th and 
50th percentiles.

CMIP3
PAP

PCC

A
tm

os
ph

er
ic

 C
O

2 (
pp

m
) 

G
lo

ba
l s

ur
fa

ce
 w

ar
m

in
g 

(°
C

) 

1850   1900    1950     2000     2050      2100 

AR5 WG1 SPM: “Based on Earth System Models, there 
is high confidence that the feedback between climate and 
the carbon cycle is positive in the 21st century; …”.  
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However, uncertainty remains large 

βL uncertainty  
Moderate reduction 
(thanks to one model) 
 AR5 

AR4 

IPCC, AR5, 2013 



However, uncertainty remains large 

βL uncertainty  
Moderate reduction 
(thanks to one model) 

βO uncertainty  
Large reduction  
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IPCC, AR5, 2013 



However, uncertainty remains large 

βL uncertainty  
Moderate reduction 
(thanks to one model) 

βO uncertainty  
Large reduction  
 

γL uncertainty  
Moderate reduction 
(thanks to one model) 
 

AR5 
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IPCC, AR5, 2013 



However, uncertainty remains large 

βL uncertainty  
Moderate reduction 
(thanks to one model) 
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Large reduction  
 

γL uncertainty  
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IPCC, AR5, 2013 



However, uncertainty remains large 

Uncertainty in carbon cycle 
feedbacks is still quite large 
 
Very modest improvements 
over the last 10-15 years 
 
In particular for the land 
component, large uncertainty 
remains (factor of 10 !) 
 
The ocean is in a much better 
shape… 

 
 

IPCC, AR5, 2013 



Observational constraints 
1.  There are no direct observations of climate carbon cycle feedbacks 
2.  Ice-core data can inform on the climate – [CO2] relationship. Last 

millennium data gives a sensitivity of about 7ppm/K (Frank et al. 
2010) 

3.  Emerging constraints are promising tool, [CO2] inter-annual 
variability  gives a constraints on the tropical land carbon sensitivity 
to climate (γL): about -50GtC/K (Cox et al., 2013, Wenzel et al., 2014) 

4.  None of the above is absolutely certain (quite a few assumptions 
along the way) 

5.  None of the above explains what process is actually responsible for 
the land climate-carbon cycle feedback 

6.  None of the above gives much information on the spatial 
distribution of the feedback: the ice-core data provides a global 
estimate (land plus ocean), the inter-annual variability-so far- provides 
a constraint on tropical land only. 



The observing system 

•  What we have: a sparse, exploratory framework1.  
•  What we need: a dense, robust, and sustained system. 
•  What OCO-2 gives us: a denser, more robust and 

potentially sustainable atmospheric observing system. 
 
 (1: Ciais et al 2014).  



Could current monitoring network help 
reducing uncertainty on land feedbacks?   

Site level data (eg. fluxnet) 
•  Great for understanding physiological to ecosystem-

level processes. 
•  Far from ideal for estimate of mean carbon sink, even 

less for change in sink strength (non trivial C-budget 
closure),  

•  Not representative of global land (non trivial 
upscaling): systematic undersampling of crtical regions 

No hope of being use to constraint carbon cycle feedbacks 



Could current monitoring network help 
reducing uncertainty on land feedbacks?   

Atmospheric CO2  (eg. NOAA/ESRL) 
•  Great to estimate of land/ocean carbon sink 

partitioning at the global to continental scale  
•  Great to understand link between climate 

variability and carbon cycle 
•  Spatial coverage is still very sparse, inducing 

large uncertainty on sinks estimate. Far from 
ideal for estimate of change in sink strength 

No hope of being a strong constraint over carbon cycle 
feedbacks 



Way ahead … 

CO2 from space 
•  Potentially quite dense spatial and temporal 

coverage.  
•  Relatively long time-series (>10 years) required 
•  Need to run Earth System models, producing 

concentration fields,  
•  Use Detection & Attribution techniques to 

attribute changes in CO2 growth rate to climate-
carbon cycle feedbacks.  

 Clear potential to constrain carbon cycle feedback uncetainty 



Way forward-schematic 



Land CO2 effect - βL 

Tropical sinks = -3 Pg y-1


Mid-
latitude 
sinks = -1.2 
Pg y-1
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Hypothesis testing for β	
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β low: tropical net emission 

β: high: neutral to net 
sinks 



Combining data suggests and strong tropical 
uptake and a significant β  
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Can the remaining 
uncertainty be 
reduced by satellite 
data? 
 
The top-down 
constraint is critical 
because the annual 
local signal of the 
CO2 effect is 1/100 
of average local 
 NPP. 



CO2 EFFECT 
Schimel, D., Stephens, B.B., Fisher, J.B., in press. Effect of increasing CO2 on the terrestrial carbon cycle. 
Proceedings of the National Academy of Sciences, USA. 



Climate: estimates of carbon cycle 
sensitivity from tropical variability 

Global growth rate 
anomalies and 
temperature 
provide a short 
term correlate and 
constrain on long 
term model 
sensitivity. 

Estimated 
sensitivity 
changes over 
time 

ensemble members, which were produced by perturbing only para-
meters in the land carbon-cycle component of the model13, span an
even larger range (5.6–14.4 GtC yr21 K21), suggesting that uncertain-
ties in the modelling of the tropical land carbon cycle are critical.

Most importantly, these differing IAV sensitivities are strongly cor-
related (r 5 0.98, P 5 0.0005) with variations in cLT across C4MIP
models (black labels in Fig. 3a). The dashed red line in Fig. 3a shows
the best-fit straight line relating these variables for the six C4MIP
GCMs (although in principle a well-defined nonlinear function would
also yield an emergent constraint). The red labels in Fig. 3a show how
well this relationship would have predicted the variation in cLT for the
three HadCM3 ensemble members given the IAV sensitivity of each.
We note that two of the HadCM3 variants have cLT values beyond the
range of the C4MIP models, but that the extrapolated straight line is
nevertheless able to fit these outliers. The dotted vertical black lines in
Fig. 3a show the IAV sensitivity (61 s.d.), as previously estimated from
the contemporary observations, from which we derive tighter bounds
on cLT.

With the model-derived relationship between cLT and the IAV
sensitivity, we can use the observational constraint to estimate a proba-
bility density function (PDF) for cLT (Methods). Figure 3b compares
this with the PDF arising from assuming that all C4MIP models are
equally likely to be true and come from an underlying Gaussian dis-
tribution (red line). The emergent constraint from the IAV sensitivity
of the CO2 growth rate sharpens the PDF of cLT and moves its peak to a
less negative value (253 6 17 as opposed to 269 6 39 GtC K21). The
application of the IAV constraint reduces the estimated probability of
cLT values more negative than 2100 GtC K21, typically associated with
models that project CO2-induced tropical forest dieback, by almost
two orders of magnitude from 21% to 0.24%.

The IAV constraint also gives strong confirmation that tropical land
carbon is vulnerable to warming caused by non-CO2 forcing factors11.
Remaining uncertainties in tropical land climate–carbon-cycle feed-
backs are therefore the magnitude of long-term CO2 ferti-
lization effects in the tropics, and the extent to which future climate
change will be caused by non-CO2 factors.

METHODS SUMMARY
We used results from six of the eleven models used in C4MIP3. The five excluded
models consisted of four Earth-system models of intermediate complexity, which
do not typically generate internal variability as required to define the interannual
sensitivity of the CO2 growth rate to tropical temperature anomalies, and one
GCM (LLNL), which reported zonal mean land temperatures rather than zonal
mean (land and ocean) temperatures. Outputs from the remaining six models
were reported as annual means for each 30u latitudinal band (available at https://

c4mip.lsce.ipsl.fr/diagnostics_phase2.html). We combined the outputs from the
30uN–0u and 0u–30u S bands to define the projected changes for the 30uN–30u S
‘tropical’ band.

Models G, H and I in this study, which are used to test the emergent constraint
derived from the C4MIP models, come from a land carbon-cycle ensemble carried
out with the HadCM3C model14. HadCM3C is similar to C4MIP model A
(HadCM3LC) but includes a higher-resolution ocean model (1.25u3 1.25u rather
than 2.5u3 3.75u) and interactive atmospheric sulphur-cycle chemistry.
Seventeen HadCM3C ensemble members were defined by perturbations to key
land surface parameters including leaf nitrogen concentrations and the temper-
ature sensitivities of photosynthesis and soil respiration14. All ensemble members
were driven by the SRES A1B emissions scenarios, including changes in non-CO2

forcing factors (most notably changes in anthropogenic sulphate aerosols10).
Uncoupled simulations were carried out only for the standard parameter values
(HadCM3-st), and the ensemble members leading to the lowest (HadCM3-a) and
highest (HadCM3-h) global carbon-cycle feedbacks. We therefore focused on
these three variants of HadCM3C in this study.

The analysis of the model outputs and observational data, and the statistical
methods employed are outlined in Methods.

Full Methods and any associated references are available in the online version of
the paper.

Received 31 May; accepted 28 December 2012.
Published online 6 February 2013.
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Figure 3 | Emergent constraint on the sensitivity of tropical land carbon to
climate change. a, Climate sensitivity of tropical land carbon (cLT) versus the
sensitivity of the CO2 growth rate to tropical temperature, for each of the
models shown in Table 1. The dashed line shows the best-fit straight line across
the C4MIP models (black). The red symbols represent a test of this relationship
against the three HadCM3C ensemble members. The dot–dash lines indicate
the constraint on the observed IAV in the CO2 growth rate derived from Fig. 2b.
b, PDF for the climate sensitivity of cLT. The black line was derived by applying
the IAV constraint to the across-model relationship shown in a. The red line
shows the ‘prior’ PDF that arises from assuming that all of the C4MIP models
are equally likely to be correct and that they come from a Gaussian distribution.
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Regional carbon-climate sensitivity 
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