Climate carbon feedback
cycle uncertainty

Pierre Friedlingstein
University of Exeter, UK
Dave Schimel
Jet Propulsion Lab




Carbon and climate

* The goal for this science area — the Carbon-
Climate System - is to significantly improve our
understanding of, and our ability to predict, the

likely future trajectory of the atmospheric
carbon fraction.

* What we have: a sparse, exploratory framework.

o What we need: a dense, robust and sustained
system.




What is the carbon budget and %
where is the missing carbon going?
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Carbon cycle feedbacks

Atmospheric CO, Observed globally averaged combined land and ocean
surface temperature anomaly 1850-2012
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Our observing system is weakest where
feedbacks are likely strongest
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Remote sensing must focus on the critical regions




Stock and fluxes versus in situ
observations
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GPP and ET, compared to
FLUXNET

Biomass and total carbon
storage compared to
forest inventory plots
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Atmospheric CO, Observed globally a

Carbon cycle feedbacks

veraged combined land and ocean

surface temperature anomaly 1850-2012
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Concentration carbon
feedback

Existence known for
decades:

— 60-70’s for the ocean
(Bolin, Oeschger,
Siegenthaler,... ocean C
box-diffusion models)

— 80-90’s for the land
(Esser,Mooney, Melillo,
Friedlingstein, ...
global land C models)

Direct observations:
— Ocean : YES(-1sh)
— Land: NO
Processes understood

Magnitude very uncertain
(esp. land)




Atmospheric CO, Observed globally averaged combined land and ocean
urface temperature anomaly 1850-2012
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— Ice core data

Rediscovered in the late
90s-2000’s

* No direct observations

* Process understanding
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Model uncertainty: at the time o
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AR4 WG1 SPM: “Warming tends to reduce land and ocean
uptake of atmospheric carbon dioxide, increasing the fraction
of anthropogenic emissions that remains in the atmosphere.”

> 250 ppm

CMIP3

More than 20
climate models
(AOGCM)

No ESMs

11 C*MIP models,
but not officially
part of CMIP3

IPCC, AR4, 2007



And in IPCC AR5
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AR5 WGI1 SPM: “Based on Earth System Models, there
is high confidence that the feedback between climate and
the carbon cycle is positive in the 21st century; ...”.

> 300 ppm

CMIPS

More than 40 climate
models (AOGCMs)

10 Earth System
Models (ESMs)

All part of CMIP5

IPCC, AR5, 2013



However, uncertainty remains large
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However, uncertainty remains large
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However, uncertainty remains large
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Uncertainty in carbon cycle
feedbacks is still quite large

Very modest improvements
over the last 10-15 years

In particular for the land
component, large uncertainty
remains (factor of 10 !)

The ocean is in a much better
shape...



Observational constraints

There are no direct observations of climate carbon cycle feedbacks

Ice-core data can inform on the climate — [CO,] relationship. Last
millennium data gives a sensitivity of about 7ppm/K (Frank et al.

2010)

Emerging constraints are promising tool, [CO,] inter-annual
variability gives a constraints on the tropical land carbon sensitivity
to climate (y,): about -50GtC/K (Cox et al., 2013, Wenzel et al., 2014)

None of the above 1s absolutely certain (quite a few assumptions
along the way)

None of the above explains what process is actually responsible for
the land climate-carbon cycle feedback

None of the above gives much information on the spatial
distribution of the feedback: the ice-core data provides a global
estimate (land plus ocean), the inter-annual variability-so far- provides
a constraint on tropical land only.




The observing system

* What we have: a sparse, exploratory framework!.

 What we need: a dense, robust, and sustained system.

 What OCO-2 gives us: a denser, more robust and
potentially sustainable atmospheric observing system.

(1: Ciais et al 2014).




Could current monitoring network help®
reducing uncertainty on land feedbacks?

Site level data (eg. fluxnet)

* (reat for understanding physiological to ecosystem-
level processes.

 Far from 1deal for estimate of mean carbon sink, even
less for change 1n sink strength (non trivial C-budget
closure),

* Not representative of global land (non trivial
upscaling): systematic undersampling of crtical regions

No hope of being use to constraint carbon cycle feedbacks




Could current monitoring network help
reducing uncertainty on land feedbacks?

Atmospheric CO, (eg. NOAA/ESRL)

e (Great to estimate of land/ocean carbon sink
partitioning at the global to continental scale

e (Great to understand link between climate
variability and carbon cycle

* Spatial coverage 1s still very sparse, inducing
large uncertainty on sinks estimate. Far from
1deal for estimate of change in sink strength

No hope of being a strong constraint over carbon cycle
feedbacks




Way ahead ...

CO, from space

* Potentially quite dense spatial and temporal
coverage.
* Relatively long time-series (>10 years) required

* Need to run Earth System models, producing
concentration fields,

* Use Detection & Attribution techniques to
attribute changes in CO, growth rate to climate-
carbon cycle feedbacks.

Clear potential to constrain carbon cycle feedback uncetainty
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attribution
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Southern + Tropical L
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Combining data suggests and strong tropical

uptake and a significant 3
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Can the remaining
uncertainty be
reduced by satellite
data?

The top-down
constraint is critical
because the annual
local signal of the
CO, effect 1s 1/100
of average local
NPP.




Southern + Tropical Land (Pg Cy ")
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Climate: estimates of carbon cy\C\Iéf
sensitivity from tropical variability
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Regional carbon-climate sensitivity -
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