AGGREGATION AND SINKING OF PLANKTON BLOOMS

George Jackson

Some of the many collaborators whose work on particles went into this talk:

David M. Checkley, Michael J. Dagg
Steve Lochmann, Adrian Burd, Lars Stemmann, Tammi Richardson,
Colleen Petrik, Lionel Guidi, Marie-Paule Jouandet, Catarina Marcolin
Morten Iversen, Hide Yamazaki
I. Intro: Sampling the Martin curve

- Most active region is just below the euphotic zone
- Very difficult to sample adequately
- Most samples traditionally from below most active region
- Need more intensive study in this region

Figure 1 | Sinks and sources of organic carbon to the twilight zone. a, POC flux (black dots) below the mixed layer (shaded area) at the PAP site during 3–6

- More than 2/3 of flux decrease in first 100-150 m

- Zooplankton (ZR; dark grey) and prokaryotes (PR; mid grey). Error bars (Giering et al 2014)
- Integrated leucine incorporation based on a power-law fit was (Fig. 3).
- These allometric relationships are well constrained for the lower mesopelagic are therefore probably overestimates they are based on epipelagic zooplankton and our calculated respiration rates were 41.7
- Lateral advection 0
- Sinking POC 74 (65–83) Zooplankton 14 (13–15) 16 (8–30)
- The final estimate for integrated (50–1,000 m) prokaryotic respiration was 71 mg C m
- Total
- Table 1
- Numbers in brackets refer to lower and upper estimates (see text). Community respiration was
- between the upper and lower twilight zones.
- We suggest that this carbon source dominates twilight-zone production, and solubilization of detritus by attached microbes, production of free-
- Organic material that is subsequently remineralized by microbes (pro-
- The suggestion that prokaryotes dominate community respiration seems counterintuitive given that organic carbon supply to the twilight
- role of zooplankton in the twilight zone is to mechanically degrade
- the latter produced via zooplankton 'sloppy feeding'
- We focus entirely on community respiration as a measure of the true rates
- In a steady-state system, such as we assume this
- We consider a dynamic upper boundary for the twilight zone (the
Goal of this talk

• What new things do we know about the formation and fate of aggregates
 • Using models/coagulation theory?
 • With new observation tools?

• What are the implications for ocean carbon cycle?
II: Overview of aggregation theory

- Small particles collide to form large particles. Rates depend on
 - Physical conditions (shear, particle density)
 - Stickiness
 - Particle size
 - ...

- Rates vary **nonlinearly** with concentration
- Larger particles sink faster

- Key property is the size-dependence of concentration
Coagulation theory: predictions verified by observations

2. Aggregates fall ~50-100 m d\(^{-1}\). (Petrik et al 2013 DSRI; Jackson et al 2015).

3. Coagulation can occur very rapidly (Kerguelen). Measurements at 400 m do not always reflect current export. (Jouandet et al. 2014 Biogeosci.)

Instantaneous aggregate flux can be large.
Rapid aggregation near the Kerguelen Islands: observations (Jouandet et al. 2014 Biogeosciences 11: 4393-4406)

Sample water during a bloom off Kerguelen Islands. Use CTD/Fluor, UVP particle counter. 7 profiles in less than 2 d.

Rapid aggregate formation at base of mixed layer (ML).

Model this region.
Kerguelen- 2

Model: evolution of aggregates over time and depth:

• Simulate algal bloom coagulation in vertical dimension (1-D)
• Depth to pycnocline at 150 m, not 250 m

Observe
- Rapid aggregate formation at similar time, algal conc., depth
- Particle max near bottom of mixed layer.

• (note the different temporal scale: obs. over ~2 d; model 20 d; obs. 0-250 m; model 0-150 m)
Kerguelen- 3: Comparison of depth, size distributions

See similar depth, aggregate size distributions for observations, model

- Mass, size increases with depth
- Similar size, mass amounts

Observations (profile A3/2-5) Model (d 20)
III. Use laser optical plankton (particle) counter to measure particle size distributions (plankton + aggregates)

An autonomous profiling float: CTD, optical backscatter and/or chl fluor + particles (LOParticleCounter).
17 deployments up to 12+d from surface to 100 -200 m ~hourly.

Extract total aggregate volume concentration w depth. Look for zooplankton

Results in Checkley ea 2008 L&O; Jackson ea 2011 DSR; Petrik ea 2013 DSR; Dagg ea DSR 2014)
Most intensive measurements off Monterey Bay, California in July 2010

California Current

GK-2: 8.75 d
191 profiles

Upwelling region
Typical nVd profile (particle “mass” distribution)

Average over 2 m intervals
Well defined max, here at ~8 m depth, 300-700 um ESD
Increase in mean ESD w depth
Particles >0.1 cm extremely variable
Small number of counts problem

Extract an aggregate signal from the size distribution (published voodoo).
Extract aggregate concentration fn depth, time

- Aggregates have small concentrations near surface, increase as fall
- There is a distinct subsurface maximum
- Evidence of falling events

Example of distribution of aggregate concentration w depth, time off California

Conc. is 0 near surface, increases linearly w z

Downward trend

- Depth (m)
- Time (d)
- Aggregate conc (ppm)
Correlate aggregate volumes between depths for different 2 h offset

Higher correlation with deeper locations than shallower.

Falling!

Look for general patterns by averaging all pairs for same offsets.
Method 1: Isolate sinking signal of aggregates: settling velocity

Average all correlation values for given depth, time offsets.

Clear evidence for settling!

Aggregate settling velocity of 25 m/0.5 d = 50 m d$^{-1}$
Method 2. Compare with velocity from agg. size distributions calculated from 1st principles

Have:
- Aggregate size distrib.
- Know particle settling as fn of diameter

Assume a $\Delta \rho = 0.03$ g cm$^{-3}$ (low end of Waite and Nodder, 2001)

Calculate an average aggregate velocity ~ 60 m d$^{-1}$.

This is similar to our calculations from observations: 50 m d$^{-1}$!

Can use particle size distributions to calculate fluxes!
Average “aggregate” volume distribution

Total agg. Conc.
- Quite variable
- Very sharp decrease with depth around 50 m.
Calculate flux from sizes distrib, velocity (d<1mm) assume C:volume ratios

Flux in upper 100 m comparable to primary production.

Drops greatly between 50 and 100 m

Implications:
Vertical movement significant process in cycling

Deeper zooplankton grazing/ microbial degradation important.
What about fecal pellets? (Dagg et al 2015)

Have 2 deployments to compare with fecal pellet collections.

GK-2

GK-3

Fecal pellets!

Depends

Aggregates!
IV. What happens to these aggregates?

• Concentrations, fluxes decrease rapidly with depth at base of euphotic zone.

• Why is the flux not getting downward?
 • Numbers are large
 • If breaking up, should see an accumulation of POC/chl/backscatter at particle-o-cline. Do not.

• Have two (incomplete) sets of information:
 • Data from net tows
 • Data from LOPC size distributions
Gatekeeper hypothesis

• Much grazing on organic matter is tied to settling particles.
• Flux/aggregate feeding could be an important process.
• Animals important as gatekeepers for what enters the mesopelagic.

• Should see this reflected in animal grazing, distributions.
Tiselius and Kiørboe (1998) found massive algal aggregation in Benguela Current, settling but no flux out

Why?
Massive feeding by *Noctiluca* at bottom of euphotic zone

Perhaps it is relatively common.

e.g. *Neocalanus cristatus* (Dagg 1993)
Animal types expected to be flux feeders

- Sarcodines; radiolarians
- Pteropods
- Dinoflagellates
- ...?

Hexacontium sp.
© Jane K. Dolven
http://tolweb.org/
Polycystine_radiolarians/121189

Clio pyramidata,
Gilmer and Harbison,
Zooplankton distribution for different feeding sources: models of zoo distrib.

- Phyto/zoo (NPZ model)
 - Zoo uniform near surface

Aggregate/zoo -> Zoo localized below prod max.
Observ: Zoo distributions vs SOLOPC flux

Animals collected using 202 um mesh MOCNESS nets. Flux estimated in 3h around tow

In this case,
- euphausiids and small zooplankton (e.g Oncaea, Oithona) are there
- radiolarians are deeper

Caveat: 202 um mesh is not optimal for catching small zoo, radiolaria

Does not capture microzoo
Use SOLOPC data for zoops.

Correlate concentrations in different size bands of LOPC data. Investigate with and without aggregate contribution. Plot results as correlation matrix.

Find at least 4 characteristic groups in aggregate-free LOPC data.

1. Aggregates
2. Large 0.5-1 cm (Euphausiids?)
 1. + correlation with aggregate band
3. Medium 0.7-1mm (Calanus?)
4. Small 100-250 um (Oncaea, Oithona?)

With aggregates
Pearson xcorr. for total nVd

Without aggregates
Pearson xcorr. for residual nVd
Isolate characteristic size-signature from SOLOPC size distributions for animal groups

Use Matlab mumbo-jumbo (nnmf.m) to isolate characteristic size distributions from \(nVd \) spectra (after removing aggregates)

Determine their contributions in the observations.
- 1 - small (100-200 um), similar to \(Oithona, Oncaea \)
- 2 - mid (300-500 um)
- 3 - larger (0.5-1 mm), similar to \(Calanus \)
How are these zoo groups distributed?

- V1(small): tracks aggs
- V.2 (medium) at part. max, high agg. conc.
- V3(~1mm) occurs later, deeper

Correlation r w agg. decrease (-dV/dz)
- V1: 0.29
- V2: 0.46
- V3: 0.18

All action above 50 m. Is V2 responsible?
V. Summary and Implications

- Feeding is sharply localized at base of particle max.

- Consistent with work by Fiedler, Napp showing feeding by zooplankton deeper than production max.

- Consistent with observations of flux feeding mode for some zooplankton (e.g., *Neocalanus cristatus* Dagg, T&K). Animal choices could be different for flux feeding rather than filter feeding.

- Affects the remineralization of nutrients, vertical flux out of euphotic zone.
Implications-2

- Vertical flux starts in the euphotic zone
- Zooplankton feeding may produce faster sinking fecal pellets, but:
 - it is siphoning off some of the vertical flux into respiration, growth. That is, decreasing flux
 - it is speeding up the individual settling speed, but not increasing the total flux.

- Different processes dominate in different parts of the water column, different locations. There is no one process dominant everywhere, all depths and times.