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Abstract

This paper describes a model for the quasi-biennial oscillation based on the theory of
gravity wave breaking and saturation. In the model, gravity waves are forced at low altitude
and propagate vertically upwards, their amplitude increasing with height. In regions where
the waves begin to overturn, dissipation is added locally, so that the waves are prevented
from breaking. This results in momentum flux divergence and acceleration of the zonal
mean velocity.

1 Introduction

The quasi-biennial oscillation (QBO) is an alternating pattern of westerly and easterly zonal
mean winds observed in the equatorial stratosphere. The oscillation has an average period
of 26 months and a maximum amplitude of about 20 m s−1 and is symmetric about the
equator occurring between 12◦ S and 12◦ N. In the past few decades, a number of theories
have been developed to explain the QBO. It is well-known now that it is driven by wave-
mean flow interactions of waves propagating upwards from the troposphere. There has been
some debate as to the type of waves that are involved, i.e., large scale Rossby-gravity waves
and Kelvin waves and/or mesoscale internal gravity waves. It is now generally recognized
that to generate a large enough vertical momentum flux to drive the QBO, the gravity wave
fluxes must be present. The review article of Dunkerton [1] discusses the role played by
gravity waves in generating the QBO.

The QBO has been simulated quite successfully using one-dimensional models in which
the waves interact with the mean flow but wave-wave interactions are ignored. Lindzen and
Holton [2] initially postulated that the waves interact with the mean flow through absorption
at a critical level where the mean velocity is equal to their phase speed. Oscillations in the
mean velocity would result on specifying a suitable upper boundary condition to simulate
an equatorial semi-annual oscillation (period ∼ 6 months). However, a few years later,
they re-evaluated this theory including the effects of wave dissipation due to Newtonian
cooling [3]. The mechanism by which dissipation of the waves could produce an oscillation
of the mean flow was presented explicitly by Plumb [4] using a numerical model and by
the laboratory experiments of Plumb and McEwan [5]. One of the key features emerging
from [4] is that the period of the oscillation is inversely proportional to the square of the
amplitude of the forcing.
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In recent years, some GCMs (general circulation models) have been able to sponta-
neously produce QBOs (for example, [6], [7]). It is interesting to note that the majority
of these oscillations have periods that quite closely approximate the period of the observed
QBO. This is quite surprising given the fact that the GCMs all use different formulations, in
particular, different gravity wave parameterizations, and hence they must certainly employ
different forcing amplitudes (see, for example, [8], for a comparison of several GCMs, some
of which are able to generate QBOs). According to the wave-mean flow interaction models
[4], one would have expected their periods to differ greatly.

The motivation for this GFD Summer Project was to find an explanation for this. This
report describes a simple model for the QBO that was developed in an attempt to better
understand the relationship between the forcing amplitude and the period of the oscillation.
The model is based on the idea of gravity wave breaking and saturation described by Lindzen
[9]. The formulation of the model is similar to that of Plumb [4]. The main difference is
that dissipation is introduced locally only when needed to prevent wave breaking. Because
of the similarity with Plumb’s model, a brief description of that model is given in section
3. In section 4, Lindzen’s gravity wave saturation criterion is described. Results of the
simulations are presented in section 5.

2 Generation of a QBO by dissipation

In this section, a brief review is given of the mechanism by which a QBO can be generated
by dissipation of waves. The details are given in [4]. Note that the notation here differs
slightly from that of [4]; in particular, the streamfunction here has been defined as the
negative of the one used there:

∂ψ

∂z
= −u,

∂ψ

∂x
= w,

so certain terms in the equations below are of opposite sign to the corresponding terms in
[4].

The equations for the streamfunction ψ and the buoyancy σ (defined in terms of the
density ρ as −g∆ρ/ρ) are

∂∇2ψ

∂t
+
∂σ

∂x
− ν∇4ψ + J(ψ,∇2ψ) = 0 (1)

and
∂σ

∂t
−N2∂ψ

∂x
+ µσ + J(ψ, σ) = 0. (2)

For the moment, it is assumed that all the variables and parameters are dimensionless
(see section 4). The equations are linearized about a mean state by writing ψ(x, z, t) =
ψ̄ + εψ′(x, z, t) where ψ̄ is the zonal mean and ψ′ the disturbance streamfunction. The
non-dimensional parameter ε then gives a measure of the magnitude of the perturbation
quantities relative to the mean flow quantities. The computational domain is a rectangular
region at the lower boundary of which a forcing of the form ψ ′ = eik(x−ct) is applied. The
solution then takes the form

ψ′(x, z, t) = φ(z)eik(x−ct),
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where the amplitude φ(z) of the disturbance satisfies the equation

∂2φ

∂z2
+

{

N2[1 + iµ/k(ū− c)

(ū− c)2
−

ūzz

ū− c
− k2

}

φ = 0. (3)

Viscosity has been ignored in this last equation with the assumption that viscous dissipation
of the waves is much less than thermal dissipation [4]. An equation for the evolution of the
mean flow is obtained by averaging equation (1) over a wavelength 2π/k:

∂ū

∂t
− ν

∂2ū

∂z2
= −ε2

∂

∂z
(u′w′). (4)

The numerical model comprises equations (3) and (4). To generate a QBO with this
model, there must be two waves with phase speeds of opposite sign, i.e., eik1(x−c1t), eik2(x−c2t).
We shall assume that c2 = −c1. It is assumed that ū is slowly varying and ūzz ≈ 0 and that
k2 is sufficiently small that , equation (3) can be solved using the WKB method (see, for
example, Bender and Orszag [10]) and the momentum flux for each wave calculated. These
are shown to be:

Fn(z) = Fn(0) exp







−

z
∫

0

Nµ

k(ū− c)2
dz′







n = 1, 2.

Note that, in the absence of dissipation, the momentum fluxes would be independent of
height as required by the Eliassen-Palm non-acceleration theorem. The right hand side of
equation (4) is the sum of the gradients of the momentum fluxes for the 2 waves. It was
shown in [4] that the sign of u′w′ is the same of the sign of the phase speed of the waves.
Thus the wave with positive phase speed accelerates the mean velocity while the one with
negative phase speed decelerates it.

3 Gravity wave breaking

Following Lindzen [9], but using the notation of section 2 (with µ = 0), the criterion for
wave breaking can be determined as follows. First, note that, with µ = 0, the equation for
the amplitude of the perturbation streamfunction can be written as

∂2φ

∂z2
+ λ2(z)φ = 0,

where

λ2(z) =
N2

(ū− c)2
−

ūzz

ū− c
− k2.

If ū is slowly varying and ūzz ≈ 0, then an approximate solution can be found for φ using
the WKB method:

φ ∼ λ−1/2ei
∫

λdz. (5)

Now the density perturbation is given by

ρ′ = −
ρ̄z

ū− c
φeik(x−ct). (6)
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The condition for wave breaking is that the density gradient be positive, i.e.,

ε

∣

∣

∣

∣

∂ρ̂

∂z

∣

∣

∣

∣

≥ |ρ̄z| (7)

To leading order,
∂ρ̂

∂z
∼ −

ρ̄z

ū− c
λ1/2ei

∫

λdz; (8)

so the waves break if
ε
∣

∣λ1/2
∣

∣

|ū− c|
≥ 1. (9)

This is approximately equivalent to saying

ε
∣

∣N1/2
∣

∣

(ū− c)3/2
≥ 1. (10)

Thus, the waves are more likely to break if N is large or if ū− c is small.
Consider now the case where µ, the diffusion coefficient in equation(3), is non-zero.

Then

λ2 ≈
N2

(ū− c)2

(

1 +
iµ

k(ū− c)

)

and λ has an imaginary part. The detailed analysis of Lindzen [9] showed that the condition
under which the dissipation would prevent the growth of | ∂ρ

∂z | is that the imaginary part of
λ satisfies

|λI | ≈
∂

∂z

(

ε
∣

∣N1/2
∣

∣

(ū− c)3/2

)

. (11)

4 Numerical model and results

The model equations for our simulation are, as given in section 2,

∂2φ

∂z2
+

{

N2[1 + iµ/k(ū− c)

(ū− c)2
−

ūzz

ū− c
− αk2

}

φ = 0 (12)

for the amplitude of the perturbation streamfunction and

∂ū

∂t
− ν

∂2ū

∂z2
= −ε2

∂

∂z
(u′w′) (13)

for the time evolution of the zonal mean wind. The various quantities have been non-
dimensionalized with respect to reference values as summarized in the table below. The
range of values used in the simulations for each of the non-dimensional quantities is given
as well as approximate values for some of the dimensional quantities. Asterisks (∗) denote
dimensional quantities.
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Non-dimensional Dimensional Reference quantities

ū∗ ū ≈ 0.1 U

c∗ ∼ 10− 20m s−1 c = ±0.2 U ∼ 50− 100m s−1

t∗ t T

z∗ ≤ 50km z ≤ 10 H ∼ 5km

x∗ x ≤ 2π L

φ∗ φ ϕ

Table 1: Reference quantities used in the non-dimensionalization.

The non-dimensional parameter ε = ϕ/(LU) gives a measure of the amplitude of the
perturbation at the forced boundary and α = H/L is the aspect ratio. The buoyancy
frequency and hence the time scale T of the evolution of the disturbance and the mean flow
are set by the choice of vertical scale H, the velocity scale U and the aspect ratio. The
vertical scale is taken to be much smaller than the horizontal scale, so that α << 1.

The equations were solved using standard second-order finite-difference approximations
for the z-derivatives. The computational domain was the rectangular region 0 < x < 2π,
0 < z < h = 10. The initial mean velocity took the form of a jet centered at z = 5:
ū(z, 0) = bsech2(z − 5), where b is a positive constant. Two waves of the form eikn(x−cnt),
with k1 = 1, c1 = 0.2 and k2 = 1, c2 = −0.2, were forced at z = 0 and propagated up to
interact with the jet. The constant b was chosen to be less than 0.2, so that the Doppler-
shifted phase speed (ū − c) of both waves was non-zero everywhere. In other words, there
was no critical level for either wave initially and, consequently, none could be generated at
later times ([4]). At the upper boundary of the computational domain, a radiation condition
was applied to prevent reflections at the boundary. The buoyancy frequency N was allowed
to be dependent on z. It was chosen to satisfy

N2 = N2
0 e

2z/h,

where N0 is a constant. With this choice of N 2, the perturbation streamfunction varies like
ez/2h. The WKB-defined vertical wavenumber is approximately N/(ū− c). With c = ±0.2,
N ∼ O(1) and h = 10, there are then several vertical wavelengths within the computational
domain.

The first few experiments were carried out with non-zero constant dissipation to repro-
duce the results of Plumb [4]. A QBO was generated with a period that depended on ε
the amplitude of the forcing. Figure 1 shows time-height plots of the zonal mean velocity
computed using this model. The set of parameters used in both graphs was as follows:
N0 = 2.0, µ = 10−3, ν = 5 × 10−4, α = 2 × 10−3. Initially the mean velocity profile took
the form of a positive jet in the region 4 < z < 6 and approxiamtely zero elsewhere. In
Figure 1(a), this positive region has descended to z = 0 by t ≈ 2700. This positive phase
is followed by a negative phase (approximately 2700 < t < 5000) and then another positive
phase, and so on. The period of the oscillation appears to be about 5500 non-dimensional
time units. This corresponds to a dimensional period of magnitude of about a month using
the reference values given in Table 1. By decreasing ε from 0.1 to 0.05, the period of the
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oscillation was increased as predicted by the theory described in section 2. With a still
smaller forcing amplitude, a more realistic period could be obtained.

Having verified that the model could produce an oscillation when set up in this way with
constant dissipation throughout the computational domain, we set about implementing the
gravity wave saturation criterion described in section 3. With our choice of N 2, the criterion
(11) becomes

|λI | ≈
1

2h
−

3

2

(

1

ū− c

∂ū

∂z

)

. (14)

The imaginary part of λ is known from the expression for λ and, from this, the dissipation
coefficient µ required to prevent the waves from breaking may be evaluated. Clearly this µ
depends on z; it is largest in regions where the waves are on the verge of breaking and small
or zero elsewhere. The saturation technique can thus be summarized as follows. Initially
µ is set to zero and the model run is started. Without dissipation, the momentum fluxes
for the waves are independent of height and thus the only changes in the mean velocity
result from the presence of the small but non-zero viscous term. The amplitude of the
waves increases with height because of the exponentially increasing buoyancy frequency.
Dissipation is introduced locally using (14) to prevent the waves from breaking. Thus,
more dissipation is needed at higher altitudes and in particular near the center of the jet
where (ū− c) is smallest, but almost none near the ground. With such a set-up, the extent
to which the mean velocity is accelerated should, to some extent, be insensitive to what
occurs at low altitudes. It is conceivable then that the time scale of the evolution of the
mean velocity would be independent of changes in the amplitude of the forcing.

The time-height plots resulting from this type of simulation are shown in Figure 2 for
ε = 0.1 and ε = 0.05. Descending westerly and easterly phases are seen at higher altitudes;
however the time scale of the descent is quite long and due to computational restrictions, the
model has not yet been run for a long enough time to produce an oscillation. It is interesting
to note that this time scale is almost the same for the two values of ε. It remains to be
seen whether, if the simulations are continued to the point where an QBO-like oscillation
results, the period of the oscillation would indeed be the same for the two values of ε.
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Figure 1: Time-height plots of the zonal mean velocity for the case of constant dissipation
with (a) ε = 0.1 and (b) ε = 0.05
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Figure 2: Time-height plot of zonal mean velocity with (a) ε = 0.05 and (b) ε = 0.1. Here,
dissipation has been added to prevent the waves from breaking.
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5 Conclusions

This report described a model for the QBO in which the waves are dissipated locally in
regions where their amplitudes grow to the point of breaking. By adding dissipation to the
model in this way, the mean flow is accelerated/decelerated locally and descending westerly
and easterly phases of the zonal mean velocity result. The time-scale on which this occurs
is apparently insensitive to changes in the forcing amplitude.

In section 1, it was mentioned that most GCMs that produce QBOs get the period
approximately right although they use different wave parameterizations. This suggests that
the period of the QBO must be independent of the amplitude of the waves at the forcing
level. It is possible then that, in reality, the QBO is generated by a mechanism such as
that described in this report. However, this report describes work in progress. At the time
of writing, only a limited number of runs had been carried out. A more extensive series
of simulations with a wider range of choices of the relevant parameters and a longer total
computational time would certainly shed more light on the the relation between the period
and the amplitude of the forced waves. Ultimately, a full non-Boussinesq model may be
required for a complete analysis of the problem. Also it would probably be necessary to
include the effects of the higher harmonics, i.e., wave-wave interactions, as well as wave-
mean flow interactions.
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