Biogeochemistry of coccolithophore blooms

William M. Balch,
Bigelow Laboratory for Ocean Sciences, East Boothbay, ME

bbalch@bigelow.org
Acknowledgments

• Team Effort-D. Drapeau, B. Bowler, L. Lubelczyk, E. Lyskowski, Amy Wyeth (Bigelow Laboratory), H. Smith & A. Poulton (NOC; for SEM images)
• Funding of Great Belt Cruises from NSF
• Our participation in AMT and other various cruises supported by NASA
• AMT cruises- NERC
• Captains and crew of: RRS Discovery, R/V Melville, R/V Revelle, R/V Ron Brown, RRS James Clark Ross, RRS James Cook, R/V Tangaroa
• Ocean Data View-Reiner Schlitzer, AWI
The Journey…

- History of coccolithophore blooms
- Coccolithophore distributions in non-bloom conditions
- Remote sensing of coccolithophores from space
- Great Calcite Belt description
- Taxonomic observations
- Relationships to hydrography
- Biogeochemistry
SARSIA 6

DISCOLORATION OF THE SEA DUE TO COCCOLITHUS HUXLEYI "BLOOM"¹

By

GRIM BERGE

Directorate of Fisheries, Institute of Marine Research, Bergen

INTRODUCTION

In June 1955 a conspicuous discoloration of the coastal waters and the fjord systems was reported from the surroundings of Haugesund, South-West Norway. According to the report the sea water had acquired an unusual milky-green colour, a condition noticed both by fishermen and other inhabitants in the area. Preserved surface samples were sent to the Institute and microscopical examination revealed enormous concentrations of the calcareous flagellate Coccolithus huxleyi (LOHM.) KAMPTNER. The phenomenon was evidently caused by this organism, which was recorded in numbers up to 115 million cells per litre of surface water, the situation being similar to that reported by BRAARUD (1937 and 1945) from the Oslofjord and (1940) from the Grønsfjord.
Modern Coccolithophoridae of the Atlantic Ocean—I. Placoliths and Cyrtoliths*

Andrew McIntyre† and Allan W. H. Bé†

(Received 21 June 1967)

Abstract—Although there are more than 70 species of Coccolithophoridae living in the Atlantic only about 16 of these have adequate fossil records, mainly placoliths and to a lesser extent cyrtoliths.

Biogeographic ranges determined from surface sediment and plankton samples show that living species have slightly broader distributional ranges than those preserved in oceanic sediments. This is attributed to rapid warming of the Atlantic since the last glacial age. Species distributions have been delineated by maximum position poleward of the limiting isotherm for warm-water species and maximum equatorward position of the limiting isotherm for cold water species. Dispersion beyond their present boundaries by ocean currents after death is negligible.

Temperature studies based on cruise data and bimonthly sampling off Bermuda enabled the authors to determine maximum and optimum temperature ranges for each species. The majority are subtropical forms. A few are stenothermal, such as Umbellosphaera irregularis (21°–28°C) and Coccolithus pelagicus (7°–14°C) and they have proved useful in paleoecology.

The species are grouped into five climatic assemblages: tropical, subtropical, transitional, subarctic, and subantarctic.
Fig. 17. The coccolithophorid floral zones of the Atlantic Ocean, I tropical, II subtropical, III transitional and IV subarctic–subantarctic.
Coccolithophore diversity decreases towards the poles.

Table 10. Species of the Atlantic coccolithophorid floral assemblages arranged in descending order of importance within each group.

<table>
<thead>
<tr>
<th>I Tropical</th>
<th>II Subtropical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbellosphaera irregularis</td>
<td>Umbellosphaera tenuis</td>
</tr>
<tr>
<td>Cyclolithella annulus</td>
<td>Rhabdosphaera stylifera</td>
</tr>
<tr>
<td>Cyclococcolithus fragilis</td>
<td>Discosphaera tubifera</td>
</tr>
<tr>
<td>Umbellosphaera tenuis</td>
<td>Cyclolithella annulus</td>
</tr>
<tr>
<td>Discosphaera tubifera</td>
<td>Gephyrocapsa oceanica</td>
</tr>
<tr>
<td>Rhabdosphaera stylifera</td>
<td>Umbilicosphaera mirabilis</td>
</tr>
<tr>
<td>Helicosphaera carteri</td>
<td>Helicosphaera carteri</td>
</tr>
<tr>
<td>Gephyrocapsa oceanica</td>
<td>Cyclococcolithus leptoporus</td>
</tr>
<tr>
<td>Coccolithus huxleyi</td>
<td>Coccolithus huxleyi</td>
</tr>
<tr>
<td>Cyclococcolithus leptoporus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III Transitional</th>
<th>IV Subarctic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccolithus huxleyi</td>
<td>Coccolithus huxleyi</td>
</tr>
<tr>
<td>Cyclococcolithus leptoporus</td>
<td>Cyclococcolithus leptoporus</td>
</tr>
<tr>
<td>Gephyrocapsa ericsonii</td>
<td></td>
</tr>
<tr>
<td>Rhabdosphaera stylifera</td>
<td></td>
</tr>
<tr>
<td>Gephyrocapsa oceanica</td>
<td></td>
</tr>
<tr>
<td>Umbellosphaera tenuis</td>
<td></td>
</tr>
<tr>
<td>Coccolithus huxleyi</td>
<td>Coccolithus huxleyi</td>
</tr>
<tr>
<td>Cyclococcolithus leptoporus</td>
<td>Cyclococcolithus leptoporus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V Subantarctic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccolithus huxleyi</td>
<td></td>
</tr>
<tr>
<td>Cyclococcolithus leptoporus</td>
<td></td>
</tr>
</tbody>
</table>
What is a coccolithophore bloom?

- Holligan et al. (1983) observed 8500 cells per mL and 78,000 coccoliths per mL
- But note, chlorophyll can be ~1 mg m$^{-3}$
- But it represents a significant discoloration
The discovery of mesoscale blooms of coccolithophores...

- The first observation

Holligan et al. (1983)

Satellite and ship studies of coccolithophore production along a continental shelf edge

P. M. Holligan*, M. Viollier†, D. S. Harbour*, P. Camus† & M. Champagne-Philippe§

* Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, UK
† Joint Research Centre, Ispra Establishment, 21020 Ispra, Italy
‡ Institution Scientifique et Technique des Peches Maritimes, BP 1049, 44037 Nantes Cedex, France
§ Etablissement d’Etudes et de Recherches Meteorologiques, CMS, 22302 Lannion, France

Each year since the Coastal Zone Color Scanner (CZCS)† was launched on the Nimbus 7 satellite in November 1978, extensive patches of water giving strong reflectance of visible light have been observed during the early summer along the outer margin of the north-west European continental shelf between 45 and 60°N (refs 2, 3). Various hypotheses including coccolithophores, phytoplankton with external calcified plates or coccoliths, were suggested to explain a comparable feature on Landsat images for July 1977 ‡. To test these, we report here observations made from French and UK research vessels in 1982, using unprocessed CZCS images supplied by the University of Dundee and Centre de Meteorologie Spatiale in Lannion to locate suitable sampling areas immediately before and during the cruise, and atmospherically corrected data from the European Space Agency for subsequent analysis and calibration of the reflectance signals. The high reflectance was found to be

Loose coccoliths plus a coccolith-packed fecal pellet from bright water
Gulf of Maine—Late 1980’s

- Our first observations of a mesoscale coccolithophore bloom
- Used satellite (AVHRR) to confirm huge areal extent
- First direct observations of carbon fixation in such a bloom (into CaCO3)

R/V Argo-Maine, June 1988; Wilkinson Basin

2,000 cells mL⁻¹
300,000 coccoliths mL⁻¹
Just when we thought these blooms couldn’t get any bigger...
AVHRR- June 18, 29 and July 1, 1991 composite

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 7, NO. 4, PAGES 879-900, DECEMBER 1993

A BIOGEOCHEMICAL STUDY OF THE COCCOLITHOPHORE, Emiliania huxleyi, IN THE NORTH ATLANTIC

Patrick M. Holligan,¹ Emilio Fernández,¹ James Aiken,¹ William M. Balch,² Philip Boyd,³ Peter H. Burkill,¹ Miles Finch,⁴ Stephen B. Groom,⁵ Gillian Malin,⁶ Kerstin Muller,⁷ Duncan A. Purdie,⁴ Carol Robinson,⁷ Charles C. Trees,⁸ Suzanne M. Turner,⁶ and Paul van der Wal⁹

[Coccolithophores] = 10,000 mL⁻¹
[Coccoliths] = 300,000 mL⁻¹

Total area = 0.5 million km²
South of Iceland, 1991

Outside Bloom

Constant “color chip” for comparison of water color

Inside Bloom
While most were looking down, others were looking up...

View from Lufthansa flight #423, 38,000 feet
Performance of the PIC 2-band/3-band algorithm

Match-ups AQUA- Through May ‘15

C. Mitchell/ J Hopkins; Bigelow Laboratory
The PIC algorithm regularly observed a high reflectance feature in the S. Ocean… **The great calcite belt**
- Appeared to contain 1/3 of the PIC in the global ocean
Great Calcite Belt description…

- Region of consistently high reflectance in the Southern Ocean (in ocean color remote sensing) Balch et al., 2011. *JGR Gas-Ex Special Issue*
- Observed annually by CZCS, SeaWiFS, MODIS Aqua, MODIS Terra, MERIS and VIIRS missions (1978-present)
- 52 million km2 (16% of the global ocean)
- Culprit…*Emiliania huxleyi* but there are very few observations!
Sea surface distribution of coccolithophores in the eastern Pacific sector of the Southern Ocean (Bellingshausen and Amundsen Seas) during the late austral summer of 2001

José M. Gravalosa a, b, José-Abel Flores a, Francisco J. Sierro a, Rainer Gersonde b

a Universidad de Salamanca, Departamento de Geología, 37008, Salamanca, Spain
b Alfred Wegener Institute for Polar and Marine Research, Postbox 120103, 27555 Bremerhaven, Germany
13 research cruises have crossed various parts of the Great Belt between Punta Arenas, Chile and Fremantle, Australia (half the Southern Ocean...)

- AMT 15-22, 24 (southern end of each transect goes through the GCB)
- Southern Ocean Gas Ex
- COPAS ’08 (Patagonian Shelf)
- Great Belt I (Punta Arenas, Chile to Cape Town, S. Africa)
- Great Belt II (Durban, S.A. to Fremantle, Australia)
Are coccolithophores actually observable in microscopy samples from GCB I?

SEMs-H. Smith, NOC
Are coccolithophores actually observable in microscopy samples from GCB II?
Are coccolithophores actually observable in microscopy samples from GCB II?

SEM images:
- Stn 53; 14m
- Stn 53; 14m
- Stn 63; 19m
- Stn 73; 16m
- Stn 93; 19m
- Stn 119; 7m

SEM images by H. Smith, NOC
There are consistently “light and dark” parts of the GCB: 2002-2013 Aqua PIC climatology.
A close-up view of the belt...PIC & $p\text{CO}_2$
Bio-optical/hydrographic observations

- Do high reflectance waters of the GCB correspond to high scattering waters associated with PIC?
- Are these high reflectance waters associated with specific water masses?
Patterns of satellite PIC [monthly binned] similar to ship-based optical estimates of PIC (sampled over 35d; b_b')
Ratio of Int calcification:photosynthesis roughly tracks standing stock of PIC ($b_{b'}$)
T/S Plot with just patches of elevated $b_{b'}/b_{bptot}$ defined
Highest PIC backscattering relative to total particle backscattering:

• Is not exactly at the climatological front positions but is close
• Greatest relative importance of PIC backscattering in the GCB is between the sub-antarctic front and the sub-tropical front
Latitudinal Sections through Atlantic

- How does the coccolithophore light scattering vary?
- How does coccolithophore concentration, PIC and BSi vary?
Integrated distributions of PIC, BSi and coccolithophores
In NACG, Equatorial region, SACG and Southern Sub-Tropical Convergence, CaCO3 accounts for 25-50% of total backscattering.
Mean Section of Cocco cells: Entire AMT

Elevated at both ends of transect
Mean Section of coccolith concentration: Entire AMT

Elevated at both ends of transect w/ sub-surf peak below equatorial region
Mean Section of BSi: Entire AMT

Greatest in South STF
Mean Section of PIC:POC Entire AMT

Note increases with depth
Classic mandala of phytoplankton succession (Margalef, 1978)...

Life-forms of phytoplankton as survival alternatives in an unstable environment. *Oceanologica Acta* 1: 493-509

His paper pre-dated satellite remote sensing of mesoscale coccolithophore blooms [i.e. NO WAY TO OBSERVE HUGE BLOOMS]! Barely mentioned coccolithophores except Eppley (1970) on culture observations on the intermediate growth rates of coccolithophores in saturating nutrients!
Role of stability:
Chl section shows strongest correspondence with BV frequency
Section of coco cells with BV frequency overlaid... less correspondence than with chlorophyll.

Highest conc of coco cells associated with highest latitudes (e.g. Great Calcite Belt) with reduced BV freq.
Int PIC highest at lowest Brunt-Vaisalla frequencies

Results \textbf{not} consistent with Margalef’s Mandala
Increasing the scale of observation...viewing all cruises

CaCO₃ backscattering (m⁻¹; 531nm)
Putting all cruises together...
Biogeochemistry, global trends
MODIS-Avg Great Belt PIC (40-50°S) … elevated PIC concentrations near continents and islands!

A

MODIS Aqua Mission (2011-2012)

Mean PIC per 10° Lat x 10° Lon box (mol m⁻³)

-5 -4.5 -4 -3.5 -3 -2.5

West -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Longitude

East

B

Log PIC concentration (mol m⁻³)

-180 -120 -60 0 60 120 180

West Longitude East

Austral summer
Austral Fall
Austral Winter
Austral Spring
PIC Global Time Series (MODIS-Aqua) Mission record- Highest PIC during austral summer->95% non-bloom
Possible role of dust and metal limitation of phytoplankton…

Dust distribution of Jickells et al, 2005

Ben Twining, Bigelow Laboratory

= neither Zn, Fe or Co limited

= iron limited

= Zn limited
High surface pCO_2 in the region of high bb’ and PIC biomass
Summary- Biogeochemistry of coccolithophore blooms...

- Highest coccolithophore density regions of GCB show enhanced pCO_2 (Iceland feature and GCB)
- Iceland and former GoM feature were real “blooms”
- Satellite-derived PIC estimates show enhancement near continents- possible role of dust/iron?
- Trace-metal limitation in GCB appears greatest in Indian Sector- consistent with dust deposition mechanism. Iron limitation also in N. Atlantic (Nielsdóttir et al, Global Biogeoc. Cycles, 2009)
- Elevated abundance associated with low (AMT) to moderate stability (GCB).
Thank you!

The seasonal cycle of PIC as measured by NASA MODIS Aqua

Jul 4, 2002