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1 Introduction

The vast abyssal ocean is comprised of layers of very cold and dense water. As this is
true even for the deep water of the tropics, the source of this water must be of polar
origin. The vertical circulation that enables ventilation of these layers is driven by surface
processes resulting from air-sea interaction. Heat loss of the surface water in combination
with increased salinity due to evaporation or ice formation produces a dense water that sinks
toward the ocean bottom. During the descent its density gets reduced due to entrainment of
lighter water, and the final depth of the water mass is a function of surface density and the
extent of mixing during the descent. The water then flows in a deep, large-scale circulation
that fills the ocean basins. Lighter water rises to the surface and flows in surface currents
to the polar regions to replace the water that has sunk.

The abyssal ocean can be divided into three layers: an intermediate layer from the base
of the thermocline to about 1500 m, a deep layer below this and finally a bottom layer that
is in contact with the sea floor. The sources of new abyssal waters are few as there is only a
small number of regions that can produce surface water dense enough to sink to the deeper
layers of the ocean. Intermediate waters form mainly in the Labrador Sea and the sub polar
areas from extensive cooling but also in the Mediterranean due to high evaporation rates.
Deep water formation occurs in the Nordic seas where cooling, in combination with salt
release on the shelves due to ice formation, creates a dense water mass that spills in to the
North Atlantic, mainly through the Faeroe Bank Channel. In the Southern Hemisphere
deep and bottom water are formed at the Antarctic continent with the main location in the
Weddell Sea.

Obtaining long-term measurements of the circulation in the deep ocean is difficult and
our understanding of these flows is hence somewhat limited. Tracer studies have lately
increased the knowledge of the flow and information is also gained from models. Stommel
[1] developed a model where the abyssal circulation is a result of the sinking of deep water in
high latitudes which is replaced by upwelling of deep water through the thermocline. With
geographically constricted sources of deep water at the poles, the return flow is specified to
be equally distributed over the entire interface between the two layers. The resulting interior
geostrophic Sverdrup flow is always poleward, the vertically uniform flow of the abyss being
the result of its single layer representation. The Sverdrup interior is independent of the
position of the sources (see section 2) and vanishes at the equator. Western boundary
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currents are added to the solution in order to satisfy mass balance and these currents are
also the only possibility for a flow across the equator.

Stommel’s [1] model shows the characteristics of the mean abyssal flow. However, strong
baroclinic motion evident from observations are not captured by the model. Topographic
features in the basin will also affect the flow. In the present study, the objective is to find
an analytical solution for a model of flow in a closed basin with bottom topography and
stratification. We first explore the solution to a homogeneous flow with sloping northern
and western boundaries and a mid ocean ridge, before turning to the two-layer model.

2 The homogeneous model

We will first consider the case in which the ocean is represented by a single active layer.
The bottom topography of the basin is shown in Fig. 1. The 500 km wide western and
northern boundaries slope linearly from the ocean surface to the flat ocean floor at a depth
of 4000 m. The mid-ocean ridge has a height of 3000 m and is 1000 km wide. The southern
boundary is located at the equator. The isobaths of the basin geometry are shown in Fig. 2,
where the slope region on the northern boundary is added for analytical convenience.
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Figure 1: The bottom topography of the model basin.

The flow in the basin is driven by uniform upwelling, wo, through the upper surface
over the flat bottom (not over the boundaries). The layer gains water by sinking of upper
layer water at the north-eastern corner. In the linear and steady state the interior flow is
in geostrophic balance, hydrostatic and on a β-plane described by
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Figure 2: The isobaths of northern hemisphere model basin.
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+
∂v

∂y
+
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∂z
= 0 (3)

where u, v, w are velocities positive to the east (x), north (y) and upward (z), η the

elevation of the interface, f = βy, g′ ≡ (ρ2−ρ1)
ρ2

where ρ1 and ρ2 are the densities of the
upper and lower layer respectively and g the gravitational acceleration. The upper layer is
assumed to be passive.

For small amplitude disturbances h+ η ≈ h, where h is the average height of the layer.
By specifying the vertical velocity w0 as the upwelling velocity through the interface at
z = 0 and taking u and v independent of z, we obtain after vertical integration of (3)

∂u

∂x
+
∂v

∂y
= −

1

h

(

u
∂h

∂x
+ v

∂h

∂y

)

−
w0

h
. (4)

Cross-differentiating (1) and (2) yields

∂u

∂x
+
∂v

∂y
+
βv

f
= 0 (5)

and in the flat interior of the basin where u ∂h
∂x

= v ∂h
∂y

= 0 we can now obtain the
Sverdrup relation from (4) and (5)

v =
w0f

βh
. (6)

223



The meridional velocity v is independent of the location of the sinks in the basin. With a
positive vertical velocity w0 it will always be positive and increase with increasing latitude.

From (5) and (6) we get

∂u

∂x
+

2w0

h
= 0 (7)

from which we obtain the zonal velocity u

u =
−2w0

h
(x− xE) (8)

where u vanishes at xE , the eastern boundary.
As there is upwelling in the interior of the basin, there is no constant streamfunction on

the lines of constant transport. We can however determine the path of the flow using the
definitions

u =
dx

dt
(9)

v =
dy

dt
(10)

from which we get

u

v
=
dx

dy
= −2y(x− xE) . (11)

Integrating from (xW , yW ), the point at the foot of the slope from which the trajectory
enters the interior, to (x, y) yields the following equation for the trajectory in the interior

x = (xW − xE)
yW

2

y2
+ xE . (12)

Over the slopes where there is no upwelling the streamlines of the flow can be determined
by considering conservation of linear potential vorticity (PV)

D

Dt

(

f

h

)

= 0 . (13)

In a steady state (13) gives

u
∂

(

f
h

)

∂x
+ v

∂
(

f
h

)

∂y
= 0 . (14)

With the stream function ψ over the sloping boundaries, we have by definition

u = −
∂ψ

∂y
(15)

v =
∂ψ

∂x
(16)
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which in (14) yields

∂ψ

∂x

∂
(

f
h

)

∂y
−
∂ψ
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∂
(

f
h

)

∂x
= J

(

ψ,
f

h

)

= 0 (17)

where J(A,B) is the Jacobian. From this we deduce that the streamfunction is constant
on lines of constant f/h, i.e

ψ = ψ0

(

f

h

)

(18)

where ψ0 is the value of ψ at the foot of the slope. For the zero order picture we treat
the flow as essentially inviscid.

Figure 3: Trajectories of the flow

The resulting flow pattern is shown in Fig. 3. The flow enters the basin in the north-
eastern corner. Shallower columns of fluid follow the northern slope on the isobath of
entry. Deeper columns encounter the mid-ocean ridge and are diverted southwards and
up-slope in order to conserve PV while crossing the eastern side of the ridge. In this nearly
inviscid system friction will have to act along the top of the ridge in order to enable flow
to cross lines of constant PV. On the western part of the ridge the PV-conserving flow will
be northward and down-slope to rejoin the original isobath on the northern slope. The
symmetric trajectories are a result of neglecting upwelling over the ridge. Because the
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velocities over the narrow ridge are considerably stronger than the velocities induced by
upwelling, the trajectory pattern is not significantly different from one which would include
upwelling. When reaching the western boundary slope the flow over the north slope will
again follow lines of constant PV. In a narrow region at the southwest corner, friction will
again be needed to get flow across lines of constant PV so that the fluid can flow northwards
to join on to the trajectories of the interior basin where the flow is determined by Sverdrup
dynamics.
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Figure 4: Close-ups and vertical cross-sections of the western boundary and the ridge area.
a) The western boundary. b) Section along the line A-B in the western boundary. c) The
mid-ocean ridge. d) Section along the line C-D across the ridge.

Fig. 4 shows cross-sections along the lines A-B in the western boundary and C-D across
the ridge. The heavy solid line in Fig. 4 a), from (0, 0) to (500, 6660), is the region where all
the interior fluid flows southward, coming in to the western boundary layer from the foot of
the northern boundary slope. To the west of the heavy line, the transport is also southwards,
bringing fluid from the sinking regions. To the east a northward flow supplies the interior
with fluid. In the southward flowing region, the transport of fluid will increase eastwards,
as shown by the size of the circles in Fig. 4 b), because the transport of sinking water on
the northern boundary is proportional to the depth. Hence streamlines originating from a
deeper depth contour in the northern boundary will transport more fluid than streamlines
from a more shallow depth contour. As the meridional velocity in the interior increases
with latitude (Eq. 6), the transport to the eastern side of the solid line decreases eastwards.
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As a result of the high speeds on both sides of the intersection between flows in opposing
directions, this will be a region of high shear where friction can be expected to be important.

In a similar manner regions of opposing flow at the mid-ocean ridge, as shown by the
solid lines in Fig. 4 c) and Fig. 4 d) are regions of high shear. However, we are treating
the inviscid limit and friction and diffusion are confined to infinitesimal regions compared
to the ocean basin size, and it is assumed that these regions play a rather small part in the
overall pattern of the circulation.

The flow pattern at the mid-ocean ridge resembles the picture of Defant’s [2] strato-
spheric circulation in which he used the absolute topography of the 2000-decibar surface to
compute the abyssal flow. The result is a Mid Atlantic southward flow, with a northward
flow on its eastern side originating from about 5◦ north, producing a V-shaped mid-ocean
flow pattern (corresponding to the dashed lines over the ridge in Fig. 3). Also numerical
studies of abyssal flow over topography confirm the pattern seen in Fig. 3. Condie and
Kawase [3] used a one and a half layer model to represent the abyssal flow over exponen-
tially sloping side walls at all boundaries and a Gaussian shaped mid-ocean ridge. The eddy
activity associated with the sinking region in the north-west corner of the basin in their
study has an impact on the flow pattern in the boundary region. The general flow pattern
is however confined to closed geostrophic contours, i.e the fluid follows lines of constant f/h
and the same V-shaped structure of the flow is visible at the mid-ocean ridge.

3 The two-layer model

In section 2, a geometrical picture was obtained on how the influence of sloping topography
will alter the boundary layer flow of a homogeneous fluid. Extending the theory to a
baroclinic flow, we will study the simplest case, two layers of inviscid fluid with uniform
densities ρ1 and ρ2. The flat bottom interior solution to a two-layered model of the abyssal
flow on a spherical earth was studied by Veronis [4]. The outline of that paper is followed,
but here with a β-plane approximation. The steady state of each layer in the interior is
geostrophic, hydrostatic and described by the vertically integrated equations

fV1 = gh
∂h1

∂x
(19)

fU1 = −gh
∂h1

∂y
(20)

∂U1

∂x
+
∂V1

∂y
= w0 (21)

fV2 = gh2
∂

∂x

(

ρ1

ρ2
h1 +

∆ρ

ρ2

)

(22)

fU2 = −gh2
∂

∂y

(

ρ1

ρ2
h1 +

∆ρ

ρ2
h2

)

(23)

∂U2

∂x
+
∂V2

∂y
= −

ρ1

ρ2
w0 . (24)

Here U and V are the vertically integrated zonal and meridional velocities, h the thick-
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ness of the upper layer and h1 and h2 the heights of the upper surface and interface respec-
tively so that

h1 = h+ h2 . (25)

Cross-differentiating the momentum equations and making use of the continuity equa-
tions for each layer gives the relations

βV1 = −fw0 − gJ(h, h1) (26)

βV2 =
ρ1

ρ2
(fw0 + gJ(h, h1)) . (27)

From (26) and (27) we find that the total mass transport is equal and opposite at each
point, i.e.,

ρ1

ρ2
V1 + V2 = 0 . (28)

Taking the sum of ρ1/ρ2×(19) and (22) we now have

ρ1

ρ2
V1 + V2 =

g

2f

∂

∂x

(

ρ1

ρ2
h2

1 +
∆ρ

ρ2
h2

2

)

= 0 . (29)

From (29) we can obtain an expression for the variation of the upper layer height h1 in
the x-direction:

ρ1

ρ2
h1
∂h1

∂x
= −

∆ρ

ρ2
h2
∂h2

∂x
= −

∆ρ

ρ2
(h1 − h)

∂

∂x
(h1 − h) . (30)

Replacing h1 with H, the mean basin depth, where h1 appears as a coefficient and
neglecting the term ∆ρ

ρ2

h
H

∂h1

∂x
we have

∂h1

∂x
=

∆ρ

ρ2

(

1 −
h

H

)

∂h

∂x
. (31)

Integrating (31) gives

h1 = h1E +
∆ρ

ρ2

(

h−
h2

2H
−

(

hE −
h2

E

2H

))

(32)

from which, with a constant h1E and hE at the eastern wall, we obtain

∂h1

∂y
=

∆ρ

ρ2

(

1 −
h

H

)

∂h

∂y
. (33)

From (31) and (33) we see that J(h, h1) = 0, so from (26) and (27) we can now obtain
the vertically averaged meridional velocities in the upper and lower layer
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V1 = −
fw0

β
(34)

V2 =
ρ1

ρ2

fw0

β
. (35)

The zonal velocities can be derived using (34) and (35) in (21) and (24) respectively,
which gives

U1 = 2w0(x− xE) (36)

U2 = −
ρ1

ρ2
2w0(x− xE) . (37)

Using (31) in (19) yields

fV1 = g′
∂

∂x

(

h2

2
−

h3

3H

)

(38)

and using (34) for V1, this can now be integrated from x to xE and we can specify h by

h2

2
−

h3

3H
=
h2

E

2
−
h3

E

3H
+
f2w0

g′β
(xE − x) . (39)

As in the homogeneous case we can now get the trajectories of the flow from the zonal
and meridional velocities.

Considering zonally integrated transport balances for the system, we have that the
interior transport in the upper layer, T1, across a zonal line y is given by integrating V1 over
the basin width. With T1 taken positive northwards we get

T1 = −w0(xE − xW )y . (40)

The upper layer gains water from the total upwelling, W , taking place north of y. This
is given by integrating w0 over the width and length of the basin

W = w0(xE − xW )(yN − y) . (41)

As the sinking takes place in the northeastern corner, there is a net loss of upper layer
fluid of amount S to the lower layer and

S = −w0(xE − xW )yN . (42)

To obtain a mass balance for the basin, the transport TW carried in the western boundary
current is

TW = S −W − T1 = 2w0(xE − xW )y . (43)

From (43) it can be seen that across each zonal line, the western boundary current must
carry twice the interior transport.
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Having obtained a solution for the flat bottom interior, we will now seek a solution for a
two-layer system with bottom topography. Salmon [5] considered the planetary geostrophic
equations for a two-layer system over a sloping western boundary. In his notation the
governing equations for a frictionless steady state read

f × u1 = −∇φs (44)

f × u2 = −∇φs + g′∇h (45)

∇ · (uihi) = 0, i = 1, 2 (46)

where ui ≡ (ui, vi) are the horizontal velocities and φs is the pressure at the surface
divided by a reference density.

Adding (46) for i = 1 and i = 2 yields

∇ · (h1u1 + h2u2) = 0 (47)

and thus

h1u1 + h2u2 = k ×∇Ψ (48)

where k is the vertical unit vector and Ψ the total transport streamfunction.
Eq. (44) and (45) gives

f × (u1 − u2) = −g′∇h . (49)

From (48) and (49)

u1 =
1

H
k ×∇Ψ +

g′h2

fH
k ×∇h (50)

u2 =
1

H
k ×∇Ψ −

g′h1

fH
k ×∇h (51)

and using (50) and (51) and taking the curl of the vertical average of (44) and (45) we
can write the total streamfunction equation as

J

(

f

H
,Ψ

)

+ J

(

1

2
g′h2,

1

H

)

= 0 . (52)

From (46) and (50) we get an equation for the upper layer thickness

J

(

Ψ,
h

H

)

+ J

(

g′h,
h

f

(

1 −
h

H

))

= 0 . (53)

By defining

q1 ≡
h

f
, q2 ≡

H − h

f
(54)

it can be shown that (52) and (53) can be written in the forms
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J(Ψ, q1) + q2J(g′h, q1) = 0 (55)

J(Ψ, q2) − q1J(g′h, q2) = 0 (56)

which describes the PV in the upper and lower layers.
Salmon [5] obtained general solutions to (55) and (56) for the two cases J(q1, q2) 6= 0

and J(q1, q2) = 0. In the latter case he showed that a solution is possible only if either q1
or q2 is constant in a particular region. That would appear to be simply a mathematical
curiosity but he showed, in fact, that one can obtain realistic features in the vicinity of the
Gulf Stream by making use of q1 = constant and q2 = constant in different regions near
the Gulf Stream.

We have sought a solution with q1 = constant in the slope regions. In order for that to
be a valid solution it is necessary that it match to the interior solution at the foot of the
slope in the different regions. The latter comes from (39). In the special case with hE = 0,
we can obtain a solution with constant q1 if we take the lowest order solution to (39) by
neglecting the term with H in the denominator (neglecting that term involves a maximum
error of about 5 % but a correction for that term can be taken into account iteratively).
The resulting solution is

h2 =
2f2

g′
w0

β
(xE − x) . (57)

Evaluating (57) at the western edge of the interior, i.e. x = xW ≈ 0, we have

h

f
=

(

2w0

g′β
xE

)
1

2

. (58)

So h/f = constant is an exact solution over the western boundary slope and it also
matches the interior at the eastern edge of the boundary. Therefore, h is constant on lines
of constant y in the boundary layer and is given by the thickness of the interior upper layer
at x = xW .

From the planetary geostrophic equation for the lower layer, (45), we also have

f

h2
(u2h2) = k ×

(

∇φs − g′∇h
)

. (59)

As we neglect the upwelling in the boundary layer, we have ∇ · (u2h2) = 0 so the
divergence of (59) yields

u2h2 · ∇
f

h2
= 0 (60)

and with u2h2 = k ×∇ψ2 we have

J

(

ψ2,
f

h2

)

= 0 . (61)

With h constant on lines of constant y, h2 can be determined from h2 = H−h and with
ψ2 constant on lines of constant h2

f
in the boundary layer, we can match the upper and lower
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layer solutions to the interior solutions at the foot of the slope. With the same reasoning for
the mid-ocean ridge area we get the lower layer flow pattern shown in Fig. 5. The dashed
lines are the trajectories of the flow and the solid lines in the interior are contours of the
lower layer height h2. The upper layer thickness is set to zero at the eastern boundary and
the mean basin depth is 4000 m. The upwelling velocity is specified to 2 · 10−7 m/s and
∆ρ/ρ2 = 0.0015.

Given that h
f

= constant over the mid-ocean ridge, when crossing the ridge, the lower

layer flow follows lines of constant h2

f
. The path is again symmetric about the center of the

ridge.
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Figure 5: Flow pattern of the lower layer. The calculations were made for w0 = 2 · 10−7

m/s, hE = 0 m and ∆ρ/ρ2 = 0.0015

The westward jet along the foot of the northern slope turns southward at the northwest
corner of the interior and continues as a jet toward the southwest corner. To the west of that
jet, water that has sunk in the north will move southwards on lines of constant h2

f
set by the

lower layer depth on the northern boundary. On the eastern side of the h2

f
line carrying the

interior water southward, fluid flows northward along lines of constant h2

f
to the interior.

The vicinity of the region separating southward and northward flow must represent a region
of intense shear. Therefore, friction is likely to be important here.

The upper layer flow pattern is shown in Fig. 6. In the interior the trajectories are
the same as for the lower layer but in the opposite direction so the fluid moves in a south-
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westward direction. Contours of upper layer thickness are parallel to the paths of the
trajectories. Over the western boundary slope and over the mid-ocean ridge, the upper
layer flow is zonal on lines of constant h

f
.
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Figure 6: Flow pattern of the upper layer

Just south of the southern edge of the northern boundary, the upper layer western
boundary transport is, due to conservation of mass

TW = S + TI . (62)

Just north of that edge, the interior transport is zero, which gives

TW = S . (63)

Hence, there must be a jet that heads eastward along the foot of the slope from the
northwestern corner of the interior. Just as the lower layer takes fluid from the westward
jet along the foot of the north slope and transports it southward along the line of constant
h2

f
that goes from the northwestern corner of the interior to the southwestern corner on

the western slope, the upper layer must deliver an equal amount of fluid northeastward to
supply the eastward flow along the southern edge of the northern slope. So there will be a
jet in the western boundary upper layer flow, also along this line of constant h2

f
. In that

jet, to induce the northward transport in the upper layer, the sea surface will rise sharply
toward the east. We must also have a compensating drop of the interface. The displacement
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of the interface across the western boundary jet can be obtained from the equations for the
upper and lower layer

ρ1fV1 = ρ1gh
∂η1

∂x
(64)

ρ2fV2 = gh2
∂

∂x
(ρ1η1 + ∆ρη2) (65)

where subscript 1 and 2 denotes the upper and lower layer respectively. As the transports
in the upper and lower layer are equal and opposite, Eq.(28) is valid also in the jet, i.e. the
total transport vanishes at each point in the jet. From (64) and (65) we then get

∂η2

∂x
= −

ρ1H

∆ρh2

∂η1

∂x
. (66)

As h = η1 + ~ − η2, where ~ is the mean upper layer depth, we have that

∂η2

∂x
=
∂η1

∂x
−
∂h

∂x
. (67)

Applying (67) to (66) we find that

∂η1

∂x
≈

∆ρh2

ρ1H

∂h

∂x
(68)

and (64) becomes

fV1 =
g∆ρh2

2ρ1H

∂h2

∂x
. (69)

Since the assumption is of an infinitesimally thin jet, we can consider h2/H to be
constant. Eq. (69) can then be integrated in the x-direction and becomes

fT1 =
g∆ρh2

2ρ1H

(

h2
R − h2

L

)

(70)

where subscript R and L denotes the right and left edge of the jet respectively.
As the upper layer thickness on the right edge of the jet is equal to the upper layer

depth at the western boundary of the interior, we obtain the equation for the upper layer
thickness at the western side of the jet

h2
L = h2

W −
2fT1

g

ρ1

∆ρ

H

h2
. (71)

On the western side of the jet, the upper layer thickness is again constant and the
transport is again purely zonal. Close to the western edge of the boundary layer, there
will be a triangular wedge of only upper layer water, also with northward transport as
the streamfunction must go to zero at the western edge of the boundary layer. So of the
northward transport of upper layer water, the portion contributed by the jet feeds the
northern boundary layer that supplies water to the interior and the portion contributed by
the boundary current near the western edge of the basin supplies an equal amount of water
to the sink.
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A schematic of cross-sections of the western boundary, the ridge area and the northern
boundary is shown in Fig. 7.
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Figure 7: Schematic of zonal cross-sections of a) western boundary b) mid-ocean ridge area
and c) meridional cross-section (looking eastward) of the northern boundary

In Fig. 7 a), the westward transport in the constant upper layer carries water to the
northward jet. The upper layer thickness decreases across the jet and on the other side
of the jet the upper layer thickness is again constant and carries water westward to the
northward boundary current. In the lower layer, the region closest to the western edge of
the boundary layer carries the sinking water southwards from the northern boundary. The
southward moving jet in the lower layer carries water from the interior. On the eastern side
of the jet, a northward flow supplies the interior with fluid.

Over the mid-ocean ridge (Fig. 7 b)) the upper layer thickness is constant and the flow
purely westwards. In the lower layer, the inner region of the ridge is where the sinking
water flows southward and then northward to cross the ridge. In the two outer regions of
the ridge, fluid from the interior crosses the ridge. Along the lines joining the two regions
the shear is intense and friction must be important.

On the northern slope (Fig. 7 c) the upper layer jet at the southern edge of the boundary
supplies fluid to the interior while the current at the northern edge of the boundary layer
provides water to the sink. The transport of water to the sinking regions must spread out
across the upper layer, but the details of this flow have not been further considered. In the
lower layer jet, water from the interior is carried westward and north of the jet the water
that has sunk is carried to the western boundary layer.
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4 Discussion

It has been shown that the presence of sloping boundaries considerably affects the flow
pattern. In the presence of a mid-ocean ridge, dividing the ocean in two halves, the flow is
diverted considerably to the south in order to continue to the other basin.

In the homogeneous case the flow will follow lines of constant f/h in order to conserve
potential energy. The same holds when the fluid crosses the mid-ocean ridge and has to
turn southward in order to decrease the depth of the water column.

In the two-layer model we have shown a simple solution consistent with an exact solution
to the general equations (55) and (56) for the case when J(q1, q2) = 0. The solution keeps
the upper layer thickness constant on lines of constant y in the western boundary layer and
the ridge area. In the lower layer the transport streamfunction follows lines of constant h2

f
.

The solution requires a northward jet in the upper layer of the western boundary layer and
the jet will continue eastward along the foot of the north slope. Although friction must be
clearly be important in parts of the slopes, we have confined the analysis to the inviscid
limit using transport balance arguments. This led to the conclusion that half of the total
northward transport in the western boundary layer will take place in the jet and half of
the transport will occur in a triangular wedge occupied by only upper layer water along the
western edge of the western slope. As the streamfunction must be zero at the western edge,
the transport will have to turn northwards and the dynamics will be that of a single layer
fluid. The exact dynamics of the northern boundary have not been analyzed, but the flow
will more or less follow lines of constant H (total depth) in this region as y ∼ constant and
H − h ∼ H except close to the northern edge where we again have dynamics of a single
layer as the total depth goes to zero. Upper layer water sinks in the northeastern corner
and flows westward in the lower layer of the northern boundary region and then southward
along lines of constant f/h2 to the southwest corner of the western boundary slope. The
exact path can not be determined here, due to the absence of a complete picture of the
northern boundary upper layer thickness.

The reasoning holds for slope regions that are very narrow compared to the basin size.
The analytical solution was pieced together, treating the slope regions in the inviscid limits.
As it turned out, friction must be important in isolated regions over the slopes. It allows the
fluid to cross lines of constant PV where needed and it will also be required to smooth out the
abrupt change in direction of flow over the slopes. A numerical model of this system should
help to determine how much of this study is consistent with the full equations including
friction. A next step analytically would be to try to include wind stress in addition to the
upwelling.
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