
Lecture 4

Thermohaline Circulation Variability

Paola Cessi

1 A brief introduction

While the major surface oceanic currents are predominantly driven by the wind-stress, the
dynamics of the deep circulation depends mostly on horizontal density gradients, established
as a result of the combined effect of surface thermal and saline forcing.

The meridional inhomogeneity of radiative heating of the atmosphere produces hori-
zontal density difference between the colder polar and the warmer equatorial sea surface
temperature. The effect of this temperature gradient alone would be the generation of
denser water at higher latitudes and of lighter water in tropical regions. However the excess
of evaporation over precipitation towards the equator causes the mean salinity to decrease
with latitude. The equation of state for seawater is approximately given by

ρ = ρ0(1 − αT + βS), (1)

so that the thermal effect on density opposes that of salinity (α and β are the expansions
coefficient of seawater).

In summary:

• temperature favors downwelling of dense water at high latitudes and upwelling at the
equator;

• for salinity the opposite is true.

The net result of these competing effects is the establishment of a flow which extends
to the deep oceanic layers, known as thermohaline circulation.

In the present climate, the North Atlantic deep circulation is dominated by two thermally
direct cells, one with high-latitude sinking in the Northern Hemisphere and one with high-
latitude sinking in the Southern Hemisphere. However, paleoclimatic data indicate that as
recently as 11,000 years ago the deep circulation and the downwelling at high latitudes has
been much weaker.

The two processes involved can in fact give rise to the existence of multiple steady states,
with the possibility of transitions among the equilibria.
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2 The Stommel-Arons model

The classical approach to the study of the buoyancy-driven circulation is Stommel-Arons
model of the abyssal oceanic flow. One interpretation of the model regards the ocean as
a box with a rigid lid and a two-layer approximation. The upper layer has depth h and
density ρ1 while the lower one has depth H − h and density ρ2.
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HIgh-latitude convection transforms water of density ρ1 into water of density ρ2, and this
downwelling is assumed to be localised at the poleward edge of the box. In steady state
there is a velocity, w∗, at the layers’ interface that compensates for this high-latitude density
exchange. This upwelling is assumed to be diffuse, and is constrained by:

∫

Basin
dx dy w∗ = Deep water production rate.

The Stommel-Arons model examines the flow driven by this large scale interfacial ve-
locity. Specifically, the steady dynamics in the lower layer obeys

−fv = −p2x/ρ0 − ru (2)

fu = −p2y/ρ0 − rv (3)

p1,2z = −ρ1,2g (4)

[(H − h)u]x + [(H − h)v]y = −w∗. (5)

where r � f is the dissipation rate. We now wish to find an expression for the dynamic
part of the pressure of the lower layer in terms of the layer thickness, h. Firstly, using the
hydrostatic relation, we find

p1 = −ρ1gz + p̂1(x, y) ,

p2 = −ρ2gz + p̂2(x, y) .
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From continuity of pressure at the interface, z = −h, we have

p̂2 = −ρ0g
′h+ p̂1 (6)

where g′ ≡ g(ρ2 − ρ1)/ρ0 is the reduced gravity.
If we integrate the continuity equation vertically over the whole box, applying the con-

dition that there is no vertical velocity at the top and bottom we have

[hu1 + (H − h)u2]x + [hv1 + (H − h)v2]y = 0 . (7)

Away from the boundaries we can neglect dissipation and we use geostrophic balance in
both layers. Multiplying the upper layer momentum equations by h and the lower layer
momentum equations by H − h, and forming a vorticity equation we find

f{[hu1 + (H − h)u2]x + [hv1 + (H − h)v2]y} + β[hv1 + (H − h)v2] =

hx(p̂2 − p̂1)y + hy(p̂1 − p̂2)x . (8)

Because p̂2 − p̂1 depends linearly on h [from (6)] the RHS of equation (8) vanishes as does
the first bracketed term on the LHS [because of (7)]. Thus

hv1 + (H − h)v2 = 0 (9)

hu1 + (H − h)u2 = 0, (10)

and there is no vertically averaged flow. Because the interior velocities are geostrophic we
must have

h∇p̂1 + (H − h)∇p̂2 = 0. (11)

Finally, eliminating for p̂1 from (6) and integrating we have

p̂2 = −ρ0g
′h2

2H
. (12)

The vertically averaged lower layer equations thus satisfy:

f(H − h)v = Px + r(H − h)u , (13)

−f(H − h)u = Py − r(H − h)v , (14)

where we have defined the vertically averaged pressure in the lower layer

P ≡ g′(
h3

3H
− h2

2
). (15)

In the regime r � f , P obeys the potential vorticity equation [β ≡ df/dy]

β

f2
Px = w∗ −∇(r

∇P
f2

). (16)

Integrating the mass conservation equation (4) across the box from x = 0 to xe, and
assuming no normal flow at the boundaries we obtain the net meridional abyssal mass
transport, ψ(y),

ψ(y) ≡
∫ xe

0

dx (H − h)v = −
∫ xe

0

dx

∫ y

0

dy′w∗(x, y′). (17)
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A relation between P and ψ is obtained integrating 14 across the width of the basin and
neglecting dissipation, hence

fψ(y) = P (xe, y) − P (0, y). (18)

In the ocean interior we can obtain P from (16) by neglecting dissipation and imposing
u = 0 (Py = 0) at x = xe.

PI(x, y) = −f
2

β

∫ xe

x
dx′w∗(x′, y) + P0, (19)

where P0 is the (constant) value of P on the eastern boundary.
The interior mass transport, i.e. the mass transport that excludes the western boundary

layer contribution is

ψI(y) ≡ f−1[P0 − PI(0, y)] =
f

β

∫ xe

0

dxw∗(x, y) ≥ 0.

A cross section shows that the interior flow is towards the source in the abyss!
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Thus there must be a flow in the western boundary layer, which returns the flow towards
the source. Near the western boundary we rescale x such that it becomes small, of the same
order of magnitude as r/β. Then, near the boundary we have

β

f2
Px = − r

f2
Pxx.

The solution for the whole box then is

P = PI + A(y) exp(−βx/r)
︸ ︷︷ ︸

Boundary layer correction

.
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A(y) is determined by mass conservation. If we take the continuity equation (4) and
integrate it across the whole of the E–W direction and from y ′ = 0 to y then we obtain
again equation 17. Substituting P gives

∫ xe

0

dxPx =

∫ xe

0

dx

∫ y

0

dy′w∗(x, y′) . (20)

The integral of the interior part of the streamfuntion P is just the interior mass transport
(equation 19) and thus

ψI −A(y) = −
∫ xe

0

dx

∫ y

0

dy′w∗(x, y′) (21)

which gives solution for A(y)

A(y) = f

∫ xe

0

dx [fw∗(x, y)/β +

∫ y

0

dy′w∗(x, y′)] .

It is useful to divide the transport into an interior part, ψI and a boundary contribution,
ψWB, so that

ψ(y) = f−1[

ψI

︷ ︸︸ ︷

P (xe, y) − PI(0, y) +

ψWB

︷ ︸︸ ︷

PI(0, y) − P (0, y)]

ψWB = −A(y) ≤ 0.

This clearly shows that the transport in the western boundary is negative (equatorward) if
w∗ is positive, so that ψWB is away from the high-latitude convection source.

In the particular case when w∗ is independent of y we have, [f = βy],

ψWB = −2y

∫ xe

0

dxw∗(x) = 2ψ(y).

The western boundary layer transports twice the zonally averaged transport: the flow from
the convection source and the interior flow which is towards the source.
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A contour of P for uniform w∗ shows an interior poleward flow and an equatorward
western boundary current.
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3 What determines w
∗?

It is clear that the circulation in the Stommel-Arons model depends crucially on the inte-
rior upwelling, w∗, at the interface of the two layers, i.e. at the base of the thermocline.
To estimate what determines the interior upwelling we use scaling arguments, which are
confirmed by more detailed laminar calculations (e.g. Vallis, 2000).

The scenario is one where a bounded ocean is driven by surface buoyancy fluxes only,
which are transmitted downward through diffusion. No time-dependent instabilities are
considered. In this case, the interior vertical velocity satisfies the approximate balance:

w∗ρz ≈ κρzz.

The thickness of the thermocline, (i.e. of the upper layer in Stommel-Arons model) is
diffusive:

h = O(
κ

w∗
) w∗ = O(

hV

L
).

In the presence of walls that confine the flow to the East and West, a large scale East-
West pressure gradient can be maintaned, so that we can assume that v is geostrophic and
hydrostatic, i.e.

fvz ∼ gρx/ρ0.

We thus arrive at the following estimate for the depth of the thermocline:

h3 = O(
κfL2ρ0

∆ρg
).

For fixed surface density, ∆ρ is independent of κ, and therefore the depth of the thermocline
satisfies

h = O

(
κfL2ρ0

∆ρg

)1/3

∼ κ1/3, w∗ ∼ κ2/3.

For fixed surface flux, we estimate the horizontal density difference to be ∆ρ = O(Fh/κ):

h4 = O(
κ2fL2ρ0

Fg
).

In this case
h ∼ κ1/2, w∗ ∼ κ1/2.

These scalings have been confirmed by non-eddy-resolving numerical simulations of the
primitive equations (Vallis, 2000 and Huang et al. 1994): density gradients are confined to
a thin diffusive layer, while the abyssal layer is essentially homogeneous.

Essential to this scaling is the existence of an East-West pressure gradient that maintains
a geostrophically balanced meridional flow.

It is therefore interesting to enquire what happens when such a balance fails because
there are no boundaries at the East and West that can support a pressure difference.
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4 Thermohaline flow in a reentrant geometry

In the next section we will discuss the thermohaline circulation in the specific case of
a channel unbounded in the East-West directions, limited in latitude and with periodic
boundary conditions at the ends. Because of the absence of meridional walls, this model
could describe the circulation in the Antartic Circumpolar region.

We assume that the horizontal flow obeys the steady two dimensional equations of
motion, and we neglect nonlinear advective terms:

−fv = −px
ρ0

− ru

fu = −py
ρ0

− rv (22)

The shape of the basin imposes periodic E-W boundary conditions for all fields so that
the longitudinally averaged pressure gradient in the x-direction must vanish, i.e.:

px = 0. (23)

This restriction prevents the system from reaching a steady geostrophic balance and does
not allow an efficient meridional transport of water. We can in fact consider the zonally
averaged momentum balance:

−fv = −px
ρ0

− ru

fu = −py
ρ0

− rv

(24)

and solve for the meridional velocity:

v = − r

f2 + r2
py
ρ0

. (25)

The spreading of warm water from the equator towards the polar regions is achieved only
because of friction. For weak drag, r � f , the meridional flow is small.

For x-independent buoyancy forcing, and excluding the spontaneous generation of x-
dependent instabilities we have v = v. Thus the flow is two-dimensional and it is described
by a streamfunction ψ:

v = −ψz
w = ψy (26)

hence:

pz = −ρg
ψzz = − rg

f2 + r2
ρy
ρ0

(27)
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With density to be determined by temperature and salinity as stated in equation (1),
the flow is then governed by the two evolution equations:

Tt + J(ψ, T ) = κTzz + νTyy

St + J(ψ, S) = κSzz + νSyy (28)

where J(A,B) = ∂xA∂yB − ∂yA∂xB.

The boundary conditions at the top of the layer for the two variables are very different.
Sea surface temperature can be thought as adapting instantaneously to variations in heat
flux, giving rise to a prescribed distribution of temperature with respect to latitude. Instead,
surface salinity plays a minor role in the balance between evaporation and precipitation, so
that the surface salinity flux is imposed by the atmosphere. Thus, we impose the following
boundary conditions at the surface z = 0 and at the bottom of the sea z = −H:

T̄ = ∆TΘ(y), κS̄z = FF(y) at z = 0

κT̄z = κS̄z = 0 at z = −H.

We now adimensionalize the set of equations (28), choosing the following scalings for
lenghts, temperature and salinity:

z = H ζ, y = Lη, T = ∆T θ, S =
α∆T

β
σ (29)

while for density, stream function and time, we nondimensionalize (27) using:

ρ = ρ0α∆T π, ψ =
H2rgα∆T

f2L
φ, t =

κ

H2
ε2 τ. (30)

Substituting the non-dimensional variables into the governing equations, we obtain:

φζζ = (θ − σ)η

ε2θτ + εJ(ψ, θ) = θζζ + δθηη

ε2στ + εJ(ψ, σ) = σζζ + δσηη (31)

with boundary conditions:

φ = 0; θζ = σζ = 0 at ζ = 0

φ = 0; θ = Θ(η) at ζ = 1

σζ = RF(η) at ζ = 1 (32)

There are three parameters governing the behavior, defined as:

Rayleigh-Ekman #
︷ ︸︸ ︷

ε ≡ rgH3α∆T

κf2L2
,

density ratio
︷ ︸︸ ︷

R ≡ βFH

κα∆T
, δ ≡ νH2

κL2
.
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• ε is the product of the Rayleigh number and the Ekman number square;

• R expresses the ratio between temperature and salinity contributions to density vari-
ation;

• δ weights the importance of meridional to vertical diffusivities for T and S.

For weak drag ε << 1 and we can simplify the analysis by expanding the three variables
above in power series of ε:

φ = φ0 + εφ1 + ε2φ2 + 0(ε3)

θ = θ0 + εθ1 + ε2θ2 + 0(ε3)

σ = σ0 + εσ1 + ε2σ2 + 0(ε3)

We further assume that the density ratio is small, specifically

R = O(ε2); δ = O(ε2) (33)

As a preliminary observation, we note that with this ordering of the parameter R the forcing
(32) on the surface salinity flux enters only at order ε2:

σ0ζ + εσ1ζ + ε2σ2ζ = ε2RF(η), (34)

nevertheless, σ is O(1).
Solving for the various orders in ε we get a hierarchy of equations. Starting from the

leading order, O(1), the temperature and salinity equations are:

σ0ζζ = θ0ζζ = 0,

with boundary conditions:

σ0ζ = θ0ζ = 0 at ζ = 0

σ0ζ = 0, θ0 = Θ(y) at ζ = 1

Thus the two fields are vertically homogeneous at leading order:

σ0 = σ0(η, τ), θ0 = θ0(η, τ). (35)

Furthermore, because of the fixed temperature boundary condition, the temperature at
leading order is determined and θ0 = Θ(y). However, the leading order salinity is determined
by the balance at higher orders.

We can also now determine the leading order streamfunction, which satisfies

φ0ζζ = (θ0 − σ0)η

and the condition φ0 = 0 at the two boundaries. Integrating vertically we find:

φ0 =
1

2
ζ(ζ + 1)(θ0 − σ0)η (36)
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At next order, O(ε), the salinity equation is:

−φ0ζσ0η = σ1ζζ

which, when integrated vertically, gives:

−φ0σ0η = σ1ζ , (37)

because the meridional flow turns lateral gradients into stratification. Because both the top
and bottom boundary conditions for σ1 are automatically satisfied, we must proceed to the
next order to determine σ0.

The evolution equation for σ0 is obtained by vertically averaging the evolution equation
of the salinity at O(ε2) which is given by:

∂τσ0 + ∂η(φ0σ1ζ) − ∂ζ(φ0σ1η + φ1σ0η) = σ2ηη +
δ

ε2
σ0ηη.

We thus obtain:

∂τσ0 + ∂η

∫
1

0

dζ(φ0σ1ζ) =
R

ε2
F(η) +

δ

ε2
σ0ηη.

Here we have used the result that the third term on the left hand side vanishes and we
have applied the surface condition σ2ζ |ζ=0 = R

ε2
F(η)). If we substitue the expression for σ1ζ

obtained from (37) we find:

∂τσ0 − ∂η

∫
1

0

dζ(φ2

0σ0η) =
R

ε2
F(η) +

δ

ε2
σ0ηη.

Finally, using the expression (36) for φ0 we get:

∂τσ0 =
1

120
∂η[(θ0 − σ0)η]

2σ0η +
R

ε2
F(η) +

δ

ε2
σ0ηη (38)

with θ0 = Θ(η).
It is also useful to write the dimensional forms of the equations, which are given by

ψ =
rg

2(f2 + r2)
z(z +H)(αT0y − βS0y),

T0 = ∆TΘ(y),

S0t =
ε2L4κ

120H2

[
(βS0y − αT0y)

2

(α∆T )2
S0y

]

y

+
F

H
F + νSyy. (39)

The meridional circulation transports salt downgradient with a nonlinear “diffusivity” pro-
portional to ρ2

y.
For r << f , ψ is independent of κ and the density field is almost vertically homogeneous.

Thus the qualitative picture of the circulation in a channel, in the limit where the friction
is very small, is very different than that obtained in the presence of meridional walls. The
circulation is also accompanied by a large east-west velocity, which is in thermal wind
balance, which does not influence the meridional circulation.
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5 The two-box model approximation

In this section a two-box approximation of (39) is considered, since this reduction illustrates
the qualitative properties of the full partial differential equation. This approximation also
leads to a model which is very similar to that original proposed by Stommel (1961) in the
limit of rapid temperature relaxation.

y

z

y=0 y=2Ly=L

S Sns

F Fs n

S = 0S = 0y y

T Ts n

Figure 1: The box-model approximation to (39).

The left hand box in figure (1) is the equatorial box, denoted by subscript s, while
the right hand is the polar box, denoted by subscript n. The salnity is assumed to be
independent of latitude and depth within each box.

F represents the surface flux of salinity, S the salinity and T the temperature. There is
no meridional flux of salinity at the sides. Integrating ( 39) in latitude over the equatorial
and the polar box the salt equation we obtain the following two equations:

Ṡs = [µS0y(β/αS0y − T0y)
2 + νS0y]y=L +

F

H
Fs,

Ṡn = −[µS0y(β/αS0y − T0y)
2 + νS0y]y=L +

F

H
Fn. (40)

Notice that we need Fs + Fn = 0, in order to conserve the mean salinity of the system.
In order to determine the salinity gradient at the latitude y = L, S0y, we use the

following differentiation rule:

S0y|y=L =
Sn − Ss

L
, T0y =

Tn − Ts
L

.

Defining

σ ≡ β(Sn − Ss)

α(Tn − Ts)
,

51



and rescaling time, the salinity difference satisfies

σ̇ = −σ(σ − 1)2 + γ − λσ. (41)

In this equation γ is a parameter expressing the ratio between N-S salt flux effect and
heat temperature gradient:

γ ∝ Fn − Fs
Tn − Ts

> 0

while λ is proportional to the lateral diffusion, ν. We expect stationary condition to be
reached for compensating temperature and salinity effects. If Tn − Ts < 0, Fn < 0 and
Fs > 0, the equilibria will correspond to positive values of γ.

Stommel (1961) used a slightly different box-model, which in the limit of rapid temper-
ature relaxation is:

σ̇ = −σ|σ − 1| + γ − λσ.

Both systems will reach a steady state, minimum of a potential, V because

σ̇ = −∂V (σ)

∂σ
⇒ Vσσ̇ = V̇ = −(Vσ)

2 ≤ 0.

The potential, V , associated with (41) is a function of σ given by

V (σ) =
1

4
σ4 − 2

3
σ3 +

(

λ+
1

2

)

σ2 − γσ.

Depending on γ and λ, V can have one or two minima as illustrated in the following figure.
Equilibria are associated with extrema of the potential, V : minima are stable and maxima
are unstable.
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Figure 2: The potential V for two different values of λ.
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Multiple equilibria (3) are obtained for:

(1 − 3λ)3/2 ≥ |1 − 27

2
γ + 9λ|, (42)
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Figure 3: The region where multiple equilibria exist is bounded by the curve (refcusp:eqn)
in the γ − λ space.

In the limit λ� 1 (weak lateral diffusion) it is possible to find approximate expressions
for the steady states, which are given by:

σ(σ − 1)2 = γ � 1.

There is a thermally-driven solution with small salinity gradient:

σa ≈ γ � 1.

There is a salt-compensated solution with small density gradient:

σc ≈ 1 +
√
γ.

The third solution, σb ≈ 1 −√
γ is unstable.
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Recalling that the meridional overturning circulation is given by ψ ∝ (1 − σ), the
meridional circulations associated with the two stable equilibria are:

ψa ∝ 1 − γ

ψc ∝ −√
γ.

Thus ψa and ψc have opposite sign and the haline-driven circulation, ψc, is much weaker
than the thermally driven flow.

The deterministic model does cannot lead to time-dependent variability of the thermo-
haline circulation, since it only admit (multiple) fixed points. Thus, the system cannot
spontaneously jump from one equilibrium to the other: all initial states to the left (right)
of the potential barrier end up in the same left-(right)hand well.

Notes by Fiona Eccles and Chiara Toniolo
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