
Lecture 4

Simple Approaches to Some Bounding
Louis Howard

1 On Some Properties of Good Chalk and
People Working on Bounding Theory

2 Extremizing Functions and Functionals.
DeÞnitions and Simple Examples.

We all know that if Φ(xi) is a differentiable function, then the critical points xi that
extremize the function can be determined from the conditions

∂Φ(xi)

∂xi
= 0.

But these simple conditions do not determine whether the critical values correspond to
minima, maxima, or even guarantee an extremum. For example, consider the case shown
in Þgure 1 of a horizontal inßection point and a monotonic function in a closed interval.
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Figure 1: A horizontal inßection point and a monotonic function.

However, if the matrix of the second derivatives is positive deÞnite at the critical point
then there is indeed a (local) minimum, and if it is negative deÞnite then we have a local
maximum. But if this matrix is indeÞnite, it does not necessarily help us decide the character
of the critical point. This is illustrated by the examples f1 = x

4, f2 = −x4, f3 = x3, all of
which have f !(0) = f !!(0) = 0, though f1 has a minimum, f2 a maximum and f3 neither
at x = 0. (In the case of several variables, if the matrix of second derivatives has at least
one positive and one negative eigenvalue, we can assert that the critical point is neither a
minimum nor a maximum).

Another case where the above equations are not sufficient to determine the extrema of a
function is when there is an imposed constraint. As an example consider the unit circle and
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Figure 2: Points on a circle.

ask which two points A = (x1, y1), B = (x2, y2) lying on it are furthest apart. The distance
between them is given by

D2 = (x1 − x2)2 + (y1 − y2)2,
and the constraint takes the form

x2i + y
2
i = 1, for i = 1, 2.

The constraint can be automatically satisÞed by letting xi = cos θi, yi = sin θi and
substituting into the expression for the distance. In this way there is no need to take into
account the constraint explicitly. Then

D2 = (cos θ1 − cos θ2)2 + (sin θ1 − sin θ2)2 = 2− 2 cos(θ1 − θ2),
and maximum distance is obtained for θ1 − θ2 = π.

But when the constraint cannot be simply eliminated the method of Lagrange multi-
pliers must be used. To Þnd the extremum of f(x1, . . . , xn), subject to the constraints
gi(x1, . . . , xn) = 0 for i = 1, 2, . . . , m, one forms the function

Φ(x,λ) = f(xi)−
m!
i=1

λigi,

and solves

∂Φ(xi,λj)

∂xi
= 0,

∂Φ(xi,λj)

∂λi
= gi = 0.

This seems to be a simple method but let us consider why it works. Suppose that the
extremum of f subject to the given constraints is at some point xi. If gj(xi) is to remain
zero then for small changes in the xi one must have,

∇gj(xi) · dxi = 0,
in addition to

df = ∇f(xi) · dxi = 0.
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θ r= f(θ)

Figure 3: Shape of the Earth.

We may state this as �∇f should be orthogonal to any vector dx which is orthogonal to all
the ∇gi�. In the language of linear algebra, ∇f should be in the orthogonal complement of
the space G⊥, which is itself the orthogonal complement of the space G generated by the
∇gi. Since taking the orthogonal complement twice gets you back where you started ( i.e.
(G⊥)⊥ = G), ∇f must be in the space generated by the ∇gi, or ∇f =

"m
i λi∇gi for some

constants λi. This is the Lagrange multipliers rule.
More simply, if we maximize a function f(x, y, z) subject to the constraint g(x, y, z) = 0,

then the admissible dx�s satisfy dx·∇g = 0. That means dx can be any vector in the tangent
plane to the surface g = 0 at the critical point and ∇f must be orthogonal to this tangent
plane. Thus ∇f must be parallel to ∇g, i.e. ∇f = λ∇g, yielding the Lagrange multipliers
rule.

As an example let us consider the following problem. We ask to what shape one should
transform the Earth in order to maximize his own weight, given that he cannot change his
mass. Let us assume the Earth is incompressible, with an uniform density and search for
an axisymmetric solution. Since it is incompressible, the Earth must have volume

V =
4πa3

3
.

We introduce spherical polar coordinates with an origin at the position of the person, as
shown in Þgure 3. In this coordinate system the volume is given by

V =
2π

3

#
0

π
2

f3(θ) sin θ dθ =
4πa3

3
,

and the person�s weight is

W = 2π

#
0

π
2
# f(r)

0

$
Gmρ

r2
cos θ

%
r2 sin θ dr dθ = 2πGmρ

#
0

π
2

f sin θ cos θ dθ.

Thus the relevant functional is

Φ =

#
0

π
2

(f sin θ cos θ + λf3 sin θ) dθ.
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Setting its variation to zero gives

δΦ =

#
0

π
2

(δf cos θ + 3λf2δf) sin θ dθ = 0,

and so the minimum is obtained with

f2 = − 1

3λ
cos θ,

which is not too different from a sphere (which has f = 2a cos θ) and increases the weight

of the person by
&
27
25

' 1
3 ≈ 1.02 .

If we extend our considerations to functionals we arrive at the Euler-Lagrange equations.
For the simpler case when

F (f) =

#
L(f, θ) dθ,

the Euler-Lagrange equations following from δF = 0 are L1δf = 0, (where the subscript
denotes differentiation with respect to the corresponding argument), but if the functional
is of the type,

F (f) =

#
L(f, f !, θ) dθ,

then one has, # &
L1δf + L2δf

!' dθ = 0.
After integrating the second term by parts,# $

L1 − dL2
dθ

%
δf dθ + [L2δf ]bs = 0,

and assuming that L2δf vanishes on the bounding surface, one obtains the Euler-Lagrange
equation,

L1 − dL2
dθ

= 0.

In particular, if the functional is of the type

F (f) =

# b

a
L(f, f !, θ) dθ,

we get

δF =

# b

a
L1δf + L2δf

! =
# b

a
(L1 − ∂

∂θ
L2)δf dθ + [L2δf ]

b
a.

This should be zero for all δf �s that are admissible. In some cases the boundary term
vanishes automatically, for example if f is given at x = a and x = b. If there are no
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such conditions we may Þrst of all take δf �s that are in fact zero at θ = a and θ = b, but
are otherwise arbitrary. Then, assuming that (L1 − d

dθL2) is continuous, we may conclude

that L1 − d
dθL2 = 0 at all interior points of (a, b). Then, by taking δf that is zero at,

say b but not zero at a, we conclude that L2(f(a), f
!(a), a) = 0. Similarly we may show

that L2(f(b), f
!(b), b) = 0. In such cases the variational problem itself provides boundary

conditions, so-called �natural boundary conditions�, to supplement the Euler equation.
As an example, we minimize

( 1
0 f

!2(x) dx subject to the two constraints
( 1
0 f

2(x) dx =

1,
( 1
0 f(x) dx = 0 (with no boundary conditions speciÞed). To do this we consider the

functional Φ =
( 1
0 (f

!2 − λ1f2 − λ2f). Then,

δΦ =

# 1

0
(2f !δf ! − 2λ1fδf − λ2δf)dx = 2

)
f !δf

*1
0
− 2

# 1

0
[f !! + λ1f +

1

2
λ2]δf dx,

so the necessary conditions for a minimum are :

� Euler-Lagrange equation f !! + λ1f + 1
2λ2 = 0,

� the natural boundary conditions f !(0) = f !(1) = 0,
� the constraints ( 10 f2dx = 1, ( 10 fdx = 0.

One could write down the general solution of the differential equation and use the two
boundary conditions and the two constraints to determine the two λ�s and the two arbitrary
constants in the general solution. It is a little neater to note that integrating the Euler-
Lagrange equation from 0 to 1 and using the natural boundary condition and the second
constraint gives 12λ2 = 0, hence λ2 = 0. We then see that f =

√
2 cos(nπx) and λ1 = (nπ)

2,
for some integer n that cannot be zero because of the second constraint. n = 1 gives the
least-value of the integral � indeed if we integrate f !(f !! + λ1f) = 0 from 0 to 1, using the
Þrst constraint and the natural boundary conditions, we see that λ1 =

( 1
0 f

!2dx, i.e. λ1 itself
is the required minimum value π2. (Note that without the second constraint the minimum
value would be zero, achieved by f = 1.)

As a simple illustration the shortest path between two parabolas such as those shown in
Þgure 4, is a straight line perpendicular to both curves. In this example the Euler-Lagrange
equation shows that the path must be straight, while the natural boundary conditions show
that it should be orthogonal to each of the two parabolas at its endpoints, which is pretty
obvious geometrically.

3 Minimization of
(
f %2 given

(
f2

As an example, we consider the following problem:

Minimize
( L
0 f

!2(x)dx subject to
( L
0 f

2(x)dx = 1 and f(0) = f(L) = 0.

The technique of Lagrange multipliers gives Φ =
( L
0 (f

!2 − λf2)dx, which has

δΦ = −2
# L

0
(f !! + λf)δfdx
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Figure 4: Distance between parabolas.

so the minimizing function satisÞes f !! + λf = 0, meaning that f is proportional to
sin(nπx/L) for some integer n. n = 1 gives the minimal value. This yields the relation# L

0
f !2dx ≥ π2

L2

# L

0
f2(x)dx for all functions f with f(0) = f(L) = 0.

This derivation was not very rigorous, although it does give the correct answer.
The problem can also be tackled using Fourier series. Under rather mild restrictions,

f(x) has a Fourier sine series, f(x) ∼ "∞
1 bn sin(nπx/L), and with a little more assumed

about f , this series actually converges to f in the interior of (0, L) � for instance if f is
continuous and continuously differentiable there. Of course the sine series converges to 0
at x = 0 and L, which need not be the values of f at those points. For simplicity, however,
we assume that f vanishes at these endpoints, and that f , f ! and f !! are all continuous
on [0, L]. Then not only does the sine series of f converge to f on [0, L], but the cosine
series of f ! converges to f ! on this interval, and this cosine series is in fact the same as
the formal term-by-term derivative of the sine series of f . (This would not be true unles
f(0) = f(L) = 0, however smooth f might be on [0, L].) Thus

f(x) =
∞!
1

bn sin(nπx/L), f !(x) =
∞!
1

nπbn cos(nπx/L)/L,

and # L

0
f2(x)dx =

L

2

∞!
1

b2n,

# L

0
f !2(x)dx =

L

2

∞!
1

+nπ
L

,2
b2n.

Thus
( L
0 f

!2(x)dx ≥ (π/L)2
( L
0 f

2(x)dx, with equality only when all the bn beyond b1 are
zero.
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Another approach to this inequality that also avoids consideration of the Euler�Lagrange
equation is the method of multiplicative variation: we set f(x) = sin(πx/L)g(x). Then we
compute# L

0
f !2dx =

# L

0

+
sin

πx

L
g!(x) +

π

L
cos

πx

L
g(x)

,2
dx,

=

# L

0
sin2

πx

L
g
!2dx+

# L

0
2
π

L
cos

πx

L
sin
πx

L
g(x)g!(x)dx+

# L

0

+π
L

,2
cos2

πx

L
g2dx,

=

# L

0
sin2

πx

L
g
!2dx−

# L

0

+π
L

,2 +
cos2

πx

L
− sin2 πx

L

,
g2dx

+

# L

0

+π
L

,2
cos2

πx

L
g2dx,

=

# L

0
sin2

πx

L
g
!2(x)dx+

π2

L2

# L

0
f2(x)dx,

≥π
2

L2

# L

0
f2dx,

with equality only when g! ≡ 0 everywhere on (0, L) assuming it is continuous there.
A variation on this theme is the following little calculation:

0 ≤
# L

0

+
f !(x)− π

L
cot

πx

L
f(x)

,2
dx

=

# L

0
f !2dx+

+π
L

,2 # L

0
cot2

πx

L
f2(x)dx−

# L

0
2f(x)f !(x)

π

L
cot

πx

L
dx

=

# L

0
f !2dx+

+π
L

,2 # L

0
cot2

πx

L
f2(x)dx−

-π
L
f2(x) cot2

πx

L

.L
0

− π

L

# L

0
f2(x)

π

L
cosec

πx

L
dx

=

# L

0
f !2dx−

+π
L

,2 # L

0
f2dx

In this argument we must assume that f → 0 faster that x1/2 as x→ 0 or than (L− x)1/2
as x→ L. Some such hypothesis is needed to assume the existence of

( L
0 f

!2(x)dx.
Claim: Assume that f is continuous and differentiable on the interval [−1, 1], f(−1) =
f(1) = 0, f(x) =

( x
−1 f

!(t)dt and that
( 1
−1 f

!2
dx exists. Then

f2(x) ≤ (1− x2)+f !2,,

where +g, denotes ( 1−1 g(x)dx/2 for any function g.
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Proof:

f2(x) =

$# x

−1
f !(t)dt

%2
,

≤
# x

−1
f !2(t)dt

# x

−1
12dt,

=(1 + x)

# x

−1
f !2(t)dt.

Similarly

f2(x) ≤ (1− x)
# 1

x
f !2dt,

and combining the two gives

f2(x)

$
1

1 + x
+

1

1− x
%
≤ 2+f !2,,

leading to the required result.

!

Integrating both sides leads to

+f2, ≤ 2

3
+f !2,.

However, we already know that the stronger relationship

+f2, ≤ 4

π2
+f !2,,

holds from the previous calculations, so the above method does not give the optimal esti-
mate. Still, the pointwise estimate given by this result cannot be improved; it is only the
integrated result that is less than optimal.

In two dimensions, if we wish to minimize
(
A |∇f |2dA subject to

(
A |f |2dA = 1, where

A is a region in R2, then the Lagrange method yields the relation ∇2f + λf = 0 for the
minimizing function f . If A is a circle centred on the origin with radius 1 then this has
solutions Jm(jmnr)e

imθ, where Jm is the mth order Bessel function of the Þrst kind and
jmn is the nth positive root of Jm. Then 1 =

(
A |f |2dA = 2π

( 1
0 rJ

2
m(jmnr)dr and so(

A |∇f |2dA = 2πjmn
( 1
0 rJ

2
m(jmnr)dr = j

2
mn. So the minimum value of

(
A |∇f |2dA is given

by j201 ≈ 5.78.

4 The Dual Lagrange Problem

We have

L(x,λ) = F (x) +

m!
i=1

λigi.
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Figure 5: An example showing values of L(x,λ) for a case where supλ infx L = 2 and
infx supλ L = 3.

Suppose that F has minimum value F∗, subject to the constraints gi = 0 for i = 1, 2, . . . ,m,
which is attained when x = x∗.

Now let

h(λ) = inf
x
L(x,λ) ≤ F∗ ∀λ.

The dual problem is given by maximizing h(λ). Say this has value h∗. Then h∗ ≤ F∗,
sometimes with equality, though not always. An example of a case where there is not
equality is shown in Þgure 5.

4.1 Further examples

F (x, y) = x2 + 2y2, with g = 1− x2 − y2.
Then L(x, y,λ) = x2+2y2+λ(1−x2−y2). Thus the Euler�Lagrange equations for seeking
a minimum of F with g1 = 0 are 2x − 2xλ = 0, 4y − 2yλ = 0. Therefore either λ = 1,
x = ±1 and y = 0 giving F∗ = 1, or λ = 2, x = 0 and y = ±1 giving F∗ = 2. Thus the
minimum is F∗ = 1, attained at x = ±1, y = 0.

Now consider

h(λ) = inf
x
L(x,λ) =


−∞ if λ > 1
1 if λ = 1 (at y = 0)
1 if λ < 1 (at x = y = 0)

Thus maxλ h(λ) = 1 so that h∗ = 1 = F∗. So for this example, maxλ h = minx,g1(x,y)=0 F .
On the other hand consider again

F = x2 + 2y2, but with g = 1− x4 − y4.
For this case, L(x, y,λ) = x2 + 2y2 + λ(1 − x4 − y4). Thus using the Lagrange multiplier
rule to seek a minimum of F given g = 0 we get

2x− 4λx3 = 0, 4y − 4λy3 = 0, 1− x4 − y4 = 0.
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Therefore either

� x /= 0. Then λ = 1/2x2 and y = 0 or y = ±√2x. If y = 0 then x = ±1 and F∗ = 1
Otherwise, x = ±5−1/4, y = ±5−1/4√2 and F∗ = 5−1/2 + 4 · 5−1/2 =

√
5, or

� x = 0. Then the constraint requires y = ±1, (and hence λ = 1) and then F = 2,
which is greater than 1.

Thus the least value of F is 1, obtained at x± 5−1/4, y = ±5−1/4√2.
However, Lagrange multipliers are not really needed for this problem: considering only

x and y ≥ 0 we could eliminate the constraint by setting x = √cos θ, y = √sin θ and then
F = cos θ+2 sin θ, F ! = 2 cos θ− sin θ. At the minimum, tan θ = 2 and hence F = √5. But
at θ = 0, F = 1 and at θ = π/2, F = 2. Thus the minimum F is 1, attained at x = ±1,
y = 0.

But what is h(λ) = infx,y(x
2 + 2y2 + λ(1− x4 − y4))?

h(λ) =


−∞ if λ > 0
0 if λ = 0
λ if λ < 0

Therefore maxλ h(λ) = 0, so

max
λ
h(λ) < min

x,y,x4+y4=1
F.

There is a �duality gap�.
Remark: If our original problem had been to maximize F (x) subject to the constraints

g1 = g2 = · · · = gm = 0 we would still have

L(x,λ) = F (x) +

m!
k=1

λkgk(x),

and the same Lagrange multiplier rule: look for x∗ where

∂F

∂xi
+

m!
k=1

λk
∂gk
∂xi

= 0, and g1 = g2 = · · · = gm = 0.

If we have an x∗ that maximises F subject to the constraint and consider

H(λ) = sup
x

2
F (x) +

m!
k=1

λkgk(x)

3
,

then we have minλH(λ) ≥ F (x∗), since whatever λ might be, there is an x (namely x∗)
that makes L(x,λ) = F (x∗), so supx L(x,λ) ≥ F (x∗), and so minλH(λ) ≥ F (x∗).

These maximum minimum dual problems are reminiscent of �Courant�s maximum prin-
ciple�, a rather striking result about eigenvalues of symmetric or Hermitian matrices,
Sturm�Liouville problems, etc. It will be recalled that the lowest eigenvalue λ1 of a real
symmetric matrix A may be characterized as the minimum of xTAx/xTx for all non-zero
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vectors x, this minimum being achieved for x = e, the Þrst eigenvector. Similarly the sec-
ond eigenvalue λ2 is the minimum of xTAx/xTx for all vectors x that are orthogonal to e,
and the kth eigenvalue is the same minimum over all vectors orthogonal to e1, e2, . . . , ek−1.
Courant pointed out that the kth eigenvalue can be described directly without explicit ref-
erence to the previous ones as follows: take an arbitrary set of k − 1 vectors v1, . . . , vk−1,
and form H(v1, . . . , vk−1) = min(xTAx/xTx) for all non-zero vectors x that are orthogonal
to v1, v2, . . . , vk−1. Then λk = maxv1,...,vk−1 H. (See for instance Courant and Hilbert [1]).
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