Lecture 8: Asymptotic techniques for SDEs

Eric Vanden-Eijnden

Here we discuss techniques by which one can study SDEs evolving on very different
time-scales and derive closed equations for the slow variables.

1 The case of stiff ordinary differential equations
We start with an ODE example. Consider

X; = =Y + sin(nt) + cos(V2nt) Xo==x

. 1 (1)
Vi == (% - X) Y=y,

If € is very small, Y; is very fast and one expects that it will adjust rapidly to the current
value of X3, i.e. Y; = X; + O(e) at all times. Then the equation for X; reduces to

Xy = — X} + sin(nt) + cos(vV2nt). (2)

The solutions of (1) and (2) are compared in figure 1.

Here is a formal derivation of the limiting equation (2) which uses the backward Kol-
mogorov equation. For simplicity we drop the term sin(7t) 4 cos(v/27t). Generalizing the
derivation below with this term included is easy but requires a slightly different backward
equation because (2) is non-autonomous. Let f be a smooth function and consider

U(ﬂi‘,y,t) = f(Xt)

(This function depends on both x and y since X; depends on both these variable because
X; and Y; are coupled in (1), and there is no expectation since (1) is deterministic.) The
backward equation is

ou 1
— =1L, —Lyu,
It u -+ z yU
where 5 9
L,=—-y—, L,=—(y—x)=—.

Look for a solution of the form u = ug+euy +O(g?), so that u — ug as € — 0. Inserting this
expansion into the backward equation, and grouping terms of same order in €, one obtains

Ly’LL(] = 0,

3
Lyul = % — LxUQ, ( )

ot
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Figure 1: The solution of (1) when ¢ = 0.05 and we took Xy =2, Yy = —1. X; is shown in
blue, and Y; in green. Also shown in red is the solution of the limiting equation (2).

and so on. The first equation tells that ug belong to the null-space of Ly, i.e. uy = ug(z,1).
The second equation requires as a solvability condition that the right hand-side belongs to
the range of L,. To see what this condition actually is, multiply the second equation in (3)
by a test function p(y), and integrate both sides over R. After integration by part at the
left hand-side, this gives

* . auo
/R Lyp(y)urdy = /R p(y)(ﬁ - Lmu(]) dy.

where L7 is the adjoint of L, viewed as an operator in y at fixed z, i.e.

Liply) = ;—y((y —x)p(y)).

Choosing p(y) such that
0= Lyp(y), (4)
one concludes that the solvability of (3) requires that

0= /Rp(y) (% - Lmuo) dy. (5)

It can be shown that this equation is also sufficient for the solvability of (3) — the calculation
above actually tells the range of L, is the space perpendicular to the null-space of the adjoint
of L,. Now, (4) is simply the forward Kolmogorov equation for the equilibrium density of
the process Y; at fixed X; = x. Here the equilibrium density is a generalized function

pylz) = o(y — ).
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Using this p(y|x), the solvability condition (5) becomes
o= U0 Iu
Ot oz’

which is the backward equation for
X, =—-X3, Xy = x.

A similar argument with the term sin(7t)+cos(v/27t) included gives the backward equation
for (2).

2 Generalization to stochastic differential equation
The derivation that lead to (2) can be generalized to SDEs. Consider

dXt = f(Xt7}/;f)dt7 XO =T
dy; 1b(X Yi)dt + ! (X, Yy)dt Yo ©)
= — —0 =
t c tHy It \/E ty It ) 0 Y,
and assume that the equation for Y; at X; = x fixed has an equilibrium density p(y|z) for
every x. Then going through a derivation as above with

U(I’, Y, t) = Ef(Xt)7

one concludes that the backward equation associated with this SDE also reduces to (5) as

e — 0, ie.
8U0 au()

o~ F@as
where

F(z) = /R f (@, y)plylz)dy.

Thus the limiting equation for Xj is
Xt = F(Xt)v Xo = 0.

The main difference with the deterministic example treated before is that the fast process
Y; does not rapidly settle to an equilibrium point depending on the current value of X; —
only its density does.

Here is an example generalizing (1). Consider

dX; = —Yt?’dt + sin(7t) + cos(\/imf), Xo=uw

1 «Q
dY; = ——(Y; — X,)dt + —=dW, Yo =u.
t E( t t) +\/§ ts 0=y

The equation for Y; at fixed X; = x defines an Ornstein-Uhlenbeck process whose equilib-
rium density is

(7)

o (=) /a?

p(ylz) = W'
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Figure 2: The solution of (7) with Xq = 2, Yy = —1 when ¢ = 1073 and a = 1. X; is shown
in blue, and Y; in green. Also shown in red is the solution of the limiting equation (8).
Notice how noisy Y; is.

Therefore e
e~ (y—z)°/a
F(x) =— 3 dy=-—2°— 2%
(z) T W satr,
and the limiting equation is

X, =-X} - 302X, + sin(rt) + cos(V/27t), Xo =x. (8)
Note the new term —3a2X;, due to the noise in (7). The solution of (7) and (8) are shown
in figure 2.

3 Strong convergence and the property of self-averaging

The derivation in section 2 only give weak convergence, or convergence in distribution. But
stronger results can be obtained. Consider a system of the form

where Y; is a given stochastic process. Assume that Y; is ergodic, in the sense that for any
fixed z,

lim % flx,Y,)ds = f(z). (10)

(= F(Xy) (11)



To see this, consider the integral form of (9):

t+ At
X¢, - Xf = / (X0 Y, ds. (12)

We rewrite this equation in a way that allows us to exploit the self-averaging property (10).

t At t+ At
Xf+At - Xte = / f(Xty}/s/e)dS + / (f(X87}/;/€) - f(Xta Ys/e)) ds. (13)
t t

We will consider the behavior of these two integrals as ¢ — 0 separately.
Using (10), the first integral

t+ At (t+At) /e _
/ (X0, Y, )ds = / (X0, Ya)ds — AtF(X), (14)
t t

€

as € — 0. To investigate the contribution of the second integral, let

t+ At
Alt, At,e) = / (F(XoYa) — F(X0Y0)) ds. (15)

We then have AL
At At,2)| < / F(X0 Yoy — F(X0 Y, ds. (16)
t

Assuming f is uniformly Lipschitz in Y; with constant K, we then write

t+At
A(t, At &) < / K| X, — Xi| ds
t

t+ At s
< [ K- x- [ regas
t t

t+At s
s [R] [y fas
t t

It is straightforward to show using (14) that, for sufficiently small ¢,

t+ AL s
|| [ e vaas
t t

for some constant C' < oco. Gronwall’s lemma then implies that

ds < CAt? (17)

t+AL
‘Xt—i—At - X — / f(Xq, Y;/e)ds‘ = |A(t, At, ¢)|
t
< CAt? exp K At = o(At).

This shown that -
lim (XFiae — X7) = Atf(X]) + o(Ab). (19)
E—

which is sufficient to demonstrate that X; converges strongly to X;.
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4 Diffusive time-scale

An interesting generalization of the situation presented in section 2 arises when
/]R f(@,y)p(ylz)dy = 0. (20)

In this case the limiting equation reduces to the trivial ODE, X; = 0, i.e. no evolution at

all. In fact, the interesting evolution then occurs on a longer time-scale of order e~!, and
the right scaling to study (6) is
1
dXt = _f(XbY;f)dtv XO =T
: (21)

1 1
dY; = b(Xy, Yi)dt + —o(Xy, Yy)dt, Yo =y,
IS g

To obtain the limiting equation for X; as ¢ — 0, we proceed as above and consider the
backward equation for u(z,y,t) = Ef(X;), which is now rescaled as

ou 1 1

— = —-L,u+ —= Lyu.

o e ° * g2V
Inserting the expansion u = ug + euj + €2uz + O(e?) (we will have to go one order in
higher than before) in this equation now gives

LyUQ = 0,

Lyul = _Lxu07 (22)
auo

Lyu2 = W - L:cula

and so on. The first equation tells that ug(x,y,t) = uo(x,t). The solvability condition for
the second equation is satisfied by assumption because of (20) and therefore this equation
can be formally solved as

Uy = —Ly_lLIUO.
Inserting this expression in the third equation in (22) and considering the solvability con-
dition for this equation, we obtain the limiting equation for ug:

ou -
8—t0 = Lmu(b

where
Ex:/]Rdyp(y\x)Lxszle.

To see what this equation is explicitly, notice that —L, Lg(y) is the steady state solution of

ov
rri Lyv +g(y).

The solution of this equation with the initial condition v(y,0) = 0 can be represented by
Feynman-Kac formula as

v(y, 1) ZE/O g(Y")ds,
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where Y;* denotes the solution of the second SDE in (21) at X; = z fixed and € =1, i.e.
dY® = b(z, Y )dt + o(x,Y,")dWy, Yi=y.

Therefore -
~L9) =B [ a(v)ar

and the limiting backward equation above can be written as

8’&0

0
5t )

(o] a .
—E /0 dt /R dyplyle) (o) (£, ¥ 52
This is the backward equation of the SDE

dX; = B(Xt)dt + 5'(Xt)th, Xg ==,
where - 5
o) =B [ [ olylo)f (o) fa Yy,
0o JR €z

@) =22 [ [ plolorse @7yt

The interesting new phenomena is that the limiting equation for X; has become an SDE.
This means that fluctuations are important on the long-time scale and give rise to stochastic
effects in the evolution of X; that were absent on the shorter time-scale.

The calculation above is easy to generalize if there is a slow term in the original equation
for Xy, i.e. if instead of (21) one considers

AX, = g(X, Ydt + L f(X Yodt,  Xo=
4, = (X0 V)t + Zo(X0 Yiydt, Yo =y,
The limiting equation for X; is then
dX; = G(Xy)dt + b(Xy)dt + &(X;)dWy, X = =,

with b(x) and &(x) as above, and

G(z) = /]R p(ylx)g(z,y)dy.

It is also straightforward to generalize to higher dimensions.
Here is an example.

dX; = %aytztdt — (X¢ + X})dt,

3

B

07, = — SbsY, Xydt — ~ Zydt + ~dW7.
9 9 9

1 1
dYy = —Z: Xdt — 6—2Y}dt + gthy,
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Figure 3: The equilibrium density p(z) = Zlea(@* e =gt for o = 1 (blue) and o = 2
(red).

where W/, W/ are independent Wiener processes and « is a parameter. There are two
fast variables, Y; and Z;, in this example. There is also a slow term, —(X; + X})dt, in
the equation for X; which, in the absence of coupling with Y; and Z;, would drive X; to
the position x = 0. We ask to what extend this equilibrium of the uncoupled dynamics is
relevant with coupling with Y; and Z;.

The limiting equation for X; is

dX; = (o = D) X; — X2)dt + adW;.

The equilibrium density for this equation is

,0(1') — Z—le%(az—l)xz—im‘l'

This density is shown in figure 3. For |a| < 1, p(z) is mono-modal and centered around
x = 0, the stable equilibrium of the uncoupled dynamics. However, for |a| > 1, p(z) be-
comes bi-modal, with two maxima at z = ++va? — 1 and a minimum at x = 0. Thus
coupling with the fast modes may destroy the structures apparent in the uncoupled dynam-
ics and induce bifurcations.

Notes by Inga Koszalka and Alex Hasha.
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