Lecture 7: Stochastic integrals and stochastic differential
equations

Eric Vanden-Eijnden

Combining equations (1) and (2) from Lecture 6, one sees that W} satisfies the recur-
rence relation

W =wl + & vVA, W =0. (1)
where t,, = n/N, At = 1/N and {&, }nen are i.i.d. random variables taking values £1 with
probability % as before. A natural generalization of this relation is

XN

tn+1

=X +bo( X to) At + o(X]) tp)eniVAL,  Xo== (2)

If the last term were absent, this would be the forward Euler scheme for the ordinary
differential equation (ODE) X; = b(Xy,t). If b(x,t) and o(x,t) meet appropriate regularity
requirements, it can be shown that X;¥ converges to a stochastic process X; as N — oo
(i.e. as At — 0 with nAt — t). The limiting equation for X; is denoted as the stochastic
differential equation (SDE)

dXy = b(Xt, t)dt + O'(Xt, t)th, Xog ==, (3)

as a remainder that the last term in (2) divided by At does not have a standard function as
limit. The notation dW; comes from (1) since this equation can be written as Wt]:f o Wt]: =

&1V At. We note that the convergence of X}V to X; holds provided only that the &,’s are
i.i.d. random variables with mean zero, E§, = 0, and variance one, E¢2 = 1. The standard
choice in numerical schemes is to take &, = N(0, 1), in which case

v At €n+1 i th+1 - th'

In the discussion below, however, we will stick to the choice where {,, },en are i.i.d. random
variables taking values £1 with probability % since it facilitates the calculations.

Next, we study the properties of X; solution of (3) and introduce some nonstandard
calculus due to It6 to manipulate this solution.

1 Itd isometry and Ito formula
Consider the recurrence relation

XN =X+ W)V AL, XY =o.
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Let us investigate the properties of the limit of XfLVAt as N — oo, assuming that this limit
exists. The limiting form of the recurrence relation above is traditionally denoted as

dXy = f(Wy, t)dWr, X =0,
which can also be expressed as the stochastic integral
¢
X = / f(Wy, s)dW,
0

Stochastic integral have special properties called the [to isometry
¢
IE/ F(We, 5)dW, = 0,
0

t 2 t
E(/ F(Wy,)dW,) " = / Ef2(W,, s)ds.
0 0
The first of these identity is often written and used in differential form
Ef(Ws, s)dWs = 0.

The It6 isometry is easy to demonstrate. The first identity is implied by

2_: WtN ) tm £m+1\/_

n—1
= f(tha m)Efm+1 VAt = 0,

m=0

where we used the independence of the &,,’s and E&,, = 0. The second identity is implied
by

BOCYY —E 3 £V ) OV t)oms a6y A
m,p=0
= Z Ef2 (W ) A
where we use the fact that &, and §, are independent unless m = p, and € =1 by

definition.

Going back to (3), a very important formula to manipulate the solution of this equation
is Ité formula which states the following. Assume that X; is the solution of (3) and let f
be a smooth function. Then g(X;) satisfies the SDE

dg(Xy) = g'(Xy)dX: + Lg" (Xp)o? (Xy, t)dt
:(g’(Xt)b(Xt,) 39" (X)o* (X, 1)) dt + ¢ (Xy)o(Xe, t)dW,.

If g depends explicitly on ¢, then an additional term 0g/0tdt is present at the right hand-
side. It6 formula is the analog of the chain rule in ordinary differential calculus. However
ordinary chain rule would give

dg(X:) = ¢'(Xe)d Xy
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Here because of the non-differentiability of X, we have the additional term that depends

on g" ().

The proof of It6 formula can be outlined as follows. We Taylor expand g(X}¥ g(x}{)

)=
n+1
using the recurrence relation (2) for X7V and keep terms up to O(At):

g(XiZH) 9(X7)
g XX = X + 39" (XX, — X2+
g XX, =X
+1 f/(th><b(ng, tn) At + o (X7, tn)§n+1\/ﬂ>2 + O(At3/?)
=g/ (XM)XN, = XN+ 39" (X))o (X 1) €8 At + O(AE?)
=g (XIXN = XN+ 1" (X))o (X 1) At + O(A3?),

where in the last equality we used £2 41 = 1. The It6 formula follows in the limit as At — 0.

2 Examples

The It6 isometry and the It6 formula are the backbone of the [té calculus which we now use
to compute some stochastic integrals and solve some SDEs. As an example of stochastic

integral, consider
¢
/ WsdWs.
0

LdW? = W dW; + Lat.

Taking f(z) = 22 in It6 formula gives

Therefore .
/ WedW, = W2 —
0

Notice that the second term at the right hand-side would be absent by the rules of standard
calculus. Yet, this term must be present for consistency, since the expectation of the left
hand-side is

¢
E / WedWy =0,
0
using the first It6 isometry, and the expectation of the right hand-side is zero only with the
term %t included since %EWIE = %t.
As a first example of SDE, consider
dX; = —’)/Xtdt + odWrs, Xo==z

This is the Ornstein-Uhlenbeck process. Using It6 formula with f(z,t) = ez, we get (this
is Duhammel principle)

d(e“’tXt) = ~ve"' X dt + 'd X, = o dW,.
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Figure 1: Three realizations of the Ornstein-Uhlenbeck process with Xg =0 and vy =0 = 1.
Integrating gives
¢
X;=e Vo +o / e V=S qw.
0

This process is Gaussian being a linear combination of the Gaussian process W;. Its mean
and variance are (using the It isometry)

EX;, =e "z
t 0_2
E(Xt — EXt)2 = 0-2/ (e—“{(t—s))ZdS — 2_(1 - e—2~/t)'
0 Y

Thus when v > 0
2
pALSY <0, U—) ,
2y
as t — o0.
As a second example of SDE, consider the so-called geometric Brownian motion

dY; = Yidt + aY,dWs, Yo =y.

This process has some application in mathematical finance. 1t6’s formula with f(z) = log z
gives

1 1

dlogV; = —(Yidt + oYy dW;) — ——5a’Y2dt.
og Y; Y, (Y 1 dWy) 2Y2 ¢
Integrating we get
Y;ﬁ _ yet—%azt-‘rawt‘

Note that by the rules of standard calculus, we would have obtained the wrong answer

t+aWi

Y = ye (wrong!)
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Indeed the term —%azt in the exponential is important for consistency since taking the
expectation of the SDE for Y; using the first It6 isometry gives

dEY; = EY,dt,
and hence
EY; = ye'.
The solution above is consistent with this since
EeaWt — e%azt

3 Generalization in multi-dimension

The definition of It6 integrals and SDE’s can be extended to multi-dimension in a straight-
forward fashion. The SDE

K
dX] =b;( Xy, t)dt + > opp(Xe, )dWF,  j=1,...,T
k=1

where {W/}X_| are independent Wiener processes, defines a vector-valued stochastic process
X; = (X},...,X/). The only point worth noting is the Ité6 formula, which in multi-
dimension reads:

K

df(Xt):Zag(xXt dxj + 1 Z ax]ag;y (Zl W(Xe,t o—kj/(Xt,t))dt

Jj=1 Ji'=1
4 Forward and backward Kolmogorov equations
Consider the stochastic ODE
dXt = b(Xt)dt + O'(Xt)th, XQ =Y.

Define the transition probability density p(x,t|ly) via

o
/ p(x,t|ly)de = P{Xi1s € [x1,22)|Xs = y}.

1

(p(z,tly) does not depends on s because b(z) and o(x) are time-independent.) The tran-
sition probability density is an essential object because the process X; is Markov, in other
words: for any t,s > 0

]P)(Xt—l—s € B[$1,$2)|{X5/}0§5/§5}) = P(Xt-‘rs € B[$17$2)|{X8})7

i.e.the future behavior of X; given what has happened up to time s depends only on what
X, was. We will derive equation for p. Let f be an arbitrary smooth function. Using Ito

formula, we have
7, / F(X)dX, + / F1(X)a(X,)ds,
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where a(x) = 0?(x). Taking expectation on both sides, we get

Ef(X) — f(y) =E /0 F(X)b(X,)ds + LE /0 F7(X)(X.)ds.

or equivalently using p

/f ol tly)dz — f(y)

//f )p(z, s|y)dxds + 5 //f" )p(z, sly)dxds.

Since this holds for all smooth f, we obtain

2
90— 2 @) + -5 (alz)o) ()

with the initial condition lim; ¢ p(x,tly) = d(x — y). This is the forward Kolmogorov
equation for p in terms of the variables (z,t). It is also called the Fokker-Planck equation.

Equivalently, an equation for p in terms of the variables (y,t) can be derived. The
Markov property implies that

p(x,t+ sly) = /Rp(w,tb)p(z, sly)dz
Hence
p(z,t + Atly) — p(z, tly) = /Rp(w,t!Z)p(zy Atly)dz — p(z, tly)
= [ o t12) (o(z. Atly) =6z = )

Dividing both side by At and taking the limit as At — 0 using the forward Kolmogorov
equation one obtains

op 0 , 02
%2 = [ . t12) (~ g 02180 = ) + 455 (el — )
which by integration by parts gives

dp

ot b(y)

dp
Oy

9?p

%a(y)a—yg- ()

This is the backward Kolmogorov equation for p in terms of the variables (y,t). The operator

0 o

L=b ta(y) =

( )ay + 2 ( )ay27

is called the infinitesimal generator of the process. The coefficient b and a can be expressed
as

1
b(y) = lim — (E Xi—y),  aly) = lim 2By (X, —p)*,

t—0
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Figure 2: Snapshots of the density of the Ornstein-Uhlenbeck process at time ¢ = 0.01
(blue), t = 0.1 (red), t = 1 (green), and ¢t = 10 (magenta). Here Xo =y =1land y=0 = 1.
The last snapshot at ¢ = 10 is very close to the equilibrium density.

where £, denotes expectation conditional on X = v,
Both the forward and the backward equations can be considered with different initial
conditions. In particular, given a smooth function f, if we define

u(y, t) = By f(Xy),
then u(y,t) = [p f(x)p(z,t|y) and hence it satisfies

ou ou 0%u
()= + 1 it

at (y) 81/ + 2a(y) ay27

with the initial condition u(y,0) = f(y). In this sense, the SDE for X, is the characteristic
equation that is associated with this parabolic PDE, much in the same way as the ODE
X; = b(Xy) is the characteristic equation associated with the first order PDE du /0t =
b(y)Ou/dy. This can be generalized in many ways. For instance, the solution of

ov ov 0%

o = CWvly) + b(y)@ + %a(y)a—yg-

with the initial condition v(y,0) = f(y), can be expressed as
vy, t) = By f(X,)elo cX)ds.

This is the celebrated Feynman-Kac formula in the context of SDEs.
Let us consider an example. The forward differential equation associated with the
Ornstein-Uhlenbeck process introduced in the last section is
ap 0 a2 0%p
ot = Vot g g
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The solution of this equation is

1 (@ —ye )

Vro2(l—e ) /y P <_m>'

plx,tly) =

This shows that the Ornstein-Uhlenbeck process is a Gaussian process with mean ye™7*
and variance 02(1 — e=2)/2y. It also confirms that this process tends to N(0,02%/27) as

t — o0 since -
e~ Y7/

p(x) = Jim pz,tly) = \/TW‘

Generally, the limit of p(x,t|y) as t — oo, when it exists, gives the equilibrium density p of
the process. It satisfies

2
0= (b)) + 5 g a(@)o)

Forward and backward Kolmogorov equations can also be derived for multi-dimensional
processes. They read respectively

J

op 0
EZ_Z% Z@x@az aji'(%)p)

j=1 " J3'=1

and

op J
E:Zb + Z axﬁx]

j=1 JJ =
where a;;/(x) = Zszl ojk(z)ojr(T).

Notes by Walter Pauls and Arghir Dani Zarnescu.
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