
Lecture 6: Wiener Process

Eric Vanden-Eijnden

Chapters 6, 7 and 8 offer a (very) brief introduction to stochastic analysis. These
lectures are based in part on a book project with Weinan E. A standard reference for the
material presented hereafter is the book by R. Durett, “Stochastic Calculus: A Practical
Introduction” (CRC 1998). For a discussion of the Wiener measure and its link with path
integrals see e.g. the book by M. Kac, “Probability and Related Topics in Physical Sciences”
(AMS, 1991).

1 The Wiener process as a scaled random walk

Consider a simple random walk {Xn}n∈N on the lattice of integers Z:

Xn =

n
∑

k=1

ξk, (1)

where {ξk}k∈N is a collection of independent, identically distributed (i.i.d) random variables
with P(ξk = ±1) = 1

2 . The Central Limit Theorem (see the Addendum at the end of this
chapter) asserts that

XN√
N

→ N(0, 1) (≡ Gaussian variable with mean 0 and variance 1)

in distribution as N → ∞. This suggests to define the piecewise constant random function
W N

t on t ∈ [0,∞) by letting

W N
t =

X⌊Nt⌋√
N

, (2)

where ⌊Nt⌋ denotes the largest integer less than Nt and in accordance with standard no-
tations for stochastic processes, we have written t as a subscript, i.e. W N

t = W N(t).
It can be shown that as N → ∞, W N

t converges in distribution to a stochastic process
Wt, termed the Wiener process or Brownian motion1, with the following properties:

(a) Independence. Wt − Ws is independent of {Wτ}τ≤s for any 0 ≤ s ≤ t.

1The Brownian motion is termed after the biologist Robert Brown who observed in 1827 the irregular

motion of pollen particles floating in water. It should be noted, however, that a similar observation had been

made earlier in 1765 by the physiologist Jan Ingenhousz about carbon dust in alcohol. Somehow Brown’s

name became associated to the phenomenon, probably because Ingenhouszian motion does not sound very

good. Some of us with complicated names are moved by this story.
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Figure 1: Realizations of W N
t for N = 100 (blue), N = 400 (red), and N = 10000 (green).

(b) Stationarity. The statistical distribution of Wt+s − Ws is independent of s (and so
identical in distribution to Wt).

(c) Gaussianity. Wt is a Gaussian process with mean and covariance

EWt = 0, EWtWs = min(t, s).

(d) Continuity. With probability 1, Wt viewed as a function of t is continuous.

To show independence and stationarity, notice that for 1 ≤ m ≤ n

Xn − Xm =
n

∑

k=m+1

ξk

is independent of Xm and is distribute identically as Xn−m. It follows that for any 0 ≤ s ≤ t,
Wt − Ws is independent of Ws and satisfies

Wt − Ws
d
= Wt−s, (3)

where
d
= means that the random processes on both sides of the equality have the same

distribution. To show Gaussianity, observe that at fixed time t ≥ 0, W N
t converges as

N → ∞ to Gaussian variable with mean zero and variance t since

W N
t =

X⌊Nt⌋√
N

=
X⌊Nt⌋
√

⌊Nt⌋

√

⌊Nt⌋√
N

→ N(0, 1)
√

t
d
= N(0, t).

In other words,

P(Wt ∈ [x1, x2]) =

∫ x2

x1

ρ(x, t)dx (4)
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where

ρ(x, t) =
e−x2/2t

√
2πt

. (5)

In fact, given any partition 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, the vector (W N
t1 , . . . ,W N

tn ) converges
in distribution to a n-dimensional Gaussian random variable. Indeed, using (3) recursively
together with (4),(5) and the independence property (a), it is easy to see that the probability
density that (Wt1 , . . . ,Wtn) = (x1, . . . , xn) is simply given by

ρ(xn − xn−1, tn − tn−1) · · · ρ(x2 − x1, t2 − t1)ρ(x1, t1) (6)

A simple calculation using

EWt =

∫

R

xρ(x, t)dx, EWtWs =

∫

R2

yxρ(y − x, t − s)ρ(x, s)dxdy.

for t ≥ s and similarly for t < s gives the mean and covariance specified in (b). Notice that
the covariance can also be specified via

E(Wt − Ws)
2 = |t − s|,

and this equation suggests that Wt is not a smooth function of t. In fact, it can be showed
that even though Wt is continuous almost everywhere (in fact Hölder continuous with
exponent γ < 1/2), it is differentiable almost nowhere. This is consistent with the following
property of self-similarity: for λ > 0

Wt
d
= λ−1/2Wλt,

which is easily established upon verifying that both Wt and λ−1/2Wλt are Gaussian processes
with the same (zero) mean and covariance.

More about the lack of regularity of the Wiener process can be understood from first

passage times. For given a > 0 define the first passage time by Ta ≡ inf{t : Wt = a}. Now,
observe that

P(Wt > a) = P(Ta < t & Wt > a) = 1
2P(Ta < t). (7)

The first equality is obvious by continuity, the second follows from the symmetry of the
Wiener process; once the system has crossed a it is equally likely to step upwards as down-
wards. Introducing the random variable Mt = sup0≤s≤t Ws, we can write this identity
as:

P(Mt > a) = P(Ta < t) = 2P(Wt > a) = 2

∫ ∞

a

e−z2/2t

√
2πt

dz, (8)

where we have invoked the known form of the probability density function for Wt in the
last equality. Similarly, if mt = inf0≤s≤t Ws,

P(mt < −a) = P(Mt > a). (9)

But this shows that the event “Wt crosses a” is not so tidy as it may at first appear since
it follows from (8) and (9) that for all ε > 0:

P(Mε > 0) > 0 and P(mε < 0) > 0. (10)

In particular, t = 0 is an accumulation point of zeros: with probability 1 the first return
time to 0 (and thus, in fact, to any point, once attained) is arbitrarily small.
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2 Two alternative constructions of the Wiener process

Since Wt is a Gaussian process, it is completely specified by it mean and covariance,

EWt = 0 EWtWs = min(t, s). (11)

in the sense that any process with the same statistics is also a Wiener process. This
observation can be used to make other constructions of the Wiener process. In this section,
we recall two of them.

The first construction is useful in simulations. Define a set of independent Gaussian
random variables {ηk}k∈N, each with mean zero and variance unity, and let {φk(t)}k∈N be
any orthonormal basis for L2[0, 1] (that is, the space of square integral functions on the unit
interval). Thus any function f(t) in this set can be decomposed as f(t) =

∑

k∈N
αkφk(t)

where (assuming that the φk’s are real) αk =
∫ 1
0 f(t)φk(t)dt. Then, the stochastic process

defined by:

Wt =
∑

k∈N

ηk

∫ t

0
φk(t

′)dt′, (12)

is a Wiener process in the interval [0, 1]. To show this, it suffices to check that it has
the correct pairwise covariance – since Wt is a linear combination of zero mean Gaussian
random variables, it must itself be a Gaussian random variable with zero mean. Now,

EWtWs =
∑

k,l∈N

Eηkηl

∫ t

0
φk(t

′)dt′
∫ s

0
φl(s

′)ds′

=
∑

k∈N

∫ t

0
φk(t

′)dt′
∫ s

0
φk(s

′)ds′,

(13)

where we have invoked the independence of the random variables {ηk}. To interpret the
summands, start by defining an indicator function of the interval [0, τ ] and argument t

χτ (t) =

{

1 if t ∈ [0, τ ]

0 otherwise.

If τ ∈ [0, 1], then this function further admits the series expansion

χτ (t) =
∑

k

φk(t)

∫ τ

0
φk(t

′)dt′. (14)

Using the orthogonality properties of the {φk(t)}, the equation (13) may be recast as:

EWtWs =
∑

k,l∈N

∫ 1

0

(
∫ t

0
φk(t

′)dt′φk(u)

) (
∫ s

0
φl(s

′)ds′φl(u)

)

du

=

∫ 1

0
χt(u)χs(u)du

=

∫ 1

0
χmin(t,s)(u)du = min(t, s)

(15)
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as required.
One standard choice for the set of functions {φk(t)} is the Haar basis. The first function

in this basis is equal to 1 on the half interval 0 < t < 1/2 and to -1 on 1/2 < t < 1, the
second function is equal to 2 on 0 < t < 1/4 and to -2 on 1/4 < t < 1/2 and so on. The
utility of these functions is that it is very easy to construct a Brownian bridge: that is a
Wiener process on [0, 1] for which the initial and final values are specified: W0 = W1 = 0.
This may be defined by:

Ŵt = Wt − tW1, (16)

if using the above construction then it suffices to omit the function φ1(t) from the basis.
The second construction of the Wiener process (or, rather, of the Brownian bridge), is

empirical. It comes under the name of Kolmogorov-Smirnov statistics. Given a random
variable X uniformly distributed in the unit interval (i.e. P(0 ≤ X < x) = x), and data
{X1,X2, . . . Xn}, define a sample-estimate for the probability distribution of X:

Fn(x) ≡ 1

n
(number of Xk < x, k = 1, . . . , n) =

1

n

n
∑

k=1

χ(−∞,x)(Xk), (17)

equal to the relative number of data points that lie in the interval xk < x. For fixed x
Fn(x) → x as n → ∞ by the Law of Large Numbers tells us that, whereas

√
n(F̂n(x) − x)

d→ N(0, x(1 − x)). (18)

by the Central Limit Theorem. This result can be generalized to the function F̂n : [0, 1] 7→
[0, 1] (i.e. when x is not fixed): as n → ∞

√
n(Fn(x) − x)

d→ Wx − xW1 = Ŵx. (19)

3 The Feynman-Kac formula

Given a function f(x), define
u(x, t) = Ef(x + Wt) (20)

This is the Feynman-Kac formula for the solution of the diffusion equation:

∂u

∂t
=

1

2

∂2u

∂x2
u(x, 0) = f(x). (21)

To show this note first that:

u(x, t + s) = Ef(x + Wt+s) = Ef(x + (Wt+s − Wt) + Wt)

= Eu(x + Wt+s − Wt, t) ≡ Eu(x + Ws, t)

where we have used the independence of Wt+s − Wt and Wt. Now, observe that

∂u

∂t
(x, t) = lim

s→0+

1

s
(u(x, t + s) − u(x, t))

= lim
s→0+

1

s
E(u(x + Ws, t) − u(x, t))

= lim
s→0+

1

s

(

∂u

∂x
(x, t)EWs +

1

2

∂2u

∂x2
(x, t)EW 2

s + o(s)

)

,
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where we have Taylor-series expanded to obtain the final equality. The result follows by
noting that EWs = 0 and EW 2

s = s.
The formula admits many generalizations. For instance: If

v(x, t) = Ef(x + Wt) + E

∫ t

0
g(x + Ws)ds, (22)

then the function v(x, t) satisfies the diffusion equation with source-term the arbitrary
function g(x):

∂v

∂t
=

1

2

∂2v

∂x2
+ g(x) v(x, 0) = f(x). (23)

Or: If

w(x, t) = E

(

f(x + Wt) exp
(

∫ t

0
c(x + Ws)ds

)

)

(24)

then w(x, t) satisfies diffusive equation with an exponential growth term:

∂w

∂t
=

1

2

∂2w

∂x2
+ c(x)w w(x, 0) = f(x) . (25)

Addendum: The Law of Large Numbers and the Central Limit

Theorem

Let {Xj}j∈N be a sequence of i.i.d. (independent, identically distributed) random variables,
let η = EX1 σ2 = var(X1) = E(Z1 − η)2 and define

Sn =

n
∑

j=1

Xj

The (weak) Law of Large Numbers states that if E|Xj | < ∞, then

Sn

n
→ η in probability.

The Central Limit Theorem states that if EX2
j < ∞ then

Sn − nη√
nσ2

→ N(0, 1) in distribution.

We first give a proof of the Law of Large Numbers under the stronger assumption
that E|Xj |2 < ∞. Without loss of generality we can assume that η = 0. The proof is
based the Chebychev inequality: Suppose X is a random variable with distribution function
F (x) = P(X < x). Then, for any λ > 0,

P(|X| ≥ λ) ≤ 1

λp
E|X|p, (26)

provided only that E|X|p < ∞. Indeed:

λp
P(|X| ≥ λ) = λp

∫

|x|≥λ
dF (x) ≤

∫

|x|≥λ
|x|pdF (x) ≤

∫

R

|x|pdF (x) = E|X|p.
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Using Chebychev’s inequality, we have

P

{
∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ε

}

≤ 1

ε2
E

∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

2

for any ε > 0. Using the i.i.d. property, this gives

E|Sn|2 = E|X1 + X2 + . . . + Xn|2 = nE|X1|2.

Hence

P

{∣

∣

∣

∣

Sn

n

∣

∣

∣

∣

> ε

}

≤ 1

nε2
E|X1|2 → 0,

as n → ∞, and this proves the law of large numbers.
Next we prove the Central Limit Theorem. Let f be the characteristic function of X1,

i.e.
f(k) ≡ EeikX1, k ∈ R. (27)

and similarly let gn be the characteristic function of Sn/
√

nσ2. Then

gn(ξ) = EeiξSn/
√

nσ2

=

n
∏

j=1

EeiξXj/
√

nσ2

=
(

EeiξXj/
√

nσ2

)n

=

(

1 +
ik√
nσ

EX1 −
k2

2nσ2
EX2

1 + o(N−1)

)n

=

(

1 − k2

2n
+ o(N−1)

)n

→ e−k2/2 as n → ∞.

This shows that the characteristic function of Sn/
√

nσ2 converges to the the characteristic
function of N(0, 1) as n → ∞ and terminates the proof.

It is instructive to note that the only property of X1 that we have required in the
central limit theorem is that EX2

1 < ∞. In particular, the theorem holds even if the higher
moments of X1 are infinite! For one illustration of this, consider a random variable having
probability density function

ρ(x) =
2

π(1 + x2)2
, (28)

for which all moments of order higher than 2 are infinite. Nevertheless, we have:

f(k) ≡
∫

R

eikxρ(x)dx = (1 + |k|) e−|k|

= 1 − 1
2k2 + o(k2),

and hence the Central Limit Theorem applies. Intuitively, the reason is that the fat tails of
the density ρ(x) disappear in the limit owing to the rescaling of the partial sum by 1/sqrtn.

Notes by Marcus Roper and Ravi Srinivasan.
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