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1 Review

In the last lecture, interactions that cause macroscopic disjoining pressure between two
materials separated by a third material were discussed. Microscopically, that disjoining
pressure may be due to non retarded Van der Waals forces, or may be due to retarded
Van der Waals forces, or to electrostatic forces. But the main results discussed below
are independent of the microscopic theory. As we will see, everything boils down to the
Generalized Clapeyron equation, which is derived from the Gibbs-Duhem relation and gives
the difference in pressure between solid and liquid phases of the same material.

Marangoni flow vs. thermomolecular flow

Let us review the discussion of the last lecture in pictures. We compared Marangoni flows
(Figure 1) with thermomolecular flows (Figure 2). Marangoni flows are driven by gradients
of the surface tension at the fluid interface, between liquid and vapor, for example. The
temperature gradient gives the gradient of the surface tension: surface tension is low at the
warm end, and high at the cold end. That provides the surface traction on the film that
pulls the surface water to the right, building up the liquid pressure on the right due to cur-
vature, which can drive the bottom water to the left. Thus, it is possible to achieve steady
state in this way. By contrast, in thermomolecular flows, the driving force is differential
normal stresses. The temperature gradient gives the gradient of the thermomolecular pres-
sure: thermomolecular pressure is low at the warm end and high at the cold end. Therefore
hydrodynamic pressure is high at the warm end and low at the cold end in order to balance
the solid pressure. That causes flow from the warm end to the cold This distinction be-
tween Marangoni flows and thermomolecular flows is the distinction between being driven
by tangential stress or normal stress, and in the thermomolecular case, film thickness is
determined only by the temperature field, whereas, in Marangoni flow, it is determined
dynamically as water moves from one end to another. But tangential stress as a driver goes
away if vapor is replaced by solid, and we have only to consider thermomolecular flows. We
concentrate on this situation in today’s lecture.
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Figure 1: Marangoni flow. Initially, water is level on the glass, but if the temperature
gradient is given externally, it causes the difference in surface tension. This results in the
flow of surface water, and water is built up on the right. Then the pressure at the bottom
is higher at the cold end, which causes the flow of the bottom water to the left.
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Figure 2: Since water is on ice, thermomolecular pressure plays an important role. Ther-
momolecular pressure is determined by temperature: low at the hot end and high at the
cold end. Since thermomolecular pressure plus liquid pressure is equal to solid pressure,
liquid pressure is high at the hot end and low at the cold end, which causes the flow to the
cold end.

2 Premelted Film in a Capillary Tube

Let us consider the following thought experiment. Imagine we have a capillary tube, which
is filled with water, with one end colder than Tm. Since the left end is below the freezing
temperature, then there is ice on the left and water on the right. This is a classical Stefan
problem with fixed temperature field varying from cold to warm. As we saw in the previous
lecture, the interface between ice and water simply stops when it reaches the position at
which T = Tm. Now imagine this is a real capillary tube: we need to take into account
interactions between the material of the wall of the tube and the ice, which in principle can
cause the ice to be premelted, producing a thin layer of water next to the wall. Because
the left side is colder, we have relatively large disjoining pressure and low liquid pressure
on the left. This pressure gradient has a tendency to move fluid from warm to cold. If this
is a theoretician’s ideal rigid capillary tube, nothing more happens: the differential stress
is accomodated by the wall (Figure 3). However if this wall is elastic, then the water in the
premelted film can flow. This situation is depicted in Figure 4. We will make a particular
assumption about the elastic tube: that it just exerts a hoop stress (circumferential stress),
not taking account of any bending moment of the wall.

The film is thick where it is warm and thinner where it is cold. We are going to take a
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Figure 4: Elastic capillary tube

1-dimensional coordinate system x as depicted in Figure 4. Then the temperature field is
T = Tm − Gx. Let the radius of the capillary be b(x, t). Because we treat the elastic hoop
stress only, the pressure of the wall is equal to the pressure of the solid:

pw = ps = k(b − b0), (1)

pl = ps − pT = k(b − b0) −
ρsL

Tm
(Tm − T ). (2)

Where the temperature is colder, Tm − T is larger and the liquid pressure is lower. Liquid
pressure is decreasing in the positive x-direction, and this pushes fluid in the direction
toward the cold end. The premelted film has thickness d given by

ρsL
Tm − T

Tm
=

A

6πd3
. (3)

Because the temperature field is stationary, the film thickness d is also independent of time.
Later, we will consider how to modify the formulation in the presence of a curved solid–
liquid interface. For the moment, we ignore this curvature. Lubrication theory gives volume
flow rate (in 2D)

q =
d3

12µ

(

−
∂pl

∂x

)

. (4)
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Conservation of mass gives

∂b

∂t
+

∂q

∂x
= 0 (5)

⇒
∂b

∂t
=

∂

∂x

[

d3

12µ

∂pl

∂x

]

(6)

=
∂

∂x

[

ATm

6πρsL

1

Gx

1

12µ

(

k
∂b

∂x
−

ρsL

Tm
G

)]

. (7)

Therefore

∂b

∂t
=

ATmk

72πµρsLG

∂

∂x

[

1

x

(

∂b

∂x
−

ρsLG

kTm

)]

. (8)

This can be regarded as a modified diffusion equation with spatially varing diffusivity. There
is a similarity solution to (8). By using the following variables

b − b0 =
ρsLG

Tmk

(

kΓ3t

12µG

)

1

3

g(η) (9)

where

d = Γ(T − Tm)−
1

3 , (10)

Γ =

(

ATm

6πρsL

)
1

3

, (11)

η =

(

12µG

kΓ3

)
1

3 x

t
1

3

, (12)

(8) becomes dimensionless:

g′′ =
−1 + g′

η
+

1

3
ηg −

1

3
η2g′ (13)

with boundary conditions

g = 0 (η = 0), (14)

g → 0 (η → ∞). (15)

where g is the dimensionless displacement. The displacement is 0 at the end, because there
is no force there (we are only considering the hoop stress. If we were considering curvature
stress as well, it would be nonzero.) The displacement is increasing in time. The tube
expands at first, but eventually stops expanding, because the elastic hoop stress which
pushes back on the ice balances with the thermomolecular pressure pushing out. If we
leave it for infinitely long time, we get a linear deformation profile, matching the linear
temperature profile.
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Figure 5: Similarity solution. Typical values for b − b0 are ∼ 1µm when x ∼ 100µm.
Corresponding timescales are on the order of several days.

3 Thermal Regelation

Imagine there is a big block of ice containing an immersed solid particle. We impose a
temperature gradient ∇T = G such that the temperature is everywhere below the bulk
freezing point. There is a premelted film against the object which is thinner where the
temperature is lower (Figure 6). The themomolecular force of the film is greater where it is
thinner, so there is a net force on the particle, pushing the particle downwards. Movement
of the particle can take place by the melting of ice on one side and freezing on the other, a
process known as regelation. In order for regelation to take place, liquid must be transported
within the film from the melting front to the freezing front. And in general the particle
migrates from cold region to warm region. We want to understand how to calculate this
phenomenon.
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Figure 6: Solid particle in ice

For small particles, premelting is affected by curvature of the solid-liquid interface:

ps = pl + pT + γsl∇ · n (16)

where ps is solid pressure, pl is liquid pressure, pT is the pressure due to disjoining force.
The unit normal n points into the ice. The last term is a pressure due to curvature of the
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interface. We need to take the Generalized Clapeyron equation into account:

ρsL
Tm − T

Tm
= ps − pl (17)

=
A

6πd3
+ γsl∇ · n. (18)

Because (total force on the particle)=−(total force on the ice),

F = −

∫

∂D

ps(−n)dS (19)

=

∫

∂D

plndS +

∫

∂D

ρsL
Tm − T

Tm
ndS (20)

= Fµ + FT (21)

where D is the whole region that is not occupied by ice. Fµ is due to lubrication pressure
and FT is the thermomolecular force.

FT =

∫

∂D

ρsL
Tm − T

Tm
ndS =

ρsL

Tm

∫

D

∇TdV. (22)

If the thermal properties of all phases are the same, then ∇T = G throughout. Under this
assumption,

FT =
ρsL

Tm
G · (volume that is not ice) (23)

=
L

Tm
G · (mass of displaced ice). (24)

This looks similar to the principle of Archimedes, which states that the upthrust on a body
immersed in water is proportional to the mass of water displaced. This motivates the term
“thermodynamic buoyancy” to describe the total thermomolecular force on an immersed
particle. The result is independent of the particular intermolecular interactions that underly
the thermomolecular pressure.

To find the regelation velocity, Fµ must also be dealt with, generally using lubrication
theory, or some closure such as Darcy’s Law. In the next section this is done in investigating
the phenomenon of frost heave.

4 Frost Heave

Frost heave is a phenomenon that involves upheaval of soil from formation of ice within the
soil, and is known in some cases to cause the formation of “lenses” - layers of ice containing
little or no soil particles (figure 7).

Frost heave is essentially the process of thermal regelation on a large scale in frozen soil.
There is an external temperature gradient that leads to a thermomolecular force on the
soil particles, as in the previous example of regelation, and that balances the viscous forces
from the transport of water necessary for the regelation.
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Figure 7: A column of frozen soil in which lenses (dark) have formed in between layers or
frozen soil (light). From Taber (1929).

In the model presented here, the temperature gradient is assumed to be constant and
directed downwards, so at some depth (z = 0) the temperature is at the bulk freezing point.
However, the soil is not frozen all the way down to z = 0; the ice formed in the soil pores has
an associated curvature because of the geometry of the pores, and so the Gibbs-Thomson
effect prohibits ice formation at temperatures below the freezing point. And so there is a
fringe region of frozen soil with lower boundary zf > 0 and upper boundary zl (the lens
boundary). zf is set by the geometry of the soil, so if zl < zf , there is no fringe region.
Figure 8 shows the situation where there is a fringe.

First assume that a fringe does exist. A force balance on the fringe section can be calcu-
lated, as long as certain properties of the ice-soil system (e.g. volume fraction, permeability)
are known. The total upward thermomolecular force FT is equal to the thermomolecular
pressure integrated over the substrate surface:

FT = ẑ ·

∫

Γ

pTn dΓ = ẑ ·
ρsLG

Tm

∫

Γ

zn dΓ, (25)

where G = |∇T | and Γ is the surface of the ice. The divergence theorem lets us write

FT =
ρsLG

Tm

∫ zl

0

(1 − φ)dz, (26)

where φ is the volume fraction of ice in the soil, assumed to be only a function of z. Also
acting on the mass of ice is the hydrodynamic pressure necessary to bring water to the
freezing front (or take water away from the melting front). We can use Darcy’s Law to
infer the relation between pressure and pore transport, and we can use continuity to find
the magnitude of this transport:
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Figure 8: Cross section through the fringe region. zf and zl mark the lower and upper
boundaries of the fringe. Γ is the ice boundary, with unit normal pointing into the ice, as
in the previous regelation example. From Rempel et al (2004).

W = (1 − φ)Vh (27)

and

µW = −Π(φ)∇pL. (28)

Here W is the area-averaged vertical water transport, Vh is the heave velocity, pL is
the hydrodynamic water pressure driving the flow, and Π is the permeability of the soil. Π
is, in general, dependent on many factors, including soil particle geometry. However, it is
written as a function of ice volume fraction only to emphasize the fact that permeability
decreases as ice volume fraction increases. So if φ(z) and Π(φ) are known functions, we can
calculate the hydrodynamic force acting on the fringe section:

Fµ = ẑ ·

∫

Γ

pLndΓ

= −

∫ zl

zh

∂p

∂z
(1 − φ)dz

= µVh

∫ zl

zh

(1 − φ)2

Π(φ)
dz. (29)

zh is a reference point below the fringe where pL goes to zero. The choice of zh is somewhat
arbitrary, but the result above is not likely to be sensitive to zh as most of the pressure drop
occurs near zl, where permeability is greatly reduced due to the high ice concentration.

Before proceeding, note that the above analysis also applies when zl < zf , i.e. there is
no frozen fringe. The expression for FT , for example, reduces to ρsL(Tm − T (zl))T

−1
m , the

expression for the thermomolecular force at the temperature at the lens boundary.
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Figure 9: (a) Frost heave rate as a function on zl (in the domain where freezing occurs).
(b) Soil particle effective stress as a function of depth for different lens heights.

The only other force acting on the mass of ice is the weight above it, P0. Solving for Vh

gives

Vh =

[

ρsLG

Tm

∫ zl

0

(1 − φ)dz − P0

] [

µ

∫ zl

zh

(1 − φ)2

Π(φ)
dz

]−1

. (30)

In general, the vertical distribution of φ and the associated permeability dependence
must be known or calculated. Rempel et al (2004) use an idealized model for ice saturation
and permeability dependence, but certain properties of the dependence of Vh on zl can be
deduced for more general cases. For instance, the thermomolecular force (ρsLG

∫ zl

0
(1 −

φ)dz/Tm) is monotonic in zl, and so the heave velocity is zero for a certain value zl and
positive for higher values. Further, we expect the permeability will tend to zero as the ice
fraction goes to 1, so we expect that the denominator of ((30) becomes large with large z l,
and so Vh tends to zero. We can then expect that Vh goes through a maximum at some
point. Rempel et al find a curve similar to that shown in figure 9(a) for the heave rate.

The frost heave phenomenon can be demonstrated in a lab setting. A column of frozen
soil with a lens is placed longitudinally in a temperature gradient that is fixed (w.r.t. the
lab frame) as in figure 10. The entire column can be moved at constant velocity through
the gradient. Meanwhile, the lens position can move relative to the moving frame due to
frost heave. A steady state can be found in which the lens does not move relative to the
lab frame. One can view the setup as the lens being pulled through the soil, which remains
in place as the liquid flows through it, providing the hydrodynamic force that balances the
thermomolecular force.

From figure 9(a) it is obvious that for a range of V (the rate at which the column in
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Figure 10: The experiment described in Rempel et al. The entire system is pulled upward,
while positive heave rates push the soil in the opposite direction.

the experiment is moved through the temperature gradient) there are 2 steady heave rates.
However, only one state (the one with zl < zc) is stable to small perturbations; if Vh(zl) is
sloping downwards, then a small increase in zl will slow the heave rate, and the lens front
will move forward (increasing z). Physically, a decrease in permeability limits the amount
of liquid that can be brought to the front. The situation is similar for small decreases in z l.

Lens Initiation

One might ask how a lens will form initially. To determine where this might occur, the
vertical force between soil particles (Fp) is examined. At each point, Fp balances the sum
of the overburden, the thermomolecular force, and the hydrodynamic force. Thus pp (inter-
particle force per unit area) can be calculated from

Fp(z) = Vhµ

∫ z

zh

(1 − φ)2

Π(φ)
dz + P0 −

ρsLG

Tm

[
∫ z

0

(1 − φ)dz − z(1 − φ(z))

]

. (31)

Note the similarity to (30) with zl replaced by z. The last term, ρsLGz(1 − φ(z))/Tm,
can be seen as the additional force that would act on the volume of integration (that is,
a volume similar to that bounded by Γ in figure(8)) were the ice fraction at z equal to
unity. If pp becomes zero at some point, there is virtually nothing holding the soil particles
together, and a lens has the potential to form.

Again, this expression depends on the specific forms of φ and Π(φ). For the idealized
configuration mentioned above, Rempel et al calculated pp(z) for different values of zl, and
found that the minimum pp decreases with increasing zl, and at some point pp(z) becomes
zero at a height less than zl (figure 9(b)). If a lens were to form at this height, then zl

would be effectively decreased. One can imagine a situation, such as in the lab experiment
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described above, in which the lens front is continually moving upward, with new lenses
periodically forming below the previous lens front. Such a phenomenon has in fact been
observed in the laboratory, and is believed to be responsible for similar patterns that are
formed in situ (figure 7).
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