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1 Finishing off Lecture 1

As shown in Lecture 1, an approximation for the diffusion time is

t= - (1)
An experiment was conducted using a commercial hand warmer. This is a plastic bag
containing a liquid (an aqueous solution of sodium acetate) in a metastable state i.e. at
a temperature below its freezing point. Crystallisation is initiated by flexing a thin metal
disk contained in the bag and was observed to proceed at a rate of about 1 cm s—'. Taking
a = 10cm, x = 10~2cm? /s gives t ~ 10*s ~ 3hrs using equation (1). A different mechanism
must operate in the heat pack than was analysed in Lecture 1. We will return to this later.

2 Diffusion-Controlled Solidification into a Supercooled Liqg-
uid

Instead of considering a solid cooled from a boundary, we now consider a solid, assumed to be
at T;,,, surrounded by a liquid with far-field temperature given by T, < T}, so that the liquid
is supercooled. Again, we only consider a one-dimensional problem, with x = 0 at the center
of the solid and x = a(t) at the solid-liquid interface. We solve the diffusion equation (in the
liquid) with the Stefan condition and with appropriate temperature boundary conditions
(T'(a) =T, and T(0) = T ):

oT 0*T
E = KW’ (2)
. oT

pLa = _k% la+ - 3)

As before, we scale the equations and arrive at the similarity solution

X

n= g (4)
T = Ty + (T, — Too) ). (5)
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a = 2uV/kt, (6)

& =Fu, ™

where

F(z) = rze erfe(z). (8)

Plotting F'(z), we find that F'(0) = 0, and F'(z) has a maximum of 1 as z — oo (see
figure 10b of Lecture 1). Thus, no similarity solution exists for 1/S > 1 or S < 1. In fact,
all solutions become unbounded for S < 1. This inconsistency is remedied by relaxing the
assumption of T" = T;, at the interface since this is strictly only true in equilibrium. For
S < 1, however, growth is rapid, we are far from equilibrium, and molecular attachment
kinetics are important. For ice, it is typically observed that attachment and detachment
occur at a rate of approximately 1000 molecular layers per second. Below 0°C attachment is
faster than detachment and above 0°C' attachment is slower than detachment. The velocity
of the boundary & is proportional to the difference between attachment and detachment.
Thus, our revised problem is given by: Diffusion equation (2) in > a; Stefan condition (3)
at © = a; T(00) = To; T'(a) = T;; and a = G(T,,, — T;), where G is a constant.

We again scale length with A, time with 7 and temperature difference with AT =

Ty, — Tso. This results in
K

Using the scaling a = A\a/, v = X2/, T = T, + AT - 0, substituting and dropping primed
notation results in

00 9%
9 - 92 (11)
00
Sa = s la+s (12)
a=1-80;, (13)
O(c0) =0 0(a) = 0;. (14)

We now consider two limits. If S > 1, then (12) gives @ < 150 §; = 1+ O(S™1) or
dimensionally, T; ~ T,,, the analysis from lecture 1 holds and we recover the similarity solu-
tion presented there. If S < 1, then (12) does not constrain @ which is instead determined
by the kinetic equation (13), which suggests looking for a solution of the form @ = V' where
V is constant. Hence, we try 8 = 0(n), where n = x — V't. Substitution leads to

0 =0V, (15)
a="Vt, (16)
0; =385, (17)
and
V=1-60,=1-5, (18)



which is valid (exactly) if S < 1.

Finally, we note that the discrepancy between applying kinetics and using the previous
(S > 1) similarity solution is typically small, especially at large time when the kinetic
solution asymptotes to the similarity solution. Therefore, kinetics can often be neglected in
many problems involving sea ice, for example.

3 Generalized Clapeyron Equation for Interfaces in Equilib-
rium

For a planar interface and at some reference pressure, the melting temperature is set by
a balance of the temperature-dependent rates of the attachment and detachment of the
solid phase — this is the reference melting/freezing point. But modification of the system
pressure or a pressure difference between the solid and liquid phase can cause changes in
the equilibrium interfacial temperature. The relation governing this phenomenon is

%’;_TE) = (ps — 1) + (P — ) <1 - &> ) (19)

where T}, p,, are the reference melting point and pressure. There are several examples of
this effect that will appear later in these proceedings, briefly mentioned below.

3.1 Change in system pressure

Across a planar interface, pressures will be equal when the system is in mechanical equi-
librium. But the overall system pressure may be elevated (or decreased), for example by
hydrostatic effects. In this case the second term on the right-hand side of the Clapeyron
equation comes into effect, with p; equal to p. It is easy to see that the rate of change of
the melting point with respect to pressure is given by

dTe Tm ps>
=— 1-2). 20
dp psL ( oL (20

For example, in the ocean this allows us to find the melting point at depth. Hydrostatic
balance gives us

a.__ dT
i

~ 7.5 x 107K /m. (21)

3.2 Curved interface

At a curved interface, there is a force involved with the interfacial energy that factors into
the force balance, and results in an imbalance between p; and ps. This is expressed by

Ps =P = 7(v : Il). (22)

Here ~ is the interfacial energy and n is the unit normal to the interface, directed into the
liquid. With p = p;, this gives
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Figure 1: Interfacial premelting of a solid below the melting point. The hydrodynamic
pressure (p;) is lower than ps because of the thermomolecular pressure pr.

T. =T, —I'(V-n) (23)
where T
YLm
I = . 24
oL (24)

Equation (23) is known as the Gibbs-Thomson equation.

3.3 Interfacial Premelting

When a solid near its bulk melting point is in contact with a gas or solid substrate, it is
sometimes thermodynamically favorable for there to be a (very) thin liquid film between
the solid and the substrate (figure 1). Among the determining factors are the interfacial
energies per unit area between the solid and its liquid, the solid and the substrate, and the
liquid and the substrate.

The liquid pressure in the film is actually lowered relative to the solid pressure, since
intermolecular forces play a part in the mechanical equilibrium balance. This pressure
difference is described as a Thermomolecular Pressure. A drop in interfacial temperature
follows from the Clapeyron equation.

In thermodynamic terms, the chemical potential of the liquid — that is, the incremental
change in free energy with respect to the addition of new material — is not equal to that
of the solid, as it would be in a bulk equilibrium state, since intermolecular interaction
potentials must be accounted for in minimizing the free energy of the system. The chemical
potential is a state variable, and its change is accompanied by a change in hydrodynamic
pressure.

4 Nucleation

The Gibbs-Thomson effect is nicely illustrated by a simple model of a solid particle nucle-
ating into a supercooled liquid domain (figure 2). The dynamics of the initial formation
of the particle are complex, but we will ignore such details and assume that the necessary
events have already taken place for there to be a spherical solid particle with finite radius
a at time t. The ambient temperature of the liquid is below its melting point, and further-
more, as before, we will assume that the Stefan number is large and make a quasi-stationary
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Figure 2: Nucleated spherical crystal in supercooled liquid with high Stefan number.

approximation, so that temperature is harmonic in the liquid and in the solid. Thus our
system of equations is

V2T — {0 r>a7 (25)
0 r<a
_ T r—oo (26)
T,-T(V:n) r=a

This system is solvable for a given a, even though a is changing in time. Curvature is
constant over the surface of the sphere (and is equal to 2/a), so the equation and boundary
conditions are spherically symmetric and we expect a symmetric solution. The temperature
field in the solid is easy to diagnose: a harmonic function in a bounded domain with constant
boundary condition is itself constant (and therefore the only flux at the interface is that on
the liquid side). Our Stefan condition is then

,OLd = _kaa_z]r:a-i-' (27)

Given the spherical symmetry of the problem, the temperature field in the liquid must

have the form A + Br~!. Using the boundary conditions, we can deduce that, for r > a,

2r a
T:TOO—F(Tm—;—TOO);. (28)
With an isothermal solid, the Stefan condition then gives us
2r
pLa = ka (T — — — Two). (29)
a

Rather than solve for a(t) exactly, it is instructive to examine the sign of the R.H.S. of
(29) and also to consider the limiting cases of small and large radii. First, note that a is
increasing (decreasing) when it is larger (smaller) than a critical radius, a. = 2I'/ (T, — Two)-
So a. is an unstable fixed point; larger particles will grow, and smaller particles will shrink.
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Figure 3: Scaled distribution of population of nucleating particles

(Note that this is just in our simple model — we are considering a single particle in a liquid
whose far-field temperature does not change; see the discussion below.)

Furthermore, we can approximate the growth rate in the limit of large and small radii.
For a >> a., a is nearly proportional to a~!, and we get

a(t) ~ ,/%. (30)

On the other hand, for a < a., (29) becomes

. —2kT
pLa =~ 2 (31)
6kT
t)~ § 83— — 2
= aft) ~ a0 - ° (32)

so the solid disappears in finite time.

Though we do not give the details, it is worth noting the case where there is an entire
population of nucleating crystals, and the temperature of the system away from a crystal
is not constrained (indeed, there is heat being given off by the solidification, and so the
system temperature on the whole will be increasing). An interesting result is that the
resulting distributionlof particle slize is self-similar, meaning that the probability distribution
function, scaled by ¢3 (not by t¢2), remains constant in time. Such a distribution is shown
in figure 3. Note that there is a finite cutoff (denoted by a,,) since particles will not grow
to arbitrarily large size after finite time.
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Figure 4: Student Problem

5 Student Problem

Consider perturbations to a 1-D planar interface in a 2-D system with large Stefan number
and far-field temperature equal to the bulk melting point. The interface has an energy
associated with it, and the disturbance has a small amplitude compared with its wavelength.

For small times, and neglecting kinetics, how would the interface evolve?

Solution. Since the perturbation is small, this problem can be linearized, neglecting
higher order terms in the small parameter nga, where 7g is the perturbation amplitude and «
is its wavenumber. With large Stefan number we can make a quasi-stationary approximation
and assume temperature is harmonic in both the liquid and solid domains (but not across

the interface). Our equations are as follows:

V2T — 0 z2>n
0 z<n’

9

T T z — oo
T —T(V-n) z=n

along with the Stefan condition

kT k OT

oL On |o=n+ + ;TL%'Z:"_’

where @ is the normal velocity of the interface, which is equal to

_10n
(V1+n2) 15-
From the equation for the interface position z — n(z,t) = 0 we can determine

(_77967 ]-)
(14n2)1/2
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and

Nz

V-n= AT 2 (38)
Now we linearize, neglecting higher-order terms, and the problem simplifies. First of
all, the smallness of the slope of the interface means that the normal derivative in (35) is a
higher-order correction to the vertical derivative, and the smallness of n means that evalua-
tion of the perturbed temperature field at 7 is a higher-order correction to its evaluation at
zero. Likewise, the quadratic term in (36) is dropped, as is the one in (38). Our linearized

system of equations is now

0 2>0
vir={y 77 (39)
0 z2<0
T=T,, z— *oo, (40)
T =T, +Tipe, 2 =0, (41)
= Ty + Tl (42)
m = ,OL 2|0+ z|0—) -

Since this is a linear problem we can anticipate the form of the solution

n(z,t) = noe’ e, (43)
T(x,z,t) = Ty, + T (2)elort0t, (44)
(45)

Laplace’s equation and the decay condition along with (41) give

T(z) = —a’TnpeTo?, (46)
depending on whether z is positive or negative. The Stefan condition then shows that

20Tk
_ I
Thus the interface is stable for all wave numbers and the decay constant is proportional to
o?. The stabilizing effect is intuitive: “positive” bumps (areas where the solid protrudes into
the liquid) have a lowered melting point due to Gibbs-Thomson, while “negative” bumps
have elevated melting point. There is then a net heat flux from negative to positive bumps,
which causes a melt/freeze pattern that counters the perturbation.

(47)
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