

Supplementary Materials for

Massive Phytoplankton Blooms Under Arctic Sea Ice

Kevin R. Arrigo,^{1*} Donald K. Perovich,^{2,3} Robert S. Pickart,⁴ Zachary W. Brown,¹ Gert L. van Dijken,¹ Kate E. Lowry,¹ Matthew M. Mills,¹ Molly A. Palmer,¹ William M. Balch,⁵ Frank Bahr,⁴ Nicholas R. Bates,⁶ Claudia Benitez-Nelson,⁷ Bruce Bowler,⁵ Emily Brownlee,⁸ Jens K. Ehn,⁹ Karen E. Frey,¹⁰ Rebecca Garley,⁶ Samuel R. Laney,⁸ Laura Lubelczyk,⁵ Jeremy Mathis,¹¹ Atsushi Matsuoka,¹² B. Greg Mitchell,⁹ G. W. K. Moore,¹³ Eva Ortega-Retuerta,¹⁴ Sharmila Pal,⁷ Chris M. Polashenski,² Rick A. Reynolds,⁹ Brian Schieber,⁹ Heidi M. Sosik,⁸ Michael Stephens,¹⁵ James H. Swift⁹

¹Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305, USA. ²Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, USA. ³Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. ⁴Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. ⁵Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575, USA. ⁶Bermuda Institute of Ocean Sciences, Ferry Reach GE01, Bermuda. ⁷Marine Science Program and Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA. ⁸Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. ⁹Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA. ¹⁰Graduate School of Geography, Clark University, Worcester, MA 01610, USA. ¹¹School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA. ¹²Universite Pierre et Marie Curie, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer 06238, France. ¹³Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada. ¹⁴Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Centre Nationale de la Recherche Scientifique et Université Paris Pierre et Marie Curie, Banyuls/Mer 66650, France. ¹⁵Colby College, Waterville, ME 04901, USA.

*To whom correspondence should be addressed. E-mail: arrigo@stanford.edu

Published 7 June 2012 on *Science* Express DOI: 10.1126/science.1215065

This PDF file includes:

Materials and Methods Figs. S1 and S2 References

Correction: The reference citations in the Materials and Methods section have been corrected.

Materials and Methods

Samples for fluorometric analysis of Chl *a* were filtered onto 25 mm Whatman GF/F filters (nominal pore size 0.7 μm) placed in 5 mL of 90% acetone, and extracted in the dark at 3°C for 24 hrs. Chl *a* was measured fluorometrically (7) using a Turner Fluorometer 10-AU (Turner Designs, Inc.).

Particulate organic carbon samples were collected by filtering sub-samples onto pre-combusted (450°C for 4 hrs) 25 mm Whatman GF/F filters. The filters were immediately dried at 60°C and stored dry until analysis. Prior to analysis, the samples were fumed with concentrated HCl, dried at 60°C, and packed into tin capsules (Costech Analytical Technologies, Inc.) for elemental analysis on a Carlo-Erba NA-1500 elemental analyzer. Peach leaves and glutamic acid were used as a calibration standard.

The maximum efficiency of photosystem II (Fv:Fm) was determined by fast repetition rate fluorometry (FRRf) (8) on samples collected with Niskin bottles. Samples were dark acclimated for \sim 30 min at in situ temperatures before measurement with the FRRf. Blanks for individual samples analyzed by FRRf were prepared by gentle filtration through a 0.2 µm polycarbonate syringe filter before measurement using identical protocols. All Fv:Fm values were corrected for blank effects (9).

Photosynthesis versus irradiance relationships (P_m^* , α^* , E_k) were determined using a modified ¹⁴C-bicarbonate incorporation technique (*10-11*). Carbon uptake, normalized by Chl *a* concentration, was calculated from radioisotope incorporation, and the data were fit by least squares nonlinear regression (*12*). P-E parameters were used with under-ice light profiles to estimate rates of depth-integrated daily gross primary production. Specific growth rate (μ , d⁻¹) in surface waters was calculated by multiplying the photosynthetic rate (P*) by the POC:Chl *a* ratio.

Water samples collected from Niskin bottles were analyzed for nitrate (NO₃) and nitrite (NO₂) concentrations with a Seal Analytical continuous-flow AutoAnalyzer 3 (AA3) using a modification of the Armstrong *et al.* (*13*) procedure. For the NO₃ analysis, seawater samples were passed through a cadmium reduction column where NO₃ was quantitatively reduced to NO₂. Sulfanilamide was then introduced to the sample stream followed by N-(1naphthyl) ethylenediamine dihydrochloride which couples to form a red azo dye. The stream was then passed through a flow cell and the absorbance measured at 520 nm. The same technique was employed for NO₂ analysis, except the cadmium column was bypassed. Absorbance vs. concentration standard curves were used to determine the molar concentration of the combined $[NO_3+NO_2]$ and NO_2 alone.

Seawater samples for DIC were drawn from the Niskin samplers into pre-cleaned ~300 mL borosilicate bottles, poisoned with HgCl₂ to halt biological activity, sealed, and returned to the Bermuda Institute of Ocean Sciences (BIOS) for analysis. DIC samples were analyzed using a highly precise (~0.025%; <0.5 mmoles kg⁻¹) gas extraction/coulometric detection system (*14*). Analyses of Certified Reference Materials (provided by A. G. Dickson, Scripps Institution of Oceanography) ensured that the accuracy of the DIC and TA measurements was 0.05% (~0.5 mmoles kg⁻¹) and 0.1% (~2 mmoles kg⁻¹), respectively.

Phytoplankton assemblage composition was examined using imaging-in-flow cytometry, where high-speed photomicrographs of individual cells and chains were identified to the genus level or better using automated classification (*15*) followed by manual verification.

Fig. S1. MODIS-Aqua satellite image of the northern Chukchi Sea showing the distribution of sea ice on 8 July 2011 and the location of stations sampled during the ICESCAPE 2011 cruise. Black indicates open water. Lines show the position of the ice edge on the indicated dates (AMSR-E). Stations 46-57 are part of Transect 1 and stations 57-71 are Transect 2.

References and Notes

- K. R. Arrigo, G. L. van Dijken, Secular trends in Arctic Ocean net primary production. J. Geophys. Res. 116, C09011 (2011). doi:10.1029/2011JC007151
- 2. Materials and methods are available as supplementary materials on Science Online.
- 3. J. Zhang *et al.*, Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. J. Geophys. Res. **115**, C10015 (2010). <u>doi:10.1029/2009JC005387</u>
- V. H. Strass, E.-M. Nöthig, Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. *Polar Biol.* 16, 409 (1996). doi:10.1007/BF02390423
- C. J. Mundy *et al.*, Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. *Geophys. Res. Lett.* 36, L17601 (2009). <u>doi:10.1029/2009GL038837</u>
- M. Fortier, L. Fortier, C. Michel, L. Legendre, Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. *Mar. Ecol. Prog. Ser.* 225, 1 (2002). doi:10.3354/meps225001
- 7. O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, J. D. H. Strickland, Fluorometric determination of chlorophyll. *ICES J. Mar. Sci.* **30**, 3 (1965). <u>doi:10.1093/icesjms/30.1.3</u>
- Z. S. Kolber, O. Prasil, P. G. Falkowski, Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols. *Biochimica Biophysica Acta Bioenergetics* 1367, 88 (1998). <u>doi:10.1016/S0005-</u> 2728(98)00135-2
- 9. J. J. Cullen, R. F. Davis, Limnol. Oceanogr. Bull. 12, 29 (2003).
- M. R. Lewis, J. C. Smith, A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. *Mar. Ecol. Prog. Ser.* 13, 99 (1983). doi:10.3354/meps013099
- 11. K. R. Arrigo *et al.*, Photophysiology in two major Southern Ocean phytoplankton taxa: Photosynthesis and growth of *Phaeocystis antarctica* and *Fragilariopsis cylindrus* under different irradiance levels. *Integr. Comp. Biol.* **50**, 950 (2010). <u>doi:10.1093/icb/icq021</u> <u>Medline</u>
- 12. T. Platt, C. L. Gallegos, W. G. Harrison, J. Mar. Res. 38, 687 (1980).
- 13. F. A. J. Armstrong, C. R. Stearns, J. D. H. Strickland, Deep-Sea Res. 14, 381 (1967).
- N. R. Bates, M. H. P. Best, D. A. Hansell, Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 52, 3303 (2005). <u>doi:10.1016/j.dsr2.2005.10.005</u>
- 15. H. M. Sosik, R. J. Olson, Automated taxonomic classification of phytoplankton sampled with imaging in-flow cytometry. *Limnol. Oceanogr. Methods* 5, 204 (2007). <u>doi:10.4319/lom.2007.5.204</u>