

Rapid Changes in Arctic Biogeochemistry and Marine Ecosystems: Biogeochemistry and CO₂ Fluxes

A Planning Workshop for an International Research Program on the Coupled North Atlantic-Arctic System April 14th – 16th, 2014

Jeremy T. Mathis Pacific Marine Environmental Lab

Contributors: Rik Wanninkhof, Galen McKinley, Wiley Evans and Jessica Cross

Biogeochemical Modifications and Drivers of Sea-Air Fluxes

Reductions in sea ice extent and thickness are driving a <u>rapid transition</u> in arctic biogeochemistry leading to enhanced productivity, changes in seaair fluxes of CO_2 , increased upwelling, and a broad expansion of waters that are undersaturated in carbonate minerals.

Carmack and Wassmann (2006)

AMAP Assessment 2013: Arctic Ocean Acidification

Secular Trends in Arctic Ocean Primary Production

Arrigo et al., 2012; Arrigo et al., in press

The Fate of Shelf Modified Inflow Waters

The Fate of Shelf Modified Inflow Waters

Yamamoto-Kawai et al., 2013

10°N

 Natural processes in the Arctic conditioning inflowing waters to leave with higher pCO₂ and lower Ω.

Anthropogenic Impacts and the Underlying Carbonate Chemistry

Increased inventories of ant. CO_2 are exacerbating the natural processes that lower Ω in the Arctic.

Estimated changes in surface aragonite saturation state in the Nordic Seas between 1860 and 2004, based on anthropogenic CO₂ concentrations

Olsen et al., 2010

Little, if any burial of carbonate on the shelves of the Arctic Ocean.

AMAP Assessment 2013: Arctic Ocean Acidification

surface sediments in the Arctic Ocean.

Quantifying CO₂ Fluxes in a System in Rapid Transition (with virtually no data)

Region	Sea-air exchange		Source
	$(mmol/m^2/d)^a$	10 ¹² mol/y	
Central Basins	-0.3 to 1		Bates et al., 2006
Barents Sea	-3.7±0.9 ^b	$\begin{array}{r} -0.8 \\ -2.4 \pm 1 \\ -3.8 \pm 1.5 \\ -4.3 \pm 0.7 \\ -1.8 \pm 1 \end{array}$	Fransson et al., 2001 Kaltin et al., 2002 Nakaoka et al., 2006 Omar et al., 2007 Kivimäe et al., 2010
Nordic Seas		-5.8	Jeansson et al., 2011
Kara Sea	-0.1 ^b		Fransson et al., 2001
Laptev Sea	-1.2 to 1.7	-2.1	Nitishinsky et al., 2007 Semiletov et al., 2007
East Siberian Sea	-2 to 10	0.04 to 0.28	Pipko et al., 2011
Chukchi Sea	~ -30 to -90 -15±13 -18 to 3	-2.6 to -3.8 -1.8	Bates, 2006 Pipko et al., 2002 Murata and Takizawa, 2003 Kaltin and Anderson, 2005
Beaufort Sea	-2 -17 to 0 -17 to 3 -25 to -9		Mucci et al., 2010 Murata and Takizawa, 2003 Shadwick et al., 2011 Else et al., 2011
Canadian Archipelago	-7 to 0 -140 to 18		Miller et al., 2002 Fransson et al., 2009
All Arctic Ocean		-2 to ~ -8	McGuire et al., 2009

Most of the data is seasonally biased (summer and fall), there is very limited spatial coverage, and the estimates have huge ranges.

^a Data are from the summer period with limited ice coverage; ^b annual mean estimate.

Evans et al., in prep.

Barents Sea CO₂ Flux Synthesis

gC m⁻² yr⁻¹

The seasonal cycle show peaks in the total air–sea CO_2 influx in May and September, caused by respectively biological drawdown of CO_2 and low sea ice concentration leaving a large open water area.

For 2007 the annual average air–sea CO_2 flux is –48 ± 5 gC m⁻², which is comparable to previous estimates.

Lauvset et al., 2013

OA and CO₂ in the North Atlantic

xCO₂ of Seawater & xCO₂ of Air @ Iceland (68N, 12.7W)

[Date: 2013-08-17 to 2014-03-30]

Rate of Iceland Sea acidification from time series measurements

line only: processed data

line+symbol: unverified data

Sea Surface Temperature & Sea Surface Salinity @ Iceland (68N, 12.7W) 5 for aragonite and 2.5 for aragonite and 2.5 for aragonite and 2.5 for a solution of levels found in rs. From 1985–2008, Ω decreased at an average rate of 0.0072 34.80 12 yr⁻¹ for calcite. 34.7834.76 horizon is currently at 1710 m and shoaling at 4 m yr⁻¹. Based₄ ach year another 800 km² of seafloor becomes exposed to 34.72 34.70

Dec

Jan

Feb

waters that have become indersaturated with respect to aragonite.

Sep

Aug

34.68 34.66

Mar

Nov

Regional Perspective on CO₂ in the North Atlantic

(a) ARCTIC 1990-2009 SEASONAL CYCLE (mol/m²/yr) (a) ARCTIC 0.2 PgC/yr mol/m²/yr pCO, Ocean Atm. Ocean (c) NORTH SUBTROPICS Climatology Inversion Inversions Models 2 (b) NORTH SUBPOLAR 0.2 0 mol/m²/yr s .1 Μ N M PgC/yr -2 (b) NORTH SUBPOLAR BATS -0.4 **ESTOC** pCO. Ocean Ocean SOCAT pCO. Atm. Climatology Inversion Inversions Models MPR database mol/m²/yr -6 (d) EQUATORIAL Μ M S Ν J -2 0.2 pCO₂ climatology Atmospheric inversions PgC/yr Ocean models SOCAT MPR pCO₂ database -6 J Μ Μ s Ν pCO, Ocean Atm. Ocean SOCAT pCO₂ Climatology Inversion Inversions Models MPR database

"The subtropical seasonality of pCO₂/CO₂ flux is well-constrained across the different methods, the subpolar seasonality is all over the place. To me, this suggests significant mechanistic uncertainty, and thus limited predictability." – Galen McKinley

1990-2009 Mean CO₂ Flux, Atlantic and Arctic (PgC/yr)