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1 Introduction

These notes focus on scaling laws describing the evolution of a gravity current. For the
moment, we will restrict our attention to a rectangular, finite volume release in a channel
(see Figure 1). Given the reduced gravity of the released material, initially given by

g′0 = g
ρL − ρU

1
2(ρL + ρU )

, (1)

the initial length L0, and height D of the released material, we would like to describe the
evolution of the reduced gravity g′, length L, and height h as a function of time. We
assume throughout the height of the ambient medium H is very large, and that we are in
the Boussinesq approximation.

Figure 1: A schematic of the release of a finite volume of dense (ρL) fluid into a less dense
(ρU ) stationary environment of depth H. The dense fluid is initially held behind a lock gate
at x = L0, and the initial depth is D.

We will find that the gravity current evolution can be described by three different
regimes: a constant velocity (or “slumping”) regime, a “self-similar” regime, and a viscous
regime. In both the constant velocity and self-similar regime, the buoyancy force is balanced
by inertia. The initial wave propagation speed is

√
g′0D, so it takes a time ∼ L0/

√
g′0D

for the gravity current to realize it has finite extent. Before this time, the gravity current
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spreads out with a constant velocity, but afterwards (during the self-similar regime) it spread
more slowly due to only having finite buoyancy. At late times, the velocity can become small
enough that viscosity becomes important. In this viscous regime, the spreading becomes
even slower than in the self-similar regime.

In these notes, we describe these phenomena using three techniques. First, we will use
dimensional analysis, along with insights from experiments, to describe these three regimes.
Next, we note that experiments had measured constant Froude numbers in gravity currents
prior to the viscous regime, and use this to derive the constant velocity and self-similar
regimes. Lastly, we will describe the force balances in the three regimes.

Although we focus on finite volume release in a channel, this analysis can be easily
extended to axisymmetric flows, and constant flux releases. These effects will alter the
scaling laws, and sometimes even change the order or presence of different regimes of gravity
current evolution. Finally, we will briefly mention some of the experimental results which
support or refute these simple scaling laws.

2 Dimensional Arguments

We will begin by describing the constant velocity regime. Before waves can propagate the
length L0 of the gravity current, the flow does not know it has finite length. Thus, the only
dimensional quantities in the problem are the initial reduced gravity, g′0, the initial layer
depth D, and time t. Then we must have that the velocity of the gravity current U = L̇ is

U =
(
g′0D

)1/2
Ff (t/Ta) , (2)

where

Ta =

√
D

g′0
, (3)

is a free-fall time, F is a dimensionless number, and f is some function. The experimental
observation that U initially stays about constant suggests that f(x)→ 1 for x� 1. Then,
we can identify F as the Froude number. Thus, for t� Ta, we have

U =
(
g′0D

)1/2
F, (4)

L = L0 +
(
g′0D

)1/2
Ft. (5)

We expect this to be valid on the intermediate timescale

Ta � t� TV , (6)

where TV is defined below.
On the timescale

TV =
L0√
g′0D

(7)

several things change. First, this is the timescale on which waves will propagate along
the layer, allowing communication along the entire length of the gravity current, adding a
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new dimensional parameter L0. Also, the length of the gravity current about doubles on
this timescale. Whereas for t � TV we could approximate the gravity current as having
height about D, for t & TV , the depth of the layer must change to conserve volume. By
dimensional analysis, we now have that

U =
(
g′0D

)1/2
Ff (t/Ta, t/TV ) . (8)

On timescales much longer than TV (but much shorter than the viscous timescale Tν
defined below), we can posit that the only important dimensional quantities are the time
and the total initial negative buoyancy,

B0 = g′0L0D. (9)

Then, by dimensional analysis we have

U ∼
(
B0

t

)1/3

(10)

L ∼ B1/3
0 t2/3. (11)

On this intermediate timescale (between TV and viscous timescale Tν), the flow forgets its
initial condition, i.e., this similarity solution is an attractor.

Finally, at very late times, viscosity becomes important. The viscous time Tν is given by
when the wave propagation time L/

√
g′h equals the viscous time h2/ν. Viscous evolution

occurs for t � Tν . We assume that in the viscous regime g′ does not change, i.e., stays
equal to g′ν , so that the volume Vν = hL stays constant. Thus, the viscous time is

Tν =

(
V 4
ν

g′2ν ν
3

)1/7

. (12)

It is also convenient to write this as

Tν =
νL2

ν

g′νh
3
ν

, (13)

where Lν = L(Tν) and hν = h(Tν), because we will later find that

t ∼ νL2

g′νh
3
, (14)

although this cannot be derived via dimensional analysis.

3 Constant Froude Number

We will now exploit the experimental evidence that the Froude number stays about constant
in the constant velocity and self-similar regimes. Thus, we assume that

Fh =
U(t)√
g′(t)h(t)

(15)
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stays constant. Furthermore, we assume that the buoyancy flux is constant,

g′(t)h(t)L(t) = cBB0, (16)

where cB is a geometrical factor which is equal to one for a rectangle. Implicit in this second
expression is the assumption that g′ is constant in space. Putting these together, we find

L(t)

L0
=

[
1 +

3

2
Fh
√
cBB0

t

TV

]2/3
. (17)

Now consider the limits of small or large t. If t� TV , then we have

L

L0
≈ 1 + Fhc

1/2
B

t

TV
t� TV . (18)

However, for large t, we have

L

L0
≈
[

3

2
Fhc

1/2
B

t

TV

]2/3
t� TV . (19)

It is easy to check this is consistent with the results from the section of dimensional analysis.

4 Force Balance

If one considers the three forces that act on the fluid in the channel, expressions for the
shifts between the three regimes will follow. Assume a channel where there is a constant
source of fluid at x = 0, proportional to tα. For α = 0 this is the case of the finite volume
release, α = 1 describes the case of a constant volume flux into the channel (See Figure
2). Conservation of volume will give hL ∼ q0t

α and the length of the current L ∼ Ut.
The total buoyancy is the reduced gravity times the input flux, B = g′q, with dimensions
[B] = L3T−3.

Figure 2: A schematic of a flux release in a channel of depth H. Fluid of reduced gravity
g′ is introduced at a rate of q(t) at the end of the channel.

As mentioned, in both the constant velocity regime and the self-similar regime there is
a balance between buoyancy and inertial forces. The force balance is thus between

Fb =

∫
∂p

∂x
dV ∼ ρg

′h

L
q0t

α (20)
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and

Fi = ρ

∫
uuxdV ∼ ρ

L

t2
q0t

α. (21)

First consider the initial constant velocity regime, where h ≈ D. In this case, equating Fb
and Fi gives

L ∼
√
g′Dt. (22)

For the self-similar regime, we can take hL ∼ q0tα, so the force balance implies

L ∼
(
g′q0

)1/3
t(α+2)/3. (23)

For the finite volume release (α = 0) L ∼ t2/3 which defines the self-similar regime. For the
case of a constant volume flux into the channel (α = 1) this describes the constant velocity
regime as L ∼ t.

Another possibility is a balance between buoyancy and viscous forces. With

Fν = ρν

∫
∇2udV ∼ ρν L

th2
q0t

α ∼ ρνL
3

q0
Lt−α−1, (24)

this gives

L ∼
(
g′q30
ν

)1/5

t(3α+1)/5 (25)

This describes the viscous regime for the finite volume release (α = 0, L ∼ t1/5) and a
decelerating flow for the constant volume flux case as L ∼ t4/5.

Next we find the time at which the system changes from the inertia–buoyancy balance
to the viscosity–buoyancy balance. We divide the inertial force by the viscous force. Taking
into account the different length scales for the two regimes (Equations 23 and 25), this gives:

Fi
Fν
∼

[(
q40
g′2ν3

)3

t(4α−7)/3

]2/3
. (26)

So the time when all three forces are equal is

tT =

(
q40
g′2ν3

)1/(4α−7)
= J1/(4α−7). (27)

In Figure 3 the relative magnitude of inertial and viscous forces is plotted against time
for four different cases. In the case where J > 1 the current starts in an inertial–buoyancy
balance. If α > αc = 7/4 (the upper curve), the increase in source flux maintains this
balance for all times. When α < αc (the lower curve), the relative magnitude of the viscous
force increases and the current enters a viscous–buoyancy balance for t > t1. When J < 1
the current is initially in a viscous–buoyancy balance and remains there when α < αc (the
lower curve), but becomes inertial if α > αc (the upper curve) for t > t2.
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Figure 3: The relative magnitude of the inertia force Fi to the viscous force Fν plotted
against time.

5 Axisymmetric flow

For finite volume not in a channel one can consider the case of axisymmetric flow (See
Figure 4). The initial buoyancy is B0 = g′0DR

2
0π with dimensions L4T−2. It follows that

R(t) = B
1/4
0 t1/2, (28)

which is the self-similar regime. Experiments have not given evidence for there being a
constant velocity regime in the case of axisymmetric flow.

Figure 4: A schematic of the axisymmetric release of a finite volume of dense fluid into a
less dense stationary environment of depth H. The dense fluid is initially held in a cylinder
of radius R0 and depth D.
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6 Experimental results

Figure 5 shows the evolution in time of front positions from three lock release experiments
(plotted dimensionlessly). One can see that at the start of all three experiments the front
position scales linearly with time (i.e. L ∼ t); this is the constant velocity regime. Two of
the three experiments then go into a regime where L ∼ t2/3, the self-similar regime. Finally,
all experiments end in the viscous regime as L ∼ t1/5.

Figure 5: A log-log plot of dimensionless front positions against dimensionless time for 3
full-depth lock releases. Taken from [1].
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