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The  defense  meteorological  satellite  program  (DMSP)  operational  linescan  system  (OLS)  sensors  have
imaged  emitted  light  from  Earth’s  surface  since  the 1970s.  Temporal  overlap  in  the missions  of  5  OLS
sensors  allows  for intercalibration  of  the  annual  composites  over  the  past  19  years  (Elvidge et  al.,  2009).
The  resulting  image  time  series  captures  a  spatiotemporal  signature  of  the  growth  and  evolution  of
lighted  human  settlements  and development.  We  use  empirical  orthogonal  function  (EOF)  analysis  and
the temporal  feature  space  to characterize  and  quantify  patterns  of  temporal  change  in  stable  night  light
brightness  and  spatial  extent  since  1992.  Temporal  EOF  analysis  provides  a statistical  basis  for  represent-
ing  spatially  abundant  temporal  patterns  in  the  image  time  series  as  uncorrelated  vectors  of  brightness
as  a function  of  time  from  1992  to 2009.  The  variance  partition  of  the  eigenvalue  spectrum  combined
with  temporal  structure  of  the  EOFs  and  spatial  structure  of  the  PCs  provides  a  basis  for  distinguishing
between  deterministic  multi-year  trends  and  stochastic  year-to-year  variance.  The  low order  EOFs  and
principal  components  (PC)  space  together  discriminate  both  earlier  (1990s)  and  later  (2000s)  increases
and  decreases  in brightness.  Inverse  transformation  of  these  low  order  dimensions  reduces  stochastic
variance  sufficiently  so  that tri-temporal  composites  depict  potentially  deterministic  decadal  trends.
The  most  pronounced  changes  occur  in  Asia.  At critical  brightness  threshold  we  find  an  18%  increase
in  the number  of  spatially  distinct  lights  and  an  80%  increase  in  lighted  area  in southern  and  eastern
Asia  between  1992  and 2009.  During  this  time  both  China  and  India  experienced  a  ∼20%  increase  in
number  of  lights  and  a  ∼270%  increase  in lighted  area  – although  the  timing  of the  increase  is  later  in
China  than  in  India.  Throughout  Asia a variety  of  different  patterns  of  brightness  increase  are  apparent
in  tri-temporal  brightness  composites  –  as  well  as some  conspicuous  areas  of apparently  decreasing
background  luminance  and,  in  many  places,  intermittent  light  suggesting  development  of  infrastruc-
ture  rather  than  persistently  lighted  development.  Vicarious  validation  using  higher  resolution  Landsat
imagery  verifies  multiple  phases  of urban  growth  in  several  cities  as  well  as  the consistent  presence  of low

DN (<∼15)  background  luminance  for many  agricultural  areas.  Lights  also  allow  us  to  quantify  changes
in the  size  distribution  and  connectedness  of  different  intensities  of development.  Over  a wide range  of
brightnesses,  the  size  distributions  of  spatially  contiguous  lighted  area  are  consistent  with  power  laws
with  exponents  near −1  as predicted  by  Zipf’s  Law  for  cities.  However,  the  larger  lighted  segments  are
much  larger  than  individual  cities;  they  correspond  to vast  spatial  networks  of  contiguous  development
(Small  et  al.,  2011).
. Introduction

The defense meteorological satellite program (DMSP) opera-
ional linescan system (OLS) has imaged emitted light from Earth’s
urface since the 1970s. In 1992 a digital archive was established
or DMSP-OLS data at the NOAA National Geophysical Data Cen-
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

er. Annual composites of temporally stable night light have been
rocessed and distributed by the NGDC for every year since 1992.
emporal overlap in the missions of multiple OLS sensors allows for
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intercalibration of the 30 annual composites over the past 19 years
(Elvidge et al., 2009). These data offer the opportunity to quantify
a unique spatiotemporal signature of human settlement growth
and evolution. Here we  summarize some initial results of a spa-
tiotemporal analysis of annual change in the extent, distribution
and intensity of anthropogenic night light in Asia.

The objective of this study is to quantify apparent changes in
the number, extent and brightness of stable night lights in Asia.
We limit the geographic scope of this study to Asia because this is
h: Mapping decadal changes of anthropogenic night light in Asia.
9

where we observe the greatest changes. The intention is to illus-
trate a methodology for characterization and vicarious validation
of apparent changes in areas where anthropogenic changes are
large enough to be clearly distinguished from other types of change

dx.doi.org/10.1016/j.jag.2012.02.009
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elated to sensor calibration and atmospheric effects. The first part
f the study illustrates the use of the principal component (PC)
ransformation and empirical orthogonal function (EOF) analysis
ith multi-temporal night light data. Background and details of the

OF analysis are given by Small (under review). Here we  present the
esults of the EOF analysis and discuss the spatiotemporal changes
uantified by the analysis. The second part of the study presents

 vicarious validation of changes in night lights using changes in
and cover as imaged by Landsats 5 and 7. The third part of the
tudy presents spatial and temporal variations in the area, num-
er and rank size distributions of lighted areas and discusses the

mplications for urban growth processes.

. Mapping night light from space

Since 1994, NGDC has had an active program focused on
lobal mapping of nighttime lights using the data collected by
he DMSP-OLS sensors. The basic product is a global annual
loud-free composite, which averages the OLS visible band data
or one satellite from the cloud-free segments of individual
rbits. By compositing only the cloud-free segments the impact
f atmospheric effects is minimized. Over the years, NGDC has
eveloped automatic algorithms for screening the quality of the
ighttime visible band observations to remove areas contaminated
y sunlight, moonlight, and the presence of clouds (Baugh et al.,
009; Elvidge et al., 1997). For this study we used the NGDC
nnual stable lights product. In the stable lights annual cloud-free
omposite product generation, fires and other ephemeral lights
re removed based on their high brightness and short duration.
ackground noise is removed by setting thresholds based on
isible band values found in areas known to be free of detectable
ights. In 2010, NGDC released the version 4 time series of Stable
ights, spanning the years 1992–2009. These are available online at
ttp://www.ngdc.noaa.gov/dmsp/downloadV4composites.html.
ecause the OLS visible band has no on-board calibration system,
he data from each satellite year should be intercalibrated prior
o quantitative analysis of the time series. Baugh et al. (2009)
rovides a description of the algorithms used to make the v.4
table lights products. The intercalibration procedure is described
y Elvidge et al. (2009).  This intercalibration is applied to the time
eries of annual composites used in our analysis.

Temporally stable night lights, as measured by the Defense
eteorological Satellite Program-Operational Line Scanner (DMSP-
LS), provide a unique proxy for anthropogenic development. In
revious studies brightness and spatial extent of emitted light has
een correlated to population density (Briggs et al., 2007; Sutton
t al., 2001), built area density (Elvidge et al., 2007), economic activ-
ty (Doll et al., 2006; Ghosh et al., 2010; Henderson et al., 2009), and
lectrification rates (Elvidge et al., submitted for publication). Night
ights are known to overestimate the spatial extent of development
t the periphery of settlements (Elvidge et al., 1997) but the spa-
ial extent of this overglow is generally small compared to the total
rea of all but the smallest settlements (Small et al., 2005). Com-
arisons of stable light with 30 m resolution Landsat imagery on a
ide variety of population density gradients indicates that average

rightness increases with increasing spatial density of Shortwave
nfrared reflectance and shadow associated with constructed sur-
aces (Small et al., 2005) as well as actual maps of impervious
urfaces (Elvidge et al., 2007).

In this study, we use tri-temporal change maps to illustrate
ecadal changes in brightness and spatial extent of night lights.
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

isplaying brightness of three annual average brightness compos-
tes in the red, green and blue channels of a color image highlights
reas of change as color deviations from the gray shades that indi-
ate equal brightnesses in all three years. A tri-temporal composite
 PRESS
 Observation and Geoinformation xxx (2012) xxx–xxx

of 1994, 2001 and 2009 for southeastern Asia is shown in Fig. 1. At
the scale of this figure some large area changes in background lumi-
nance are visible but most of the changes are too small to be seen.
A linear stretch between 0 and 12 DN highlights changes in back-
ground luminance at the expense of saturating changes in brighter
more developed areas. This figure illustrates two challenges of
representing change with tri-temporal brightness composites: (1)
showing change in both bright and dim areas simultaneously
and (2) showing deterministic decadal changes in the presence
of spurious year-to-year variability. In order to circumvent these
challenges, and make better use of the information content of the
composite time series, we present an approach that uses all 30
annual composites to quantify change in lighted areas. However,
we retain the convenience of using tri-temporal color compos-
ites to illustrate these changes. We  accomplish this by separating
distinct components of spatiotemporal change using EOF  analy-
sis to represent the interannual trends of the observed changes
in night light. As explained in detail below, the EOF analysis pro-
vides an estimate of the dimensionality of the image time series
and a basis for separating deterministic and stochastic compo-
nents of the spatiotemporal changes observed. In the context of
this study, dimensionality refers to the different background levels
and temporal patterns of change and their corresponding spatial
distributions. We  use the EOF analysis to minimize the effect of
stochastic year-to-year variance in brightness thereby emphasiz-
ing interannual trends in the brightness and spatial extent of lighted
area. The structure of the temporal feature space (explained below)
also provides a concise representation of the overall distribution of
changes in the night light data.

3. Spatio-temporal dimensionality and empirical
orthogonal function analysis

Principal component transformations are commonly used to
represent uncorrelated modes of variance in high dimensional data.
Different types of PC transform are used to reduce the dimension-
ality of multispectral imagery (e.g. Green et al., 1988; Lee et al.,
1990; Singh and Harrison, 1985) and to represent the topology of
spectral feature spaces (Adams et al., 1986; Crist and Cicone, 1984;
Johnson et al., 1985; Kauth and Thomas, 1976; Smith et al., 1985).
Because spectral bands are often correlated, PC transforms provide
an efficient low dimensional projection of the uncorrelated com-
ponents of the spectral feature space. The same property applies
to temporal dimensions. PC transforms have also been used to rep-
resent uncorrelated patterns in multi-temporal imagery (Richards,
1984) (Eastman and Fulk, 1993; Townshend et al., 1985) and for
change detection (Byrne et al., 1980; Fung and LeDrew, 1987). In
meteorology and oceanography the PC transformation provides the
basis of empirical orthogonal function analysis; a standard tool for
analysis of spatio-temporal patterns and processes (see Bretherton
et al., 1992; Preisendorffer, 1988; von Storch and Zwiers, 1999 for
overviews).

The utility of the PC transform for representing spatiotempo-
ral processes is related to the fact that any location-specific (x)
pixel time series Pxt contained in an N image time series can
be represented as a combination of temporal patterns and their
location-specific components as:

Pxt =
N∑

i=1

CixFit (1)

where Cix is the spatial principal component (PC) and Fit is the corre-
h: Mapping decadal changes of anthropogenic night light in Asia.
9

sponding temporal empirical orthogonal function (EOF) and i is the
dimension. The EOFs are the eigenvectors of the covariance matrix.
EOFs represent uncorrelated temporal patterns of variability within
the data. The PCs are the corresponding weights that represent the

dx.doi.org/10.1016/j.jag.2012.02.009
http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html
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Fig. 1. Tri-temporal night light brightness change map  of eastern Asia derived from 3 of 30 annual composites of DMSP-OLS imagery compiled and intercalibrated by Elvidge
et  al. (2009).  Temporal overlap among the five OLS sensors shown inset allows for intercalibration among annual composites. Average annual brightness of cloud-free images
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anges  from 0 to 64 DN but a linear stretch between 0 and 12 DN emphasizes change
cale  consistencies in change of dimmer lights between large cities – particularly i
eader is referred to the web  version of the article.)

elative contribution of each EOF to the corresponding pixel time
eries Pxt at each location x. The relative contribution of each EOF
o the total spatio-temporal variance is given by the eigenvalues of
he covariance matrix. The distribution of eigenvalues also gives an
ndication of the dimensionality of the data in terms of uncorrelated

odes of variance.
In this study dimensionality refers to the structure of the spa-

iotemporal patterns represented in the data – and their relative
agnitude compared to the stochastic variance. In oceanography

nd meteorology the PC transformation is often used to charac-
erize dynamically important modes of spatiotemporal variance
ssociated with physical processes. The implicit assumption is that
ome number, D (≤N), of the low order EOFs and their corre-
ponding PCs represent deterministic processes and that the higher
rder dimensions represent stochastic variance ε. This allows an
bserved pixel time series to be represented as a sum of determin-
stic and stochastic components as:

xt =
D∑

i=1

CixFit + ε (2)

EOFs are generally spatial patterns intended to represent spa-
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

ially continuous modes of variability of physical processes while
he PCs are generally the weights representing the temporal contri-
ution of the corresponding spatial pattern (Preisendorffer, 1988;
on Storch and Zwiers, 1999). In this study the convention is
aller dimmer lights at the expense of saturation of brighter lights. Note the regional
 and Thailand. (For interpretation of the references to color in this figure text, the

reversed so the EOFs represent temporal patterns and the PCs
represent the corresponding spatial weights. In conventional EOF
analysis, there is often an attempt to interpret different EOFs in
terms of dynamical processes. However, this can be challenging
because the EOFs merely represent statistically uncorrelated modes
of variance but are not necessarily dynamically distinct. In the con-
text of this study we consider multiyear interannual to decadal
trends to result from deterministic processes and higher frequency
year-to-year variability to result primarily from stochastic pro-
cesses related to actual brightness variations as well as spatial and
temporal sampling effects. We  acknowledge that some year-to-
year variability may  actually result from deterministic processes
but that it may  be effectively indistinguishable from stochastic
variability in these data.

In this analysis we  show that the low order EOFs of night lights
do represent distinct components of change but not necessarily
independent processes. The diversity of processes responsible for
presumed deterministic changes in night light extent and bright-
ness can be represented in terms of both average brightness and
the sense and timing of change. The temporal patterns are given by
the EOFs while the relationships among these patterns are given by
the topology of the temporal feature space with dimensions defined
h: Mapping decadal changes of anthropogenic night light in Asia.
9

by the low order PCs. The dimensionality is indicated by the size
distribution of the eigenvalues. For this analysis we use the uncen-
tered, unscaled PC transform based on the eigenstructure of the
covariance matrix – but the method we  present could also use the

dx.doi.org/10.1016/j.jag.2012.02.009
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Fig. 2. Eigenstructure and temporal feature space for the Asia night light image time series. (a) The eigenvalues attribute ∼96% of variance to the first 3 dimensions. Higher
order  eigenvalues diminish continuously. Correlation matrix (inset left) shows strong year to year correlation. Eigenvector (EOF) matrix (inset right) is dominated by high
frequency structure with only 3 relatively continuous EOFs. Inset plots of EOFs 1–4 show the temporal mean (EOF 1), the multi-decadal trend (EOF 2), the decadal trend (EOF
3)  and a less obvious pattern (EOF 4). (b) The topology of the cloud in temporal feature space is dominated by the bimodal distribution of bright and dim lights displayed
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n  the first PC. The PC 2/3 projection represents contributions of the linear 18 year
onstellation of distinct EOF 2/3 combinations surrounding the bimodal brightness

ransform based on the correlation matrix with or without scal-
ng. Additional details of the approach are given by Small (under
eview).

. Characterizing spatio-temporal change

We use empirical orthogonal function (EOF) analysis to quan-
ify patterns of temporal change in OLS stable night light brightness
nd spatial extent over the past 19 years. Intercalibrated data are
tacked into a spatial time series of images of annual average
rightness resulting from both brightly lit cities and from dimmer,

ess intensively developed rural areas. Meaningful combinations
f EOFs can be derived from the topology of the temporal feature
pace. The temporal feature space, defined by the low order princi-
al components, represents the spatial distribution of image pixel
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

ime series in terms of the relative contribution of the temporal
OFs (Small, under review). The approach used here is based on
OF analyses commonly used to represent geophysical processes
n oceanography and meteorology (Storch and Zwiers, 1999) – but
 of EOF 2 and the half cycle of EOF 3. The diversity of decadal patterns results in a
 PC1. Inset numbers on end view correspond to time series in Fig. 3.

casts the EOFs as temporal rather than spatial modes and uses the
topology of the low order PC space to determine which linear com-
binations of low order EOFs depict physically meaningful temporal
patterns (Small, under review).

The spatio-temporal variance in the night light data is rep-
resented by the eigenstructure of the covariance matrix and the
topology of the temporal feature space. These are illustrated in
Fig. 2. The eigenvalues show that the first two  dimensions account
for much more variance than the remaining continuum of dimen-
sions. The structure of the three low order EOFs is also more
continuous than the higher order EOFs. The topology of the tempo-
ral feature space shows the combination of EOFs that represent
most of the spatiotemporal variance in the image time series.
Fig. 2 shows the variance structure of the data and the relation-
ship between the spatial PCs and corresponding temporal EOFs
h: Mapping decadal changes of anthropogenic night light in Asia.
9

in the three low order PC dimensions that represent 91% of the
total variance. The separation of the overall brightness from the
decadal changes is apparent in the structure of the temporal fea-
ture space. The topology of the feature space is similar to that of

dx.doi.org/10.1016/j.jag.2012.02.009


ARTICLE IN PRESSG Model
JAG-565; No. of Pages 13

C. Small, C.D. Elvidge / International Journal of Applied Earth Observation and Geoinformation xxx (2012) xxx–xxx 5

F ojecti
r e abru
s to colo

a
a
y
t
i
c
–

s
e

ig. 3. Example time series from inner and outer radial peripheries of the PC3/2 pr
epresented by 6 EOF (blue) and often by 3 EOF (green) projection filtering but mor
hift  of extrema with location in PC 3/2 space. (For interpretation of the references 

n HSV color space. In both spaces the brightness forms a central
xis about which a circular continuum of temporal changes (peak
ears = hues) are distributed. This color analogy extends naturally
o the tri-temporal change map. When a single year of brightness
s represented by a primary color channel (R, G, or B) the temporal
hanges in brightness correspond to continuous variations in hue
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

 both in the HSV analogy and in the composite image.
The intercalibration of the annual night light composites con-

iderably reduces spurious interannual variability – but does not
liminate it entirely. Significant year to year variability remains in
on of the temporal feature space in Fig. 2. Raw trajectories (red) are generally well
pt changes (e.g. 2o, 7o, 10i, 12o) are not captured by only 3 EOFs. Note progressive
r in this figure legend, the reader is referred to the web  version of the article.)

the intercalibrated image time series. Much of this spurious vari-
ance is related to spatial uncertainty in the coregistration of the
annual composites. In addition, the phenomenon of low luminance
“overglow” results from a combination of limited sensor resolution,
atmospheric scattering and subannual spatial coregistration uncer-
tainty in the compositing process. This overglow causes spatial
h: Mapping decadal changes of anthropogenic night light in Asia.
9

blurring within individual annual composites. Additional tempo-
ral blurring results from interannual registration uncertainty. The
result is a combination of spurious spatial blurring and temporal
variance superimposed on whatever actual changes in brightness

dx.doi.org/10.1016/j.jag.2012.02.009
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ig. 4. Projection filtered tri-temporal night lights for Asia. Only EOFs 2 and 3 are
nrelated to decadal brightness trends.

ay  be measured by the sensor. Spatial or temporal filtering has
he undesirable effect of mixing this spatiotemporal noise with the
ignal in unknown proportions.

We address the spatial blurring and temporal noise problems
y using the information contained in the temporal EOFs and their
patial abundance and distribution in the temporal feature space.
he projections of the low order PCs reveal the relationship among
he low order EOFs in terms of the actual temporal EMs  that span
he space of all temporal patterns present in the image time series.
he variance partition of the PC transform makes use of the spatial
bundance of different temporal patterns to distinguish the com-
onents of the temporal patterns that the greatest number of pixel
ime series have in common. Two orthogonal projections of the
hree low order PCs for the night light time series for southeast-
rn Asia are shown in Fig. 2 – along with the 3 low order EOFs
hat represent ∼96% of the variance in the image time series. EOF 1
epresents the temporal mean brightness of the image time series
nd accounts for ∼91% of the variance. EOFs 2 and 3 represent the
ecadal trends that explain the next 5% of variance. The remaining
7 modes each represent less than 1% and together less than 4% of
he total variance in the image time series. On the basis of the clear
reak in the slope of the eigenvalue spectrum and the smoothness
f the 3 low order temporal EOFs, we infer that the interannual
rowth component of the night light data is represented primar-
ly by the first three dimensions and attribute the remaining 4% of
ariance in dimensions >3 to stochastic and local processes.

The structure of the projection of PCs 2 and 3 highlight the
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

ifference between early (1990s) and late (2000s) increases and
ecreases in the two decade time series. By inverse transform-

ng only dimensions 2 and 3 we can simultaneously remove both
he spurious variance and the dominant mean brightness from the
-projected so brightness variations are removed as well as higher order variance

time series. This emphasizes only the decadal trends represented
by early and late increases and decreases in brightness. In the tem-
poral dimension, the result of this projection filtering is smoothed
time series lacking the spurious variance that is not reflected in
the low order EOFs depicting the most spatially abundant tempo-
ral patterns (Fig. 3). The projection filtered image time series does
not contain the spurious year-to-year variability and allows the
decadal trends of bright and dim lights to be shown simultaneously
on the same map. Fig. 4 shows a projection filtered tri-temporal
composite of the same years shown in Fig. 1. Note that the saturated
bright areas in Fig. 1 are replaced by primary colors emphasizing
the decadal trends.

Projection filtering depicts the decadal patterns of change in
night light brightness without the distraction of spurious year-to-
year differences in apparent brightness and the ten-fold difference
in brightness between the bright, heavily developed urban cen-
ters and the much dimmer peripheral areas where development
and urban growth begins. The tri-temporal change maps presented
here use the same display conventions to compare tri-temporal
composites of intercalibratted night light with a projection filtered
tri-temporal composite of the same annual composites with only
the decadal patterns associated with the 2nd and 3rd dimensions
of the PCs and EOFs. In both composites warmer colors (red, yel-
low) indicate brightening over the past 18 years. Cooler colors
(blue, cyan) indicate dimming. Green areas show some brighten-
ing during the 1990s followed by some dimming in the 2000s;
magenta areas have the opposite pattern. The effect of projec-
h: Mapping decadal changes of anthropogenic night light in Asia.
9

tion filtering on brightness time series is shown in Fig. 4. Inverse
transforming 3 low order dimensions represents most decadal
trends accurately but smooths some abrupt changes (e.g. 7o).
Inverse transforming 6 low order dimensions better represents

dx.doi.org/10.1016/j.jag.2012.02.009
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Fig. 5. Tri-temporal Landsat change comparison for New Delhi. Note infilling d

hese abrupt changes while still eliminating spurious year-to-year
ariance.
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

. Comparisons with Landsat

Multitemporal Landsat imagery provides independent corrob-
ration of land cover changes suggested by observed changes
pment, increase in shadow fraction (darkening) and radial road construction.

in night light. In areas with sufficient Landsat coverage we can
use changes in land surface reflectance to infer changes in land
cover that may  correspond to changes in anthropogenic lighting
h: Mapping decadal changes of anthropogenic night light in Asia.
9

detected by OLS. Here we  represent changes in exoatmospheric
reflectance in terms of spectral endmember fractions (Small,
2005). Global analyses of Landsat imagery show that ∼98% of
land surface reflectance can be represented accurately as linear

dx.doi.org/10.1016/j.jag.2012.02.009
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ig. 6. Tri-temporal Landsat change comparison for Kuala Lumpur. Increased bright
aries.

ixtures of rock–soil substrate, vegetation and dark sur-
ace/shadow (Small, 2004). Global analyses of urban reflectance
how that most impervious surfaces are spectrally indistin-
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

uishable from rock–soil substrates when aggregated spatially
nd spectrally to Landsat resolutions. In temperate and tropical
nvironments, where undeveloped land is generally vegetated,
igh substrate fractions usually correspond to anthropogenic
 is disproportionately larger than developed land area as brightness of development

development or fallow agricultural areas. To illustrate the cor-
respondence between spatiotemporal changes in land cover and
changes in night light we  compare tri-temporal maps of Landsat –
h: Mapping decadal changes of anthropogenic night light in Asia.
9

derived substrate fraction to contemporaneous tri-temporal maps
of night light.

Tri-temporal night lights reveal a pronounced increase in
brightness extending southeastward from New Delhi since 2000

dx.doi.org/10.1016/j.jag.2012.02.009
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Fig. 7. Tri-temporal Landsat-OLS change comparison for Seoul. Note

Fig. 5). Near-anniversary Landsat images, acquired during the
rowing season clearly distinguish standing crops form urban
evelopment. In most areas urban development takes the form
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

f substrate–shadow mixtures with periodic 2D texture resulting
rom streets and building shadow. The tri-temporal fraction map
hows this expansion as discrete transitions from vegetation to
ubstrate–shadow mixtures. Several long straight thoroughfares
iphase reclamation along coast and post 2001 overglow over water.

also appear during the later interval. It is important to note that the
agricultural areas surrounding the development are not completely
unlighted. They correspond to low levels of background luminance
h: Mapping decadal changes of anthropogenic night light in Asia.
9

(DN ∼5–10) extending well beyond the overglow of the brighter
areas.

Tri-temporal night lights reveal a more complex multiphase
growth extending outward from a corridor west of Kuala Lumpur

dx.doi.org/10.1016/j.jag.2012.02.009
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ig. 8. Growth in number and area of lights in Asia from 1992 to 2009. Different 

outheastern Asia. Insets show growth in cumulative lighted area for China and In
uggest  consistency in nucleation and growth processes on decadal time scales.

Fig. 6). In this case, the tri temporal substrate map  shows a less
patially continuous pattern of development with patches of 1990s
hange interspersed with patches of 2000s change and large areas
f unchanging vegetation. Close comparison of the tri-temporal
ubstrate and light composites reveals a disparity between the
rea extents of land cover and lighting change. This shows that
rightness changes are often larger in spatial extent than the cor-
esponding land cover change. The implication is that changes in
eveloped areas may  overestimate changes in developed area at
ne spatial scales and high brightness levels. For this reason, we
o not generally assume that they correspond to equal changes in
eveloped area.

Tri-temporal changes in brightness and extent of night lights
n the vicinity of Seoul reveal a very different scenario from the
revious two examples (Fig. 7). While the magnitude of brighten-

ng around Seoul is comparable to New Delhi and Kuala Lumpur,
he spatial patterns shows more infilling and brightening of devel-
ped areas than outward growth. The tri-temporal substrate map
hows most areas unchanged with some areas of reclamation along
he coast. The tri-temporal lights also show a pronounced increase
n overglow over water post 2006 suggesting brightening of the
eveloped coastal areas. Another limitation of night light is illus-
rated by the area of infilling development near the top center
f the tri-temoral substrate map. Prior to this development the
verglow from the surrounding areas was already saturated so the
nfilling development is not captured by the night light. Interstitial
rightening, not corresponding to land cover change suggests that
rightening may  occur as a result of increased outdoor lighting in
reviously developed areas.
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
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These Landsat-OLS comparisons, along with those previously
ublished (Small et al., 2011), illustrate two important caveats to
he interpretation of night light imagery – particularly changes in
rightness:
ness thresholds show similar number-area trajectories for India, China and all of
imilar trajectories for different brightness thresholds, countries and spatial scales

1) Changes in brightness correspond to changes in luminance –
not necessarily changes in developed area. Because overglow
is proportional to brightness (Small et al., 2005), increases in
brightness are expected to cause increases in overglow in sur-
rounding areas. Therefore, temporal changes in lighted area may
result from increases in developed area or increases in intensity
of development.

2) Most area of low level luminance (<∼15 DN) does not
correspond to overglow from large bright cities. Large
areas of low level luminance extend over agricultural areas
with numerous small settlements but no large cities (see
www.LDEO.columbia.edu/∼small/DayNight for example com-
parisons). For this reason, changes in brightness should be
considered in the context of the background luminance level
rather than absolute change alone. Therefore the projection
filtered change map  should always be used as a reconnais-
sance tool in conjunction with the corresponding calibrated
tri-temporal change map.

6. Comparison of changes in number and extent of lights

Spatiotemporal change in luminance takes two complementary
forms: change in the number of spatially distinct lighted areas
and change in total lighted area above or below some bright-
ness threshold. Together, these result in changes in the total
sum of lights (SoL). These metrics of change represent three dif-
ferent types of change in anthropogenic land cover: nucleation,
aggregation and intensification. Fig. 8 shows the simultaneous
growth of lighted area and number of lights for China, India
h: Mapping decadal changes of anthropogenic night light in Asia.
9

and southeastern Asia between 1992 and 2009. These trajec-
tories are shown for three brightness thresholds spanning a
critical percolation transition where the spatial connectivity, and
therefore size distribution, undergoes explosive percolation and

dx.doi.org/10.1016/j.jag.2012.02.009
http://www.ldeo.columbia.edu/~small/DayNight
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Fig. 9. Rank-size distributions in time and space. Each rank-size plot shows the size distribution of all spatially contiguous segments of pixels brighter than11 DN.  All slopes
b  (slope
s ces to 
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ut  one lie within 0.15 of −1.0 (thin blue lines). Overall, Asia shows stable growth
patial  connectedness and larger agglomerations. (For interpretation of the referen

ecomes superconnected spatially (Small et al., 2011). Despite
ifferent brightness thresholds, spatial scales and geographies,
he area-number trajectories (slopes) for China, India and all of
outheastern Asia are very similar. This suggests a remarkable con-
istency in nucleation and growth processes on decadal time scales

 despite the very different sizes and growth histories of China and
ndia (Fig. 8, insets).

In spite of the similarities in growth trajectories, there are some
mportant differences between China, India and the whole of south-
astern Asia. Even though India and China have similar areas above
he low brightness threshold (5 DN), China has nearly twice the
rea of brighter (DN > 12) lights as India. In 2009, India and China
ccount for 2 × 105 and 4 × 105 (respectively) of southeastern Asia’s
1 × 106 km2 of area brighter than 12 DN. The area-number tra-

ectories for Asia have similar slopes to those of India and China
ut are displaced to greater numbers of lights for comparable
reas of light. This reflects the large number of smaller isolated
ights on the archipelagos and coastlines of southeastern Asia com-
ared to the more clustered inland lighted areas in India and
hina.
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
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Interestingly, some areas in India appear to have lost consider-
ble number and area of lights around 2005. The decreases have
ittle effect on the sum of lights suggesting that they are mostly
immer lights that do not contribute as much to the total sum
) but India and China both increase slope from 1992 to 2009 as growth increases
color in this figure legend, the reader is referred to the web version of the article.)

of light as they do to the number and area of lights. This appar-
ent change in background luminance, visible in large, spatially
continuous regions of India (Fig. 1), could result from either anthro-
pogenic, atmospheric, imaging or compositing processes. At this
point we lack sufficient information to determine how each process
contributes to the apparent decrease but we  point out that
both F15 and F16 composites show significant decreases for
2005 and 2006 in spatially contiguous areas of India – but not
everywhere.

Both area and number of lights well as sum of lights are aggre-
gate measures that reflect changes in the overall spatial distribution
of lighted area. A more complete representation is given by the
rank-size distribution of spatially contiguous lighted segments
and how this distribution changes in space and time. The rank-
size distribution shows all spatially distinct lights sorted by area.
Fig. 9 shows rank-size distributions of lighted areas brighter than
DN = 11 for India, China and all of southeastern Asia. All of the
distributions are strongly linear over four orders of magnitude, sug-
gesting a power law or similar heavy tailed distribution. Similar
distributions are also obtained for DN thresholds of 9 and 6
h: Mapping decadal changes of anthropogenic night light in Asia.
9

– but with correspondingly larger areas. The slope and lin-
earity of the distributions do not change appreciably over
this range of thresholds suggesting stability of the underlying
distributions.

dx.doi.org/10.1016/j.jag.2012.02.009
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Zipf’s Law predicts a power law rank-size distribution with a
lope of −1 for city size distributions as measured by popula-
ion (Zipf, 1942, 1949), although the linearity and slope of country
evel and aggregated population distributions varies considerably
Nitsch, 2005; Soo, 2005). While the consistency of Zipf’s Law has
ttracted sustained interest for several decades, and has been the
asis for a multitude of models (e.g. Berry and Garrison, 1958;
abaix, 1999; Lotka, 1941; Pumain, 2006), the varying degree
nd extent of agreement with observation impede consensus on
ither the universality of the law (Gan et al., 2006; Krugman,
996; Soo, 2005) or its underlying causes (Batty, 2006; Lotka,
941; Pumain, 2004, 2006). The assertion of a universal power

aw for city size (as represented by population) is controversial
ecause the estimates of linearity and slope of the power law
ank-size distribution vary over time and among countries (Gabaix
t al., 2004; Nitsch, 2005; Pumain and Moriconi-Ebrard, 1997; Soo,
005).

Despite mixed results obtained from census enumerations, the
onnectivity and size distribution of lighted areas in Asia seems
o be consistent with Zipf’s Law in both space and time. The slope
f all but one of the distributions for brightness thresholds of 6, 9
nd 12 DN are within 0.15 of −1 (Fig. 9). This is consistent with
ecent global and continental scale analyses of area distributions
f both population density and night light brightness which are
ell fit by power laws with slopes near −1 for a wide range of

hresholds (Small et al., 2011). As in the global and continental scale
nalyses, the largest spatially contiguous segments in southeastern
sia are much larger than the individual cities. At scales of 104

o 105 km2, these large agglomerations correspond to enormous
patial networks of interconnected cities and smaller settlements
ith interstitial areas of lower population or brightness. Yet the size
istributions still conform remarkably well to the power law rank-
ize distribution predicted by Zipf’s Law for individual settlements
efined by population.

The temporal consistency of rank-size slope for India, China and
outheastern Asia through time suggests relatively stable growth
hroughout the size range over nearly two decades – albeit at very
ifferent rates. The rank-size distribution for India falls proportion-
tely at all sizes in 2005 as expected. Together with the consistent
rajectory of number area plots in Fig. 8, this suggests that aggre-
ate growth processes seem to be quite robust across a range of
reas, geographies and thresholds through time. In spite of this
onsistency, some temporal increases in the rank-size distribution
uggest that spatial aggregation is exceeding nucleation in India
nd China – but not overall. This apparent increase is analyzed in
reater detail in a separate study.

. Conclusions and implications

Decadal changes in night light brightness, identified by EOF
nalysis, form coherent spatial patterns at local and regional scales.
n areas where sufficient Landsat coverage exists these changes
n brightness correspond to areas where land cover change sug-
ests expansion of anthropogenic land use. The implication is that
ulti-temporal night lights can provide a global proxy for lighted

nthropogenic development.
Over the past two decades, consistency in the increase in night

ights in Asia suggest consistency in the underlying processes of
rowth and development. Rank-size distributions of spatially con-
iguous night lights in India, China and throughout southeastern
sia show strongly linear trends with slopes near −1 for a range
Please cite this article in press as: Small, C., Elvidge, C.D., Night on Eart
Int. J. Appl. Earth Observ. Geoinf. (2012), doi:10.1016/j.jag.2012.02.00

f brightness thresholds. While slopes persist near −1 through
ime for southeastern Asia, increasing sub-unity slopes for India
nd China suggest that development in these countries is result-
ng in increased connectivity of the larger spatial networks of
 PRESS
 Observation and Geoinformation xxx (2012) xxx–xxx

development at the expense of nucleation of smaller isolated set-
tlements. Taken together with the relatively stable near-unity
slopes of rank-size distributions for southeastern Asia these results
suggest considerable spatial variations in the growth processes
contributing to an apparently stable distribution at continental
scales. The implication is that the logarithmically uniform distribu-
tion observed by Zipf and others may be an emergent phenomenon
arising from spatial aggregation of non-uniform distributions at
finer spatial scales.
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