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[18] The power-law scaling arises from the spatial structure
of the deformation field, not from the sampling procedure.
We verified this (as in the work of Marsan et al. [2004]) by
a Monte Carlo simulation of 100 random rearrangements of
the deformation field. In each rearrangement or shuffling, all
the deformation values ( _e) of the RGPS cells (for a given
snapshot in time) were randomly assigned to the locations of

other cells, thus destroying the spatial patterns in the defor-
mation field while maintaining the same set of deformation
values and the same cell locations. For each shuffled field we
then repeated the scaling analysis described in section 3 and
applied the fitting procedure of equation (1). We always
found a clear departure from power-law behavior in h _ei
versus hLi for the shuffled fields. Figure 4 shows an example
from the snapshot of 20 April 1999. The actual (unshuffled)
data give rise to a nearly linear relationship between h _ei and
hLi in log-log space (upper curve, same as the diamonds in
Figure 3), whereas the shuffled data do not (lower curve).
Hence it is the spatial arrangement of the actual (unshuffled)
deformation values that leads to the power-law scaling.
[19] Figure 3 also shows that the variance of the deforma-

tion about the mean is large. Since the deformation tends to
concentrate along active fault lines (leads) in the ice cover, a
set of deformation estimates at a given spatial scale will tend
to include many small values (from rigid pieces that do not
deform) and many large values (from the active zones),
giving rise to a broad distribution of values. The variance
increases as the spatial scale decreases (as also noted by
Marsan et al. [2004]), which is related to the localization
discussed in section 6.

5. Annual Cycle of Scaling Parameters

[20] Figure 5 shows the scaling exponent b by year and by
day of the year. The exponent has a mean value of !0.18
(standard deviation 0.04) during November through April,
and then increases in magnitude during the melt season,
reaching about !0.25 by August when our data end. The
increasing summer exponent is consistent with a looser ice
pack in which stresses are not transmitted long distances, so
the connection between distant parts of the ice pack is weaker.
After freezeup in the fall, the exponent reverts to its winter

Figure 2. Grid sampling of the snapshot from 20 April
1999 showing the center positions of all the samples for
the 10-km scale (dots), the 360-km scale (crosses), and the
1000-km scale (stars). The 10-km samples are separated by
50 km. NP is the North Pole.

Figure 3. Total deformation _e (day!1) versus spatial scale
L (km) for the 6778 samples of deformation computed from
the snapshot of 20 April 1999. Each dot represents one esti-
mate of the deformation (vertical axis) at a particular spatial
scale (horizontal axis). The vertical dashed lines delineate the
scale bins. The diamonds show the mean deformation for each
bin, and the straight line is the best linear fit to the means,
with a slope of b = !0.15 and a squared correlation of 0.96.

Figure 4. Mean deformation _e (day!1) versus spatial scale
L (km) for the snapshot of 20 April 1999, showing the actual
mean values (upper curve, same as the diamonds in Figure 3),
and those resulting from a random shuffling of the
deformation field prior to the scaling analysis (lower curve,
triangles). The clear departure from linearity in the lower
curve indicates that the spatial structure of the deformation
field is responsible for the observed power-law scaling
(approximate linearity) in the upper curve.
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compute the invariants of the strain-rate tensor for each
cell: the divergence and shear rates _D and _S. Henceforth
the term deformation means the quantity _! !

!!!!!!!!!!!!!!!!!!

_D2 " _S2
p

,
also known as the total deformation rate.

The RGPS data provide unprecedented spatial detail of
Arctic sea-ice motion and deformation, but with a com-
plex mix of spatial and temporal information. For this
study we focus on the spatial pattern of deformation at
one point in time: 00:00 UTC on 6 November 1997. We
search the RGPS deformation data for all cell observa-
tions spanning that time, i.e., for which the first SAR
image is before that time and the second is after. There are
43 748 such cells. We then eliminate: (i) cells adjacent to
the coast, which have initial size 25# 25 km2; (ii) cells
for which there are more than seven days separating the
two SAR images; and (iii) cells whose areas have changed
by more than a factor of 2 (i.e., current area <50 km2 or
>200 km2), which makes the calculation of deformation
unreliable. After applying these three criteria we are left
with 42571 cells (Fig. 1).

We wish to compute deformation over a range of spatial
scales. At the smallest scale we have the deformation of
each cell. At larger scales we aggregate cells as follows.
Consider a box of width W centered at a certain location
within the data (a ‘‘seed’’ point). We find all the cell
centers that lie inside the box, and compute the average
velocity gradients where the contribution from each cell
is weighted by its area. From these large-scale gradients
we compute the deformation _!. Assuming horizontal
scaling isotropy, we define the spatial scale L as the
square root of the actual area covered by the cells, which
can never exceed W but is typically close to W. By
changing the size of the box we obtain samples of the
deformation at different scales (denoted _!L). The seed
points are defined on a regular grid with spacing equal to
half the box size. Adjacent boxes overlap, so the samples

are not all independent. If a box is not at least 50%
covered by cells, that sample is discarded.

Figure 1 shows the deformation at the L ! 10 km scale
of individual cells, at which scale the localization along
quasilinear structures is well pronounced. Figure 2 shows
81586 values of _!L vs L computed by our sampling
procedure. Within each range of scales the mean value
of deformation h _!Li is plotted at the mean scale. The
scaling h _!Li$ L%H is observed over two decades in scale.
A standard least squares fit to the mean values (gray line)
gives an exponent of H ! 0:20 with a squared correlation
of 0.97. To estimate the uncertainty in H we used a boot-
strap method, yielding an error standard deviation of 0.01.
The value of H is robust with respect to changes in the
box sizes and the number of bins.

The power-law decrease of h _!Li with L is a signature of
the spatial correlations present in the deformation field.
We verified this by randomly reshuffling the velocity
gradients of the RGPS cells among themselves and re-
peating our analysis procedures. We found a clear depar-
ture from power-law behavior. A simple argument leads
to the prediction that h _!Li% h _!Mi$ L%1 in this case,
where h _!Mi is the large-scale (’1000 km) mean for the
randomly reshuffled distribution.We found this prediction
to be accurate. We therefore conclude that the original
h _!Li$ L%H scaling cannot be attributed to a decay in-
herent in the sampling procedure, but is a result of the
spatial structure in the deformation field.

In addition to the mean deformation, we investigate the
scale dependence of the distribution of _!L. For decreasing
L the distribution is shifted toward large values (hence an
increase in the mean) but also the deviation from the
mean increases more rapidly than the increase in the
mean itself. Equivalently, a systematic change toward
shallower log-log tails of the probability density function
(pdf) of _!L is observed as L decreases (Fig. 3). This
enhancement of anomalously large deformation rates
amounts to the strengthening of the localization at small
scales. Table I shows that as the scale decreases, the
largest 15% of the deformation is accommodated by a
smaller portion of the sea-ice cover, and involves larger
deformation rates.

FIG. 1 (color online). Sea-ice deformation rate on 6
November 1997 from 42571 RGPS cells.

FIG. 2. Total deformation rate _!L as a function of scale L
(81586 samples). Vertical dashes define bins. Gray dots are
means within each bin. Gray solid line is least squares fit to
mean values. A is 13–20 km scale; B is 160–320 km scale.
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with length scale, L, such that

D / LH, ð1Þ

where H ¼ $0:19. Marsan and others (2004) found a similar
relationship with an exponent of H ¼ $0:2, for ice that
covered the western Arctic during winter. Our result is an
independent verification of the Marsan and others (2004)
results. It can be argued these results show that the fractal
nature of sea-ice deformation is experienced by a region of

ice as it evolves in time, as well as having a similar fractal
distribution in space (Marsan and others, 2004). We also
find that other statistical moments of deformation (standard
deviation, skewness and kurtosis) show scaling properties,
increasing as the spatial scale decreases. Like Marsan and
others (2004), we find that sea-ice deformation displays
multi-fractal properties (Fig. 4).

Our analysis supports the hypothesis of Marsan and
others (2004) that sea-ice strain rate is localized. Like
Marsan and others (2004), we find that as spatial scale
decreases, larger strain rates become apparent, indicating
the largest strain rates are accommodated by a small portion
of the buoy array area. Another signature of this localization
is that the variance of sea-ice deformation increases as
spatial scale reduces, which we find in agreement with
Marsan and others (2004). Stern and Lindsay (2009) found
that this localization is a property of the spatial structure of
the deformation field.

4. TEMPORAL SCALING

For each buoy position time series, we can subsample the
time series, to calculate deformation time series with varying
temporal resolution. The highest resolution available is
10min. The lowest resolution we subsample at is 10 days.
This provides three orders of magnitude in temporal reso-
lution for which we can search for the existence of a
temporal scaling relationship. Similar scaling relationships
(Fig. 5) are found for all sub-arrays, which have spatial scales
varying from 6 to 140 km.

The first observation we can make from Figure 5 is that
there is a log–log linear scaling relationship between
deformation and timescale, T , where D / 1=T , such that
the evolution of deformation in time can be thought of as a
pink noise process. Sea-ice deformation at spatial scales
between 6 and 140 km displays non-equilibrium critical
behaviour. This is an important observation for those wishing
to model sea-ice deformation.

Fig. 3. All realizations of deformation rate and length scale (square
root of area), for each sub-array in all sets, are plotted in the colours
defined in Figure 1. Mean sub-array length scale and mean
deformation is plotted (black stars) for each buoy sub-array set
defined in Figure 1. The least-squares fit to these values is shown as
a solid line. The variance of deformation for each sub-array is
plotted (black crosses), and the dashed line is least-squares fit to
these points.

Fig. 4. Moments, q, between 0.5 and 4, of deformation rate, Dqh i,
plotted against length scale. The colour of the mean value, plotted
as crosses, corresponds to buoy array shown in Figure 1.

Fig. 5. Least-square fit to the means of deformation rate at each
timescale sampled for all SEDNA sub-arrays. The colour corres-
ponds to the spatial scale family the sub-array belongs to: 10 km
(blue), 20 km (green), 70 km (red) and 140 km (black). The gradients
of the smallest arrays are close to –1.
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Wavelet cross-coherence analysis of divergence on two
spatial scales within the same region provides insight into
emergent patterns in ice deformation. This sheds light on why
leads appear to be organized on >100 km scales. Our
findings are summarized with suggestions on how to improve
modelling and observation of sea-ice deformation.

2. FIELD CAMPAIGN

The Sea Ice Experiment: Dynamic Nature of the Arctic
(SEDNA) field campaign utilized the Applied Physics
Laboratory Ice Station (APLIS) in the Beaufort Sea in spring
2007. Two arrays of GPS ice drifters were deployed on 24
March in nested hexagons, of width 20 and 140 km, around
APLIS (Fig. 1). All 12 buoys drifted with the ice pack and
transmitted data until 22 June. These arrays formed the
backbone of SEDNA (described in detail by Hutchings and
others, 2008; Hutchings, 2009).

The GPS buoy positions are used to calculate strain-rate
components, divergence and maximum shear rates (Fig. 2)
of the ice pack within the array. The method we use, and
error analysis, is outlined by Hutchings and Hibler (2008).
The SEDNA GPS buoys had a position error less than 10m.
Propagation of error analysis throughout strain-rate calcula-
tions indicates that strain-rate error is an inverse function of
area enclosed by the buoy array and ice velocity. Errors are
largest for small arrays moving slowly, and the signal-to-
noise ratio becomes unacceptably small for arrays smaller
than 3 km2 moving at <0.002m s–1. We flag, and do not
include in our analysis, estimated strain rates that do not
meet these two requirements, and estimate our strain-rate
error as <1!10–8 s–1. The two arrays provide time series of
ice-pack divergence and shear over four spatial scales that
vary between 10 and 140 km. This is a unique dataset with
which we can investigate the spatial scales of sea-ice
deformation coherency. It is also useful for identifying if
there is a scaling relationship linking the statistical properties

of sea-ice deformation and the scale over which the
deformation is observed.

As buoys provide time series of sea-ice deformation we
can investigate the temporal evolution of the coherence of
the ice-pack deformation, over different scales, during the
spring transition from a relatively strong, connected,
concentrated ice pack to a disconnected summer pack. As
the data were collected in late winter and spring, we cannot
resolve the full seasonal variability in scaling properties of
sea-ice deformation, which has been identified by Rampal
and others (2008) and Stern and Lindsay (2009). However,
our analysis does provide independent verification of the
deformation scaling properties of a compact ice pack,
previously identified by Marsan and others (2004).

The SEDNA deformation dataset has some features that
are perhaps unusual and should be taken into consideration
in following our analysis. At the start of the SEDNA
campaign, a lead system opened in the 10 km region around
the ice camp. These leads were visually observed to be up to
1 km wide at times, and froze into areas of thin level ice
(<50 cm thick by mid-April) that subsequently ridged. We
estimate that all level ice that grew in the inner buoy array
during the SEDNA experiment was ridged by mid-June. This
is not the case in the larger array, which sampled several lead
systems including the system that ran through the inner array.
This event was unusual in that we were able to sample the
impact of a single, relatively large, deformation event on the
ice pack over a range of spatial scales using drifting buoys.

3. SPATIAL SCALING OF STRAIN RATE

SEDNA included nested buoy arrays (Fig. 1) that resolve ice-
pack strain rate over a set of four spatial scales. For each
buoy array we estimate strain-rate components and total
deformation rate as described by Hutchings and Hibler
(2008). The time series of total deformation are plotted as a
function of the square root of array area (length) in Figure 3.
Data are clustered into sets of different length scales: around
10 km (blue), 20 km (green), 70 km (red) and 140 km (black).
For each length scale set, we calculated the statistical
moments of the distribution of total deformation. In Figure 3
a least-squares fit to the means of each length scale set is
shown. Mean deformation rate, D, scales logarithmically

Fig. 1. Map of GPS buoy positions on 25 March at 00:00Z. Buoy
arrays are outlined in colour, referring to the spatial scale set to
which the array belongs. The largest array, 140 km scale, is outlined
in black. Six 70 km scale arrays are red. There is one green 20 km
scale array and four blue 10 km scale arrays. The camp location is
marked with a black square.

Fig. 2. Time series of (a) divergence rate, "I, and (b) maximum shear
rate, "II, for the 140 km scale array (black) and 20 km scale array

(green). Total deformation rate is calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"2I þ "2IIÞ

p
.
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model). However, this bias is not an essential criterion to
test the accuracy of the simulations, as sea ice mean strain
rates strongly depend, by nature, on the spatial and temporal
scales considered, whereas modeled mean strain rates
essentially do not. Consequently, one can find temporal
and spatial scales at which simulations fit the observations,
but this neither validates nor invalidates the model.
[62] Instead, we focus our analysis on the scale depen-

dence of strain rates (i.e. the slope), which characterizes the
heterogeneity of the deformation field. The scaling h _!toti !
L"b is observed over two orders of magnitude for RGPS
observations. A least squares fit to the mean values (dashed
line), gives an exponent b = 0.18 with a squared correlation
0.99. This is consistent with the results of Marsan et al.
[2004] who obtained a similar scaling with an exponent b =
0.2 for RGPS observations of fall 1997.
[63] In the simulations, the power law scaling is not

recovered. At small scales, the mean deformation simulated
in LIMVP is nearly independent of L, then decreases for
scales larger than !200 km. This decrease could be
explained by a finite-size effect: due to the confinement
of the Arctic basin, a box of the order of the basin scale is
not free to deform significantly. We note that for the scaling
analysis of RGPS strain rate, this finite-size effect, which
necessarily exists, is masked by the power law scaling. The
scale dependence of LIMEVP mean deformation is slightly
more pronounced than for LIMVP, but clearly not a power
law.
[64] The difference between model and observations

appears even more distinctly when considering the scale
dependence of the moments h _!totq i1/q of order q = 2 and 3
(Figure 11). Moments of higher order give more weight to
the large strain rate values. RGPS moments follow power
laws with exponents depending on the moment order q,
while LIM moments do not vary significantly with the
moment order, neither with the spatial scale. For RGPS
observations, the dependence of the exponent with q
expresses the multifractal character of the strain rate field,
in agreement with previous work [Marsan et al., 2004], the
fingerprint of the multifractal heterogeneity. This heteroge-
neity is absent for simulations.

[65] The results reported on Figures 10 and 11 show that
the spatial correlations of deformation patterns are not
correctly reproduced in LIM. The scale dependence of strain
rates simulated by CICE was also examined (not shown
here) through a similar procedure and did not match the
power law decay either.
[66] As mentioned in section 2, RGPS is not suited to

explore in details the temporal scaling as well as the space-
time coupling of sea ice deformation, which was revealed
by the analysis of the dispersion of buoys trajectories
[Rampal et al., 2008]. To evaluate the model performance
on this basis, we used the reconstructed Lagrangian trajec-
tories (see section 4.2) and followed the procedure pre-
sented in section 2 to estimate the strain rate proxy _!disp
from dispersion rates. This was done for a wide spatiotem-
poral scale range, with initial separation L varying from
!10 km to !500 km and time interval t varying from 12 h

Figure 9. PDF of absolute value of divergence rates from the CICE simualtion (period January–March
1987) and from RGPS observations (period January–March 1997), at scales of (left) !10 km and (right)
!100 km. (right) The black dashed line is the Gaussian distribution of the same mean and standard
deviation as the CICE distribution.

Figure 10. Mean total deformation rate h _!toti as a function
of spatial scale L, obtained with RGPS observations (green
diamonds), LIMVP (red circles), and LIMEVP (blue
squares) simulations. The dashed line is the least squares
fit for RGPS data h _!toti ! L"0.18.

C08015 GIRARD ET AL.: SEA ICE DRIFT AND DEFORMATION IN MODELS

11 of 15

C08015

Observed Dynamics ScalingObserved Dynamics ScalingObserved Dynamics Scaling Modeled 

Marsan et al. 2004 Stern and Lindsay 2009 Hutchings et al. 2011 Girard et al. 2009

Louvain-la-Neuve Ice Model

D ∝LH  where D = Div 2 + Shear 2 ,  L = Length Scale,  H = Scaling Exponent
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H is an example of a metric applicable 
across multiple model configurations 

afrobert@nps.edu  |  Forum for Arctic Modeling and Observational Synthesis, October 23, 2013

Is H a useful metric for high resolution sea ice 
mechanics simulations?

Broader question:
Have polar biases been introduced into Earth System 
Models by using development models constrained at 

coupling boundaries?
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The Regional Arctic System Model
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Previous modeled H results have used
calculations with a stand-alone ice-ocean model
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OCEAN

SEA ICE

boundary
condition

-Oceanic constraint
-Coupling channels between component models
-Component models

6-hour reanalysis
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Do H calculations with constraints removed from
coupling boundaries produce the same results?
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POP

CICE

RIVER ROUTING

VIC

WRF

CISM

boundary
condition

boundary
condition

extended
ocean

6-hour reanalysis
spectral nudging
above PBL
wind, temperature

-Atmospheric and oceanic constraint 
-Coupling channels between component models
-Component models
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Sea Ice Deformation Scaling in RASM
Hourly Velocity :  H = -0.23
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L = 9 km 18 km 27 km 36 km 99 km. . . . . . 
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Variance
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Sea Ice Deformation Scaling in RASM
Relationship of scaling to period
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H = -0.23

H = -0.26

H = -0.28

H = -0.32
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RASM results in context
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Source Method of Observation Temporal Sampling H

Marsan et al. (2004) RGPS 3 Days -0.2

Stern and Lindsay (2009) RGPS 3 Days ~-0.2

Girard et al. (2009) RGPS 3 Days -0.18

Hutchings et al. (2010) GPS Buoys 10 minutes -0.19

Source Model Temporal Sampling H

Girard et al. (2009) LIM in DRAKKAR 12km 3 Days “almost scale independent”

Mills (2012) CICE in RASM ~9km 1 hour; 3, 6 & 30 days -0.23, -0.26, -0.28, -0.32
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Coupled atmospheric models supply red noise to the ice 
and ocean at higher frequencies than do reanalyses
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Beaufort Sea Wind Speed
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Toward a FAMOS coordinated sea ice experiment
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How can we account for constraints on the Arctic System 
in a FAMOS coordinated experiment?

Have biases been introduced into Earth System Models 
by using developments from ice-ocean models 
constrained at coupling boundaries?
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