Recent Temperature Microstructure Measurements
From The Eurasian Basin
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Motivation: Sample Profile: Flux Law vs. Observations:

Temperature — Cast #14 a) b)

Turbulent Heat Flux vs. Kelley [1990]
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The challenging nature of logistics in the Arctic Ocean have made it

Turbulent Heat Flux vs. Flanagan et al. [2013]
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difficult to perform intensive microstructure experiments. The low - - S X
levels of turbulence found away from the boundaries and topogra- ) | .
phy and the prevalance of non-mechanical mixing regimes like | et | ’
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double diffusion compound this issue.
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Previous experiments, Padman and Dillon [1987], Rainville and Winsor
[2008], Sirevaag and Fer [2012] have favored the calculation of €, and -150 :
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K1990 Flux Law Heat Flux (W/mz)
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F2013 Flux Law Heat Flux (W/m?)
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because of this, profiled their instruments at speeds approaching 1 % ;‘ P & Correlation: .72 Correlation: .74
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m/s. This has forced them, when calculating y, to rely on fitting their o g Slope: .89 | Slope: 1.15
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data to theoretical turbulence spectra to resolve all of the variance, O el i " Jﬂt h
since ¢ is typically below the noise of level of most instruments 12em | I T T Y T T E T E R TR R T TR TR TR
below the pbvcnocline Turbulent Heat Flux (W/m”) d Turbulent Heat Flux (W/m?)
py ) C) Molecular Heat Flux vs. Kelley [1990] ) Molecular Heat Flux vs. Flanagan et al. [2013]
1 . I T e A 1 7 7 7 T
. ° . _250 B 7 ,, ,,
Meanwhile, our best estimates of the vertical heat flux from the At- . ) ' .
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lantic Water layer throughout the majority of the basin rely on labo- It , 1 o .
ratory derived flux laws. A parameterization can be applied any-
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where a diffusive convective thermohaline staircase is present. —300) Yy » Y 0 Y 1 T % os ¢ % oo . /"
While recent numerical studies have affirmed the laboratory flux T(*Q) gl . £ oy
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laws, observational efforts are needed to attempt to verify these pa- Fig. 2: Temperature profile from Cast #14. Insets are an ex- 8 o} . 304 » &' y
rameterizations in an oceanic regime. ample of two interfaces. The leftmost is included in the analy- 27 oA Correlation: 67 R Correlation: .69
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This poster shows some preliminary results attempting ot & . o1} oS
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to validate the 4/3rd laboratory flux law with heat flux Therm |St0r COm p a rlSOn- S e e B e
[ Molecular Heat Flux (W/m°®) Molecular Heat Flux (W/m~)

calculated from temperature microstructure across e) Turbulent HeatFux s Lab Fux Laws o R >4
double diffusive interfaces in an Eurasian Basin ther- Unfortunately, acceptable data from both FP07s was only available in a hand- S y
mohaline staircase. ful of casts due to issues with the second themistor channel. Typically, two tur- st Correlation: .79
bulence probes are used in the calculation of quantities. | Slope:.94 ",
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Data and Methodology: 2 o
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Fig. 3: (a) Comparison of Temperature Gradient Spectra from ratio greater than 4.

different thermistors across 9 interfaces from Cast #14. (b) Plot

of y calculated from the spectra in 3(a) for both thermistors. ”m ea n" I nte rfa ce P o pe rues:

Spectra - Interface vs. Layer: K, =1.73x107m’s”
7=228x10" °C?s™

. values in the interfaces are an order of magnitude or more greater than  in

the layers. The interface/layer pair shown below were chosen at random. The dt/dz=22°Cm™

interface is fit better with Kraichnan spectra while the layer is fit better with

Batchelor spectra although there is deviation at low wavenumber. Rp =3.5
Fig. 1: Bathymetry map showing the location .
of the experiment drift in the Arctic Ocean. o _ Cest2l - layer/interface Spectrawith Fits Fy g =16 Wm
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An SBE 19+ CTD was affixed to an RSI Microrider and lowered _ PP ;(—I—nterface —71x 10-5 ) FH_MOZ =12 Wm
through a hole in the sea ice. The Microrider had 2 shear probes and ) F ~ 17 Wm—z
2 FP0O7s but no microconductivity. The instrument package was low- 10 H_K90 -
ered at a speed of between 20-25 cm/s in an attempt to capture all ' F — 73 Wm—z
of the temperature gradient variance. From 4/11 - 4/19 a total of 42 _ H_F2013 -~
casts down to 350 m were made. Interfaces were chosen visuall . . .
and for two main criteria: thickness greater than 10 cm and free fiom é 0¥ CO n C I u S I O n S o
other structures. Only 146 interfaces met this criteria as most were Nﬁ
thinner or contained other structures. Heat flux is calculated three £ Heat flux calculated from temperature gradient microstructure measurements
ways: ¥ oL e T agrees reasonably well with the laboratory flux laws.
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(1) 4/3rd Laboratory Flux Law ' “Eddy” diffusivity calculated across the interfaces appears only slightly (10-
oicla 13 o - 20%) higher than molecular diffusivity.
Iy :C(Rp)/)cp[ ’ j (A0) 10°F
v : Layer The magnitude of our heat flux values agree well with the Flanagan et al.
(2) y from FPO7 temperature gradient spectra |- - Batchelor Fi [2013] formulation of the flux law for higher density ratios although both for-
o7\’ P . | - - - - Kraichnan Fit ' ' mulations are well correlated.
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(3) From molecular diffusivity Fig. 4: Comparison of layer and interface spectra from Cast #21.
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Dotted lines are theoretical spectral fits.
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