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1 Introduction

The changing sign of the Coriolis force across the equator causes the dynamics of equatorial
waves to be quite different from that of the mid- to high-latitudes. The waves that are
found in this region play an important role in the El Niño - Southern Oscillation (ENSO)
[23; 24; 29], the Madden-Julian Oscillation [17; 30], and in the exchange of energy from
the equatorial region to the midlatitudes. Hence, it is important that their dynamics and
evolution are well understood. The inviscid, linearized shallow water equations on an equa-
torial β-plane have been used to study equatorially trapped Kelvin, inertio-gravity and
Rossby waves [1; 8; 19; 21]. Furthermore, the effect of nonlinearity on equatorial waves
in the context of the shallow water equations has been described by Boyd, in a series of
papers in the 1980s [2; 3; 4; 5]. Boyd found solitary wave solutions for the weakly dis-
persive long Rossby modes as well as for the strongly dispersive Rossby, inertio-gravity
and mixed Rossby-gravity modes and also characterized the effect of nonlinearity on the
weakly-dispersive (where the effects of nonlinearity dominate over dispersion) Kelvin mode.

While the shallow water equations have been quite successful in understanding the dy-
namics of the equatorial region, they are nonetheless an approximation to the full nonlinear
primitive equations and neglect some physics that are potentially important in the equa-
torial region. In the present work, we investigate a nonlinear, equatorial quasi-geostrophic
model that includes the vertical component of momentum as well as the non-hydrostatic
effect, with the aim of extending the work of Boyd in understanding the dynamics and
evolution of nonlinear equatorial waves.

The quasi-geostrophic approximation [6; 7] is useful for studying flows with characteris-
tic timescales of a day or more, thus filtering out high-frequency motions. One underlying
assumption of the quasi-geostrophic approximation is that the Rossby number, which mea-
sures the relative importance of inertial to rotational motion in the momentum equations,
is small. The Rossby number is defined as Ro = U/2ΩL, where U and L are characteristic
velocities and lengths, respectively. In the “traditional approximation”, the rotation vector
Ω is assumed to depend only on the local vertical component, namely the Coriolis param-
eter f = 2Ω sin θ, where θ is the latitude. However, in the “traditional approximation”,
the Rossby number is infinite at the equator due to the vanishing of the Coriolis parameter
there, rendering the quasi-geostrophic approximation invalid. While the “traditional ap-
proximation” is justifiable for problems based in the mid-latitudes [8; 28], the contribution
of the local horizontal component of rotation, 2Ω cos θ, is important in applications in the
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tropics [26; 28] and may be necessary for the simulation of some equatorial phenomena [10]
(e.g. the Madden-Julian Oscillation).

[13] derived a nonlinear quasi-geostrophic model of the equatorial region, which takes
into account the local horizontal component of rotation. Their model, denoted SNH-QGE III
(Sideways Non-Hydrostatic Quasi-Geostrophic Equations type III), differs from the classical
quasi-geostrophic model of fluid that is thin in the vertical, by assuming the meridional (y-
direction) length scale is large compared to the zonal (x-direction) and vertical (z-direction)
length scales. It follows that the leading balance in this model is between the zonal and
vertical components of momentum, rather than the zonal and meridional components in
the thin layer approach.

In the following section, we examine the linearized primitive equations on an equatorial
β-plane and the equatorial waves they describe. Section 3 outlines the derivation of the
quasi-geostrophic model SNH-QGE III from [13]. Section 4 treats the linearized version
of this model, comparing to the results of the linearized primitive equations. Finally, in
section 5, the nonlinear version of this quasi-geostrophic model is analyzed, following a
similar procedure to that of [3]. In the case when the Brunt-Väisälä frequency is constant
the waves are found to behave according to a generalized Swift-Hohenberg equation. By
contrast, when the Brunt-Väisälä frequency varies with height, the waves behave according
to a generalized Kadomtsev-Petviashvili equation.

2 Primitive equations

2.1 Equatorial waves

Consider the linearized, primitive equations in the following form:

∂tu
′ − βyv′ + 2Ωw′ = −∂xp′, (1)

∂tv
′ + βyu′ = −∂yp′, (2)

∂tw
′ − 2Ωu′ = −∂zp′ −

ρ′g

ρr
, (3)

∂xu
′ + ∂yv

′ + ∂zw
′ = 0, (4)

∂tρ
′ + ∂zρw

′ = 0, (5)

where x is in the zonal direction, y is in the latitudinal direction, z is in the vertical direction,
ρr is the reference density, ρ is the mean density field and ρ′ is the perturbation of the density
about the mean field. The zonal, latitudinal (or meridional) and vertical components of the
3-dimensional velocity field u are u′, v′, and w′, respectively and p′ is pressure. Apostrophes
denote variables that are a function of x, y, z and t, and subscripts denote partial derivatives.
The earth’s rotation vector Ω is assumed to depend on both the vertical and horizontal
components, namely the Coriolis parameter f = 2Ω sin θ and fh = 2Ω cos θ, respectively.
In Eqs. (1) - (5), we have assumed that the horizontal component is constant, fh = 2Ω,
and f varies with latitude, f ≈ βy, for constant β (this is known as the rational β-plane
approximation [9]). Eqs. (3) and (5) can be combined by differentiating the former with
respect to t. Taking the square of the Brunt-Väisälä frequency, N2 = −g∂zρ/ρr, to be
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constant and assuming solutions of the form u′ = u(y)eikx+i`z−iωt, and similarly for v′, w′

and p′, Eqs. (1) - (5) can be simplified to

−iωu− βyv + 2Ωw = −ikp, (6)

−iωv + βyu = −∂yp, (7)

−iωw − 2Ωu = −i`p+
N2w

iω
, (8)

iku+ ∂yv + i`w = 0. (9)

In this section we are interested in waves with frequencies less than the Brunt-Väisälä
frequency, |ω| < N . We proceed by eliminating u, w and p in Eqs. (6) - (9), to derive the
following equation for v

(ω2−N2−4Ω2)
d2v

dy2
−4Ωi`βy

dv

dy
−k2

(
ω2

[
1 +

`2

k2

]
−N2

)
v+`2β2y2v−kβ

ω

(
ω2 −N2 +

2Ωωi`

k

)
v = 0.

(10)
The standard transformation v(y) = V (y)e−λy

2/2 is employed, with λ = − 2Ωi`β
ω2−N2−4Ω2 , to

eliminate the first-order derivative, and by rescaling y with ŷ = y
√
N2 − ω2 + 4Ω2, the

following simplified expression for the y-dependent component of the meridional velocity is
obtained, namely

d2V

dŷ2
− `2β2(N2 − ω2)ŷ2V + σV = 0, (11)

where σ = `2ω2 − (N2 − ω2)
(
k2 + kβ

ω

)
. If σ is defined as

σ = σn = (2n+ 1)`β
√
N2 − ω2, for n = 0, 1, 2, ..., (12)

then the solutions to Eq. (11) are given by parabolic cylinder functions of order n that
decay exponentially as |y| → ∞, namely

Vn((β/α)1/2ŷ) = 2−n/2e−βŷ
2/2αHn((β/α)1/2ŷ), (13)

where Hn is the nth physicists Hermite polynomial and α2 = 1
`2(N2−ω2)

. It is worth noting

that the local horizontal component of the earth’s rotation vector has no effect on the
dispersion relation Eq. (12). Once Vn(y) is known, the solutions for u, w and p are easily
found

u(y) =
i

k

(N2 − ω2 + 2Ωiω`
k

N2 − ω2(1 + `2

k2
)

)
dVn
dy
− βω`2y

k
(
N2 − ω2(1 + `2

k2
)
)Vn

 , (14)

w(y) =
ω

k

 2Ω− iω`
k(

N2 − ω2(1 + `2

k2
)
) dVn
dy

+
i`βy(

N2 − ω2(1 + `2

k2
)
)Vn

 , (15)

p(y) =
i

k

[
ω

k

(
N2 − ω2 + 4Ω2

N2 − ω2(1 + `2

k2
)

)
dVn
dy
−

(
N2 − ω2 − 2Ωiω`

k

N2 − ω2(1 + `2

k2
)

)
βyVn

]
. (16)
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The surface height is contoured in figure 1 for the n = 1 mode and is overlaid with the
horizontal velocity field (the u′, v′ field). The zonal velocities for the modes n = 1, 2, 3, 4
are compared in figure 2. The direction of propagation of waves is consistent with [8] and
[19]. Surfaces of constant phase for this system are given by

kx+ `z +
2Ω`βŷ2/2

ω2 −N2 − 4Ω2
= constant. (17)

It is clear that these constant phase surfaces are curved in the y, z plane, which differs
from the planar phase surfaces in the x, y plane of the shallow water equations. This is due
to the introduction of an imaginary component in the solutions from the local horizontal
component of the Coriolis force, a result consistent with that of [22].

2.2 Kelvin waves

We consider the unique case in which the meridional component of the velocity vanishes -
the analog of the equatorial Kelvin wave in the shallow water model. First, setting v = 0
in Eqs. (6) - (9), we proceed to eliminate u, w and p from these equations and solve for ω
algebraically, obtaining

ω2 =
N2k2

k2 + `2
, (18)

which yields a non-trivial solution provided ω 6= 2Ωik/`. The solutions u(y) and w(y)
expressed as functions of p(y) are

u(y) =
i`
(
2Ω− iω`

k

)
4Ω2 + N2`2

k2+`2

p(y), w(y) = −
ik
(
2Ω− iω`

k

)
4Ω2 + N2`2

k2+`2

p(y). (19)

Finally, p(y) is found by solving the following equation

dp(y)

dy
+ byp(y) = 0, where b = i`β

(
2Ω− iω`

k

)
4Ω2 + N2`2

k2+`2

. (20)

It is then clear that p(y) = ae−by
2/2, where a is a complex constant amplitude. The p′ is

contoured in figure 3, with overlay of a purely zonal velocity field in arrows. Note that the
meridional velocity is zero. Since we require that the waves decay meridionally north and
south of the equator, the real part of b must be positive. That is,

Re{b} =
ω`2β

k(4Ω2 + N2`2

k2+`2
)
> 0. (21)

A consequence of this restriction is that ω is positive, namely

ω =
Nk√
k2 + `2

. (22)

Defining the phase speed as cpx = ω/k and the group velocity as cgx = ∂ω/∂k, we find
that this Kelvin wave has a positive zonal phase speed and a positive group velocity, and
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(a) A westwards propagating Rossby wave with
small positive ω, k = −1.
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(b) An eastwards propagating inertio-gravity wave
with large positive ω, k = 1.
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(c) A westwards propagating inertio-gravity wave
with large positive ω, k = −1.

Figure 1: Pressure (surface height) in contours with overlay of the horizontal (u and v)
velocity field in arrows, for n = 1 modes (Rossby and inertio-gravity modes) and |ω| < N .
The values for the constants are ` = 1, β = 1, N = 3 and 2Ω = 1.

5



−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(a) n = 1

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(b) n = 2
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(c) n = 3
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(d) n = 4

Figure 2: Pressure (surface height) in contours with overlay of the horizontal (u and v)
velocity field in arrows, for a westwards propagating Rossby wave with increasing values of
n, |ω| < N and k = −1. The values for the constants are ` = 1, β = 1, N = 3 and 2Ω = 1.
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hence propagates eastwards. However, the phase speed and group velocity are not equal,
which means that the wave is dispersive; its shape is not conserved as the wave travels. By
contrast, in the shallow water case, Kelvin waves of equivalent height H are non-dispersive;
they all travel eastward with the phase speed c =

√
gH, which is equal to the group velocity.

We deduce that the additional effects of vertical propagation and stratification, which are
not present in the shallow water case, cause the Kelvin wave described by the dispersion
relation in Eq. (22) to be dispersive. This result was also found by [12]. As in section 2.1,
the local horizontal component of the Coriolis force has no effect on the dispersion relation
for the Kelvin wave.
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Figure 3: Pressure (surface height) in contours with overlay of the zonal velocity u field in
arrows, for the “Kelvin”-like solution, for which |ω| < N . The values for the constants are
k = 1, ` = 1, β = 1, N = 3 and 2Ω = 1.

2.3 Dispersion relation

The dispersion curves from Eqs. (12) and (22) are plotted in figure 4(a). The Kelvin wave
is often denoted the n = −1 mode, although its dispersion relation comes from Eq. (22)
rather than Eq. (12), as it corresponds to the unique case in which the meridional velocity
is equal to zero. For the case when n = 0 in Eq. (12), known as the mixed Rossby-gravity
mode or “Yanai” mode, two of the four solutions to the dispersion relation in Eq. (12)
are ω = ± Nk√

k2+`2
. In fact, these solutions are not permitted as in deriving the solution we

assumed that ω2(1 + `2/k2)−N2 6= 0. There are two other roots of the dispersion relation
when n = 0: one is positive and corresponds to an eastwards propagating equatorial inertio-
gravity wave, which resembles a Kelvin mode for large zonal scales; the other is negative
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and corresponds to a westwards propagating wave, which resembles a Rossby wave for small
zonal scales (see figure 4). The key differences between the Kelvin n = −1 and the eastwards
propagating inertio-gravity wave n = 0 is that the Kelvin wave is centered on the equator
and has no westwards-propagating component. In the shallow water case, an atmospheric
Kelvin wave has an eastwards phase speed of 10-20 m s−1, whereas an atmospheric inertio-
gravity wave has a typical eastwards phase speed of 25-50 m s−1 [27].

An analog to each of the waves found in figure 4(a) exists in the hydrostatic shallow
water equations [8; 19]. For the Kelvin mode, the shallow water dispersion relation is

ω = ck, (23)

where c =
√
gH is the gravity phase speed. When the primitive system in Eqs. (6) - (9) is

strongly stratified (i.e. |ω| � N), the dispersion relation in Eq. (12) reduces to the shallow
water dispersion relation for the higher order modes, namely,

ω2

c2
− k2 − βk

ω
= (2n+ 1)

β

c
, (24)

where c2 = N2/`2 is the analog of the shallow water phase speed. It is well known (e.g.
[8; 11]) that for the n = 0 mode the dispersion relation in Eq. (24) produces a root, ω = −ck,
which is spurious (this relation is assumed not to be true in the derivation of the solution).
This root corresponds to a westwards propagating gravity wave; if it were valid, the solution
for the meridional component of the velocity would no longer be equatorially-constrained.
The key difference between the shallow water dispersion relations and those of Eqs. (12)
and (22) is the presence of N2 in the latter, which is the upper limit of the inertio-gravity,
gravity and mixed Rossby-gravity mode frequencies. This is clearly illustrated in figures
4(a) and (b).

2.4 Evanescent waves

The results in the previous sections were obtained by assuming a traveling wave in the
vertical direction, ei`z. If we instead assume that waves decay exponentially from the height
z = 0 so that the vertical component of u′, v′, w′ and p′ is given by e−`z, and this time
assume that |ω| > N , we obtain the following solution also in terms of parabolic cylinder
functions

u(y) =
i

k

 ω2 −N2 + 2Ωω`
k

ω2
(

1− `2

k2

)
−N2

 dVn
dy
− βωl2y

k
(
ω2
(

1− `2

k2

)
−N2

)Vn
 , (25)

w(y) =
ω

k

− 2Ω + ω`
k(

ω2
(

1− `2

k2

)
−N2

) dVn
dy

+
β`y(

ω2
(

1− `2

k2

)
−N2

)Vn
 , (26)

p(y) =
i

k

[
ω

k

(
ω2 −N2 − 4Ω2

ω2(1− `2

k2
)−N2

)
dVn
dy
−

(
ω2 −N2 − 2Ωω`

k

ω2(1− `2

k2
)−N2

)
βyVn

]
, (27)

where

Vn(ŷ) =
2−n/2√

ω2 −N2 − 4Ω2
e−βŷ

2/2αHn((β/α)1/2ŷ)e−λŷ
2/2.
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Figure 4: Dispersion curves for: (a) the non-hydrostatic primitive system; and (b) for the
shallow water equations. In each figure, the red line is the Kelvin (n = −1) mode, refer to
Eqs. (22) and (23), respectively, the blue lines are the mixed Rossby-gravity (n = 0) mode,
refer to Eqs. (12) and (24), respectively, and the black lines are the Rossby (low-frequency)
and inertio-gravity (higher-frequency) (n = 1, 2, ...) modes, refer to Eqs. (12) and (24),
respectively. Values for the constants are N = 3, β = 1 and c = 2.

Here, y has been scaled such that ŷ = y
√
ω2 −N2 + 4Ω2 and the constants λ and α are

defined by

λ =
`β

ω2 −N2 − 4Ω2
, α2 =

1

`2(ω2 −N2)
.

The dispersion curve for this system is

ω2`2 − (ω2 −N2)(k2 − kβ

ω
)− (2n+ 1)β`

√
ω2 −N2 = 0, (28)

which is plotted in figure 5.

2.5 Evanescent Kelvin waves

Proceeding as in section 2.4 for the case in which the meridional component of the velocity
vanishes, we find that

ω2 =
N2k2

k2 − `2
, (29)

which is true provided ω 6= 2Ωk/` (otherwise, as previously, we obtain the trivial solution
for each of u′, w′ and p′). The solution for p(y) is

p(y) = µe−γy
2/2, where, γ = −

β`
(
2Ω + ω`

k

)
4Ω2 − N2`2

k2−`2
, (30)
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Figure 5: Dispersion curve for evanescent waves (|ω| > N). The red line is the Kelvin mode,
the blue lines are the n = 0 modes, and the black lines are the n = 1, 2, .. modes.

and µ is a complex constant. Since we require that the waves decay meridionally north and
south of the equator, we must have γ < 0. Then,

ω =
Nk√
k2 − `2

, (31)

which is plotted in figure 5, and we assume that k > ` > 0, in which case the waves
propagate eastwards and vertically upwards. The solutions u and w are

u(y) = −
`
(
2Ω + ω`

k

)
4Ω2 − N2`2

k2−`2
p(y), w(y) = −

ik
(
2Ω + ω`

k

)
4Ω2 − N2`2

k2−`2
p(y). (32)

2.6 Remarks on the primitive equations

There are some clear distinctions between our results and those obtained from the hy-
drostatic shallow water equations on an equatorial β-plane: (i) the addition of the local
horizontal component of the Coriolis force introduces an imaginary component in the solu-
tions to the primitive equations, adds curvature to the y, z phase planes in the case when
v′ 6= 0, and adds a phase shift to the wave structure in the case when v′ = 0; (ii) when a
traveling wave is assumed in the vertical, non-hydrostatic effects modify the behavior of the
inertio-gravity, gravity and mixed Rossby-gravity modes such that their frequencies are nec-
essarily less than the Brunt-Väisälä frequency and the converse is true for evanescent waves
in the vertical; and, (iii) the Kelvin mode no longer obeys the gravity phase speed c =

√
gH,

but becomes dispersive under non-hydrostatic effects. This concludes investigation of the
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linearized primitive equations; we now turn to the SNH-QGE III model, comparing the
linearized version of the model with the results from this section.

3 Quasi-geostrophic Model

We briefly outline the procedure used to derive the SNH-QGE III model analyzed in the
following sections. Readers are directed to [13] for a more comprehensive derivation. First,
consider the Boussinesq form of the dimensional Navier-Stokes equations in the following
form:

Dtu
∗ + 2Ωη̂̂η̂η × u∗ = − 1

ρr
∇∇∇p∗ + b∗ẑ, (33)

Dtb
∗ − g

ρr
w∗∂zp = 0, (34)

∇∇∇ · u∗ = 0. (35)

Here, Dt = ∂t + u · ∇∇∇ is the material derivative, u is the 3-dimensional velocity vector
u = (u, v, w), and b = −gρ′/ρr is the buoyancy anomaly field of density perturbations,
ρ′, about the mean density field ρ, where ρr is the reference density. The total planetary
rotation vector is 2Ωη̂̂η̂η. We consider only motions at the equator and invoke the β-plane
approximation with η̂̂η̂η = η̂̂η̂η0 − (y/R)η̂̂η̂η1, for planetary radius R, where η̂̂η̂η0 = (0, 1, 0) and
η̂̂η̂η1 = (0, 0,−1). The asterisk notation in the equations above denotes a dimensional quantity.
Let L be a characteristic length scale, and U a characteristic velocity and suppose that
T = L/U (we are interested in synoptic scale disturbances where typical values for L and U
are 50−100km and 0.4−1m s−1, respectively). We introduce the following non-dimensional
numbers

Rossby number: Ro =
U

2ΩL
, Reynolds number: Re =

UL

ν
,

Euler number: P =
δp

U2ρr
, Peclet number: Pe =

LU

κ
,

Froude number: Fr =
U

N0L
, Buoyancy number: Γ =

BL

U2
= g

∣∣∣∣δρρr
∣∣∣∣ LU2

,

Buoyancy anomaly: B = g

∣∣∣∣δρρr
∣∣∣∣ , Reference stratification: N0 =

√
g

Hρ
,

Reference density height: H−1
ρ =

|(∂zρ)r|
ρr

,

where δp is a dynamic pressure scale, N0 is a reference stratification, δρ is a density scale,
(∂zρ)r is a reference density gradient, ν is viscosity and κ is thermal diffusivity.

The system is non-dimensionalized and then scaled in the y-direction by introducing
the modulation scale y = AY Y . The β-effect also operates on this scale, so Aβy ∼ AβAY Y
and AβAY = O(Ro). We define ∇∇∇ → ∇∇∇⊥ + A−1

Y y∂Y , where ∇∇∇⊥ = x̂∂x + ẑ∂z. We are
interested in flows with characteristic time scales greater than a day, and as such, consider
small Rossby numbers (Ro ∼ 1/10). Write Ro ≡ ε� 1 and choose the spatial scales

AY = ε−1, Aβ = βε2, P = ε−1, Γ = 1,
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assuming that β ∼ O(1). Introducing asymptotic expansions of the form

u = u0 + εu1 + ε2u2 + ..., (36)

v = v0 + εv1 + ε2v2 + ..., (37)

w = w0 + εw1 + ε2w2 + ..., (38)

p = p0 + εp1 + ε2p2 + ..., (39)

b = b0 + εb1 + ε2b2 + ..., (40)

the leading order set yields geostrophic balance and continuity on the x, z plane, given by

η̂̂η̂η × u0 = −∇∇∇⊥p0, and, ∇∇∇⊥u = 0, (41)

respectively. The next order set is

D0
tu0 − βY η̂̂η̂η1 × u0 + η̂̂η̂η0 × u1 = −∇∇∇⊥p1 − ∂Y p0ŷ + b0ẑ, (42)

D0
t

(
b0 −

1

F2
ρ(z)

)
= 0, (43)

∇∇∇⊥ · u1 + ∂Y v0 = 0. (44)

Note that D0
t = ∂t+u ·∇∇∇⊥ and F2 = ΓFr2. For a closed system, we require that F = O(1).

Applying η̂̂η̂η0· and ∇∇∇× to Eq. (42), we find that

η̂̂η̂η0 · ∇∇∇p1 = η̂̂η̂η0 ·
(
−D0

tu0 + βY η̂̂η̂η1 × u0 − ∂Y p0ŷ + b0ẑ
)
, (45)

η̂̂η̂η0 · ∇∇∇u1 = D0
tωωω0 −ωωω0 · ∇∇∇⊥u0 − η̂̂η̂η0∂Y v0 −∇∇∇× (βY η̂̂η̂η1 × u0 − ∂Y poŷ + bzẑ) , (46)

the latter being the equation for the vorticity ωωω. We have introduced the large spatial
variable Y , which means that Eqs. (45) and (46) contain secular terms that grow with the
small variable y. Hence, we require a solvability condition that ensures the terms in Eqs.
(45) and (46) balance. In this case, the solvability conditions are obtained by averaging the
equations over η and forcing the right-hand sides to equal 0. Then, projecting Eq. (46) onto
η̂̂η̂η0, we obtain the following closed system that can be written in terms of the geostrophic
and ageostrophic streamfunctions, Ψ and Φ, respectively,

u0 = −∇∇∇× (Ψ0ŷ +∇∇∇× Φ0ŷ), p0 = Ψ0, (47)

D0
t∇∇∇2
⊥Ψ0 − (∂y + βy∂z)∇∇∇2

⊥Φ0 = −∂xb0, (48)

D0
t∇∇∇2
⊥Φ0 + (∂y + βy∂z)Ψ0 = 0, (49)

D0
t

(
b0 −

ρ(z)

F2

)
= 0. (50)

This is the SNH-QGE III model. The linearized version of this system is analyzed in the
following section and compared to the linearized primitive equations of section 2. In partic-
ular, we are interested in whether the system describes the same equatorially constrained
waves as the linearized primitive equations (the Kelvin, Rossby, mixed Rossby-gravity and
inertio-gravity modes).
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4 Investigation of the linearized quasi-geostrophic equations

The linearized reduced quasi-geostrophic model from Eqs. (48) - (50) can be written

∂0
t∇∇∇2
⊥Ψ− (∂y + βy∂z)∇∇∇2

⊥Φ = −∂xb, (51)

∂0
t∇∇∇2
⊥Φ + (∂y + βy∂z)Ψ = 0, (52)

∂0
t b− w

ρz(z)

F2
= 0. (53)

Eqs. (51) and (53) are combined by differentiating the former with respect to t. We write
the Brunt-Väisälä frequency as N2 = −ρz(z)/F2 and assume that it is constant. Consider
first the case when v =∇∇∇2

⊥Φ = 0 (from Eq. (47)). Ψ is found by solving ∂yΨ + βy∂zΨ = 0.
Assuming a solution of the form

Ψ(x, y, z, t) = Ψ̃(y)eikx+i`z−iωt, (54)

the y-dependent part of the solution is given by Ψ̃ = ae−i`βy
2/2, where a is a complex

constant. Note that this wave is not equatorially constrained; the solution Ψ does not
decay to 0 as y → ∞. The dispersion relation for this wave is similar to that in the
primitive equations for the case when |ω| < N , namely,

ω = ± Nk√
k2 + `2

, (55)

except that now there are two roots to the equation, representing eastwards and westwards
traveling waves.

We next consider the higher order mode waves, where the meridional velocity is no
longer zero. From Eq. (47), the zonal and vertical components of the velocity are u = ∂zΨ
and w = −∂xΨ, so that Eqs. (51) - (53) can be written as one equation in terms of the
variable Ψ, namely

∂tt∇2
⊥Ψ +N2∂xxΨ + ∂yyΨ + β2y2∂zzΨ + β∂zΨ + 2βy∂yzΨ = 0. (56)

We again assume a solution of the form given in Eq. (54), which yields the following
equation for Ψ

d2Ψ̃

dy2
+ 2i`βy

dΨ̃

dy
− β2`2y2Ψ̃ + i`βΨ̃ + k2

(
ω2

[
1 +

`2

k2

]
−N2

)
Ψ̃ = 0. (57)

Using the standard transformation Ψ̃(y) = ψ(y)e−λy
2/2, where λ = i`β, we obtain the

simplified equation

d2ψ

dy2
+ k2

(
ω2

[
1 +

`2

k2

]
−N2

)
ψ = 0. (58)

The waveguide solution that existed in the primitive equations using an equivalent ansatz -
traveling wave structures in the zonal and vertical directions - is not apparent in the reduced
quasi-geostrophic model. That is, the solution to Eq. (56), for both the Kelvin mode and
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the higher order modes, is no longer given in terms of a parabolic cylinder function that
decays exponentially north and south of the equator. What happens if we choose a different
ansatz? In particular, how does the solution change if we assume a standing wave form in
the vertical, rather than a traveling wave? We will run into difficulties if we simply use this
ansatz in form of the system given in Eq. (56), hence to proceed, we rescale Eq. (56) in y
and perform an asymptotic expansion about the small parameter β.

Recall that the y coordinate in Eq. (56) was scaled in section 3 such that y = A−1
y y∗,

where y∗ was the unscaled meridional variable, and with Ay = 1/Ro. In what follows, we
introduce a new scaling y = β−1/2Y , where β is assumed to be small enough such that the
distinguished limits in the asymptotic expansion of section 3 are unchanged. This yields
the following rescaled equation for Ψ

(∂tt∇2
⊥ +N2∂xx)Ψ + β

(
∂Y Y + Y 2∂zz

)
Ψ + β (∂z + 2Y ∂Y z) Ψ = 0. (59)

The slow time τ = βt is introduced along with the expansion

Ψ(x, Y, z, t, τ) = Ψ0 + βΨ1 + ... (60)

Note that because we have both a fast and a slow time in the system now, we expect
the dispersion relation to involve both a fast and a slow frequency, denoted ωf and ωs,
respectively. This time we assume a standing wave form in the vertical

Ψ0(x, Y, z, t, τ) ∝ ψ0(Y, τ)eikx−iωf t sin (`z), (61)

with the boundary conditions w = 0 at z = 0, H. At leading order, O(β0), this expansion
yields [

∂tt∇2
⊥ +N2∂xx

]
Ψ0 = 0, (62)

from which we derive an expression for the fast frequency,

ωf = ± Nk√
k2 + `2

. (63)

This is the leading order frequency of the linearized system. At next order, O(β), we obtain[
∂tt∇2

⊥ +N2∂xx
]

Ψ1 = −2∂tτ∇2
⊥Ψ0 −

(
∂Y Y + Y 2∂zz

)
Ψ0 − (∂z + 2Y ∂Y z) Ψ0. (64)

The linear operator L = ∂tt∇2
⊥ + N2∂xx is self-adjoint, and, by orthogonality of sin `z

and cos `z, the last two terms involving first derivatives with respect to z vanish from the
solvability condition, leaving

〈Ψ0,
[
−2∂t,τ∇2

⊥ − (∂Y Y + Y 2∂zz)
]

Ψ0〉 = 0. (65)

Taking into account the ansatz from Eq. (61), and assuming that ψ0 is separable in τ and
Y such that ψ0(Y, τ) = ψ̃0(Y )eiωsτ , we obtain the following expression for ψ̃0

d2ψ̃0(Y )

dY 2
− `2Y 2ψ̃0(Y ) + 2ωfωs(k

2 + `2)ψ̃0(Y ) = 0. (66)
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Eq. (66) can be solved with parabolic cylinder functions, and is equatorially constrained
when

2ωfωs(k
2 + `2) = (2n+ 1)`, for n = 0, 1, 2, ..., (67)

where ωf is the fast frequency defined in Eq. (63). The dispersion relation for the reduced
system can be written as ω = ωf + βωs, leading to the following expression for ω in terms
of the horizontal and vertical wavelengths

ω =
Nk√
k2 + `2

+
β(2n+ 1)`

2Nk
√
k2 + `2

. (68)

How does Eq. (68) compare to the dispersion relations of the primitive equations,
namely Eqs. (12) and (22)? Substituting ω = ωf + βωs into Eq. (12), we expand in terms
of the small parameter β. Then, the leading order expression is identical to Eq. (63) and
at next order in β we obtain

2ωfωs(k
2 + `2) = (2n+ 1± 1)

N`2√
k2 + `2

. (69)

The main differences between Eq. (67) from the exact system and Eq. (69) from the reduced
system are the presence of N , `/

√
k2 + `2 and the ± term on the right-hand side of Eq. (69).

The ± term indicates that the reduced system has filtered out modes that are even with
respect to the equator (n = 1, 3, 5, ...). It is likely that the former two terms are a result of
the scalings used to derive the quasi-geostrophic system from [13] (for example, that N is a
result of the time scaling employed and that k is scaled such that k = O(1) in the reduced
system corresponds to k � 1 in the primitive equations so that `2/

√
k2 + `2 ≈ `). In this

case, and taking into account the limits of the reduced model, the dispersion relations in
Eq. (12) and (68), and indeed the primitive and reduced systems, are then equivalent. We
now turn to the fully nonlinear quasi-geostrophic model.

5 Investigation of the nonlinear quasi-geostrophic model

This section introduces two methods of analyzing the nonlinear quasi-geostrophic system
in Eqs. (48) - (50): one method involves a similar scaling argument to that presented in
section 4 for a constant Brunt-Väisälä frequency, while the other method is not restricted
to small values of β and assumes a non-constant vertical stratification.

5.1 Constant Brunt-Väisälä frequency

Consider the nonlinear reduced equatorial system in Eqs. (48) - (50) from section 3. Follow-
ing [2], we transform Eqs. (48) - (50) to a frame traveling with the wave speed c eastwards,
by defining ξ = x−ct. We are interested in longwave solutions in the zonal direction that do
not change the distinguished limits in the scaling arguments of section 3, namely X = εξ,
where ε is a small number. We also introduce the following scalings:

Ψ = εΨ, Φ = ε2Φ, b = εb.
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Proceeding as in section 4, y is rescaled by y = β−1/2Y and β by β = ε4β̂. Eqs. (48) - (50)
simplify to

−∂Xb = −c(ε2∂2
X + ∂2

z )∂XΨ− ε2(∂Y + β̂Y ∂z)(ε
2∂2
X + ∂2

z )Φ

+ ε
[
∂zΨ(ε2∂2

X + ∂2
z )∂XΨ− ∂XΨ(ε2∂2

X + ∂2
z )∂zΨ

]
, (70)

0 = −c(ε2∂2
X + ∂2

z )∂XΦ + (∂Y + β̂Y ∂z)Ψ

+ ε
[
∂zΨ(ε2∂2

X + ∂2
z )∂XΦ− ∂XΨ(ε2∂2

X + ∂2
z )∂zΦ

]
, (71)

0 = −c∂Xb+ ε∂zΨ∂Xb− ε∂XΨ∂zb− ∂XΨN2. (72)

We make the assumption that the meridional velocity is of the same order as the zonal and
vertical velocities and expand the variables Ψ, Φ, b and the phase speed c as follows

Ψ = Ψ0 + εΨ1 + ..., (73)

Φ = Φ0 + εΦ1 + ..., (74)

b = b0 + εb1 + ..., (75)

c = c0 + εc1 + ... (76)

The expansions in Eqs. (73) - (76) are substituted into Eqs. (70) - (72), yielding the
leading order set, written as a system in terms of Ψ and Φ only

N2

c2
0

Ψ0X + Ψ0Xzz = 0, (77)

−c0Φ0Xzz + (∂Y + β̂Y ∂z)Ψ0 = 0, (78)

which, when the boundary conditions w = −Ψ0X = 0 on z = 0, H are satisfied, yields

Ψ0 = A0(X,Y ) sin
( π
H
z
)
. (79)

This wave is a standing wave in the vertical, which results from the ansatz we have assumed
here, which is analogous to that of the linear case in Eq. (61). Suppose that

Φ0 = B(X,Y ) sin
( π
H
z
)

+ C(X,Y ) cos
( π
H
z
)
. (80)

Substituting this into Eq. (78), the amplitudes B and C can be expressed in terms of A0,
namely

CX = − β̂HY
c0π

A0, BX = − H2

c0π2
A0Y . (81)

We are interested in the meridional and zonal structure of the amplitude of Ψ, and partic-
ularly how it is modified by nonlinearities. To this end, we proceed to next order.

The first order equations written in terms of Ψ and Φ are

c2
0Ψ1Xzz +N2Ψ1X = c0c1

π2

H2
A0X sin

( π
H
z
)

+ c1
N2

c0
A0X sin

( π
H
z
)

−A0XDz sin
( π
H
z
)
, (82)

⇒ (N2 + c2
0∂

2
z )Ψ1X = 2c0c1

π2

H2
A0X sin

( π
H
z
)
. (83)
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The linear operator (N2 + c2
0∂

2
z ) is self-adjoint, which leads to the solvability condition〈

Ψ0, 2c0c1
π2

H2
A0X sin

( π
H
z
)〉

= 0. (84)

We deduce that c1 = 0 and the first order equations are simplified to

N2

c2
0

Ψ1X + c0Ψ1Xzz = 0, (85)

c0Φ1Xzz − (∂Y + β̂Y ∂z)Ψ1 = Ψ0zΦ0Xzz −Ψ0XΦ0zzz. (86)

The former equation is solved by imposing the boundary conditions w = −Ψ0X = 0 on z =
0, H, yielding Ψ1 = A1(X,Y ) sin

(
π
H z
)
. Finally, Eq. (86) is solved for Φ1, and integrating

twice with respect to z, we find

Φ1X = − π

8c0H

[
(A0XB −A0BX) sin

(
2π

H
z

)
+ (A0XC −A0CX) cos

(
2π

H
z

)]
− H2

c0π2
A1Y sin

( π
H
z
)
− H

c0π
A1βY cos

( π
H
z
)
− π3

2c0H3
(A0XC +A0CX)

(
z2

2
+Dz + E

)
,

where

− π3

2c0H3
(A0XC +A0CX)E =

π

8c0H
(A0XC −A0CX) +

H

c0π
A1βY, (87)

π3

2c0H3
(A0XC +A0CX)D =

2

c0π
A1βY −

π3

4c0H2
(A0XC +A0CX). (88)

We expect nonlinearities to appear at second order, so proceed with our expansions. At
second order, there is cancellation of the nonlinear terms such that Ψ2 can be written

c0Ψ2Xzz +
N2

c0
Ψ2X =

(
2c2

π2

H2
A0X − c0A0XXX

)
sin
( π
H
z
)

+
π2

H2

(
BY sin

( π
H
z
)

+ CY cos
( π
H
z
))

− π3

H3

(
−β̂Y B cos

( π
H
z
)

+ β̂Y C sin
( π
H
z
))

. (89)

On applying the solvability condition 〈Ψ0X , RHS〉 to Eq. (89) we find that

2c2
π2

H2
A0X − c0A0XXX +

π2

H2
BY −

π3

H3
β̂Y C = 0. (90)

Eq. (81) defines CX and BX in terms of A0. This is substituted into the above equation,
and, after differentiating with respect to X, the following linear equation for the amplitude
A0 is obtained

2c2
π2

H2
A0XX − c0A0XXXX −

1

c0
A0Y Y +

π2

c0H2
β̂2Y 2A0 = 0. (91)

By assuming A0 is separable, i.e. A0(X,Y ) = F (X)G(Y ), we derive equations for F (X)
and G(Y ) that involve a separation constant µ. In a similar manner to that presented in
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preceding sections, the equation for G(Y ) can be solved in terms of equatorially-constrained
parabolic cylinder functions only when the separation constant is defined as µ = µn =
π
H β̂(2n+1), for the positive integer n. The equation for F (X) is the linear Swift-Hohenberg
equation. We assume that the solution F (X) is periodic in X, such that

2c2
π2

H2
k̂2 + c0k̂

4 +
µn
c0

= 0, (92)

which is the analog of the linear dispersion relation from the preceding section 4, this time
solving for the phase speed c2 in terms of the zonal wavenumber k. This result matches
that of the linear reduced theory, Eq. (67), when µn = π

H β̂(2n + 1). We proceed to solve
Eq. (89) for Ψ2. From the solvability condition 〈Ψ0X , RHS〉 applied to Eq. (89), terms
involving sin

(
π
H z
)

disappear due to orthogonality, and we obtain the following equation for
Ψ2

Ψ2Xzz +
N2

c2
0

Ψ2X =
π2

c0H2

(
CY + β̂Y B

π

H

)
cos
( π
H
z
)
. (93)

Once again taking into account the boundary conditions for Ψ on z = 0, H, the solution to
Eq. (93) is Ψ2 = Wz sin

(
π
H z
)
, provided that on substitution into Eq. (93) the following

relation between W and A holds

WXX = − β̂

2c2
0

(A0 + 2Y A0Y ). (94)

Here we have also made use of Eq. (81). We were expecting that the second order solvability
condition would introduce nonlinearity in our expression for the amplitude A0. Instead, due
to the scalings chosen, the nonlinearities at this order cancelled leaving the linear Swift-
Hohenberg equation once the Y -dependent part had been accounted for by the appropriate
parabolic cylinder function. It is therefore necessary to proceed to third order in ε to retrieve
the nonlinear adjustment to the amplitude equation.

At third order, we find the following equation for Ψ

N2

c0
Ψ3X + c0Ψ3Xzz =

(
2c3

π2

H2
A0X − c0A1XXX + 2c2

π2

H2
A1X

)
sin
( π
H
z
)

− (∂Y + β̂Y ∂z)Φ1zz +
π

2H
(A0A0XXX −A0XA0XX) sin

(
2π

H
z

)
+
π2

H2

[
A0WX

(
1 + cos

(
2π

H
z

))
+A0XW

(
1− cos

(
2π

H
z

))]
.

The solvability condition yields

0 = 2c3
π2

H2
A0XX − c0A1XXXX + 2c2

π2

H2
A1XX

+
2π2

c0H3
(A0XC +A0CX)Y +

2π2

3c0H3
(A0XC −A0CX)Y −

1

c0
A1Y Y

+ β̂Y
4π3

3c0H4
(A0XB −A0BX) +

π2

c0H2
β̂2Y 2A1

+
8επ

3H2
(A0WX + 2A0XW )X . (95)
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Writing A0 and A1 by Ã = A0 + εA1 + ..., and hence B and C from Eq. (81) in terms of
Ã, we employ the transformation Ã = ΘXX and combine Eqs. (91) and (95) to obtain the
following equation for Θ

0 = 2(c2 + εc3)
π2

H2
ΘXXXX − c0ΘXXXXXX −

1

c0
ΘXXY Y +

π2

c0H2
β̂2Y 2ΘXX

− 4επβ̂

3c2
0H

2
(2YΘXXXΘX + YΘ2

XX)Y

− 4επβ̂

3c2
0H

2
(YΘXXXΘXY − YΘXXΘXXY )

− 4επβ̂

3c2
0H

2
(ΘXX [ΘX + 2YΘXY ] + 2ΘXXX [Θ + 2YΘY ])X . (96)

Here the constant c3 is the nonlinear correction to the phase speed. The constants c0 and
c2 are defined as

c0 =
NH

π
, c2 = −NH

3

2π3
k̂2 − β̂(2n+ 1)

2Nk̂2
.

Note the appearance of the small parameter ε in Eq. (96), which implies that the nonlinear
terms are small compared to the linear terms from the leading order expansion.

Suppose Θ is separable in X and Y , namely Θ(X,Y ) = F (X)G(Y ). Then, from the
homogeneous part of Eq. (96) (the first line), we find equations for F (X) and G(Y ) that
involve a separation constant γ. As previously, provided that γ = γn = (2n + 1)πβ/H, an
equatorially-constrained solution for G(Y ) in terms of parabolic cylinder functions exists,
and is given by

G(Y ) = Gn(Y ) = 2−n/2e−πβ̂Y
2/2HHn

√πβ̂

H
Y

 , for n = 0, 1, 2, ..., (97)

where Hn is the Hermite polynomial. We wish to remove the Y -dependence of Eq. (96) to
investigate the effect of nonlinearities on the zonal wave structure. Consider the simplest

choice of function for Gn, that is, Gn = G0 = e−πβ̂y
2/2H . Multiplying each term in Eq. (96)

by G0 and integrating with respect to Y from −∞ to ∞ yields

θηηηηηη + bθηηηη − θηη + 4θηθηηη + 3θ2
ηη + 2θηηηηθ = 0, (98)

which is a new equation that is similar to the conserved Swift-Hohenberg (SH) equation

[16; 25]. Here, θ(η) and η are the rescaled F (X) andX and b = −2(c2+εc3)π
3/2α
H2 is a positive

constant. Eq. (98) has the symmetry η → −η, θ → θ. We are particularly interested in
finding localized solutions to Eq. (98), which have been found in the conserved SH equation
(e.g. [20]). Some solutions to Eq. (98) obtained using Neumann boundary conditions are
illustrated in figure 6. It is important to note that these are not localized solutions as they
depend on the boundary conditions even when the domain becomes large. A future work
will investigate possible localized solutions to Eq. (98).
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Figure 6: Some solutions to the amplitude equation, Eq. (98), for different values of b.
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If we were to choose a parabolic cylinder function that was even with respect to the
equator, i.e Gn for n = 1, 3, 5, ..., rather than an odd mode, such as the G0 chosen above,
the nonlinearities would cancel. As in [2], this does not mean that the nonlinear terms are
identically zero; rather, choosing a parabolic cylinder function that is even with respect
to the equator forces a symmetry that leads to cancellation of the nonlinear terms. It is
likely that an alternative scaling for the reduced system exists in which the even modes are
retained.

So far we have assumed that the Brunt-Väisälä frequency N is constant and have in-
troduced the scalings such that Eq. (98) applies only in the small β limit. In the following
section we return to Eqs. (48) - (50), this time assuming that that the Brunt-Väisälä fre-
quency varies with height, which allows us to derive a nonlinear equation for the amplitude
of the streamfunction that does not require the imposition of a small β limit.

5.2 Non-constant Brunt-Väisälä frequency

Consider Eqs. (48) - (50) once more, again transforming to the moving frame ξ = x−ct and
assuming long waves in the zonal direction X = εξ. This time we introduce the following
scalings

Ψ = ε2Ψ, Φ = ε3Φ, b = ε2b, (99)

where y = β−1/2Y and β1/2 = β̂1/2ε2. The physical interpretation of these scalings is that
the meridional current is small compared with the zonal and vertical equatorial currents.
Eqs. (48) - (50) become

−∂Xb = −c(ε2∂2
X + ∂2

z )∂XΨ− ε2β̂1/2(∂Y + Y ∂z)(ε
2∂2
X + ∂2

z )Φ

+ ε2∂zΨ(ε2∂2
X + ∂2

z )∂XΨ− ε2∂XΨ(ε2∂2
X + ∂2

z )∂zΨ, (100)

0 = −c(ε2∂2
X + ∂2

z )∂XΦ + β̂1/2(∂Y + Y ∂z)Ψ

+ ε2∂zΨ(ε2∂2
X + ∂2

z )∂XΦ− ε2∂XΨ(ε2∂2
X + ∂2

z )∂zΦ, (101)

0 = −c∂Xb+ ε2∂zΨ∂Xb− ε2∂XΨ∂zb− ∂XΨN2. (102)

We assume the following expansions about the small parameter ε

Ψ = Ψ0 + εΨ1 + ..., (103)

Φ = Φ0 + εΦ1 + ..., (104)

b = b0 + εb1 + ..., (105)

c = c0 + εc1 + ..., (106)

and obtain the leading order set in terms of Ψ and Φ

N2

c0
Ψ0X + c0Ψ0Xzz = 0, (107)

−c0Φ0Xzz + β̂1/2(∂Y + Y ∂z)Ψ0 = 0. (108)

Suppose thatN is a function of z, which takes the formN(z) = N0e−z, for some constantN0.
Assume also that Ψ0(X,Y, z) is separable, writing Ψ0 = A0(X,Y )J(z), and let z = − ln t.
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Then, the solution to J is simply the zeroth mode Bessel function of the first kind, J0,
defined by the equation

1

t

d

dt

(
t
dJ0

dt

)
= −N

2
0

c2
0

J0. (109)

We proceed to second order in ε and obtain the following set of equations

−b2X + c0Ψ2Xzz = −c0Ψ0XXX − c2Ψ0Xzz − β̂1/2(∂Y + Y ∂z)Φ0zz

+ Ψ0zΨ0Xzz −Ψ0XΨ0zzz, (110)

c0Φ2Xzz − β̂1/2(∂Y + Y ∂z)Ψ2 = −c0Φ0XXX − c2Φ0Xzz + Ψ0zΦ0Xzz −Ψ0XΦ0zzz,(111)

−b2X =
N2

c0
Ψ2X +

c2

c0
b0X −

1

c0
Ψ0zb0X +

1

c0
Ψ0Xb0z. (112)

Substituting Eq. (112) into Eq. (110) and using Eq. (108) we obtain the solvability
condition

0 = −c2
0B0XXXX

∫ ∞
0

J2
0 (z)dz +

2c2N
2
0

c0
B0XX

∫ ∞
0

e−2zJ2
0 (z)dz − 4N2

0

c0
B0XXB0X

∫ ∞
0

e−2zJ3
0 (z)dz

− β̂Y 2B0

∫ ∞
0

d2J0(z)

dz2
J0(z)dz − β̂(1 + 2Y ∂Y )B0

∫ ∞
0

dJ0(z)

dz
J0(z)dz

− β̂B0Y Y

∫ ∞
0

J2
0 (z)dz, (113)

where B0 =
∫
A0dX (note that the operator [N2 + c2

0∂
2
z ] is self-adjoint and we assume that

B0X 6= 0). Again using the transformation z = − ln t, this becomes

0 = −c2
0B0XXXX

∫ 1

0

1

t
J2

0 (ln t)dt+
2c2N

2
0

c0
B0XX

∫ 1

0
tJ2

0 (ln t)dt− 4N2
0

c0
B0XXB0X

∫ 1

0
tJ4

0 (ln t)dt

− β̂

2
Y 2B0

∫ 1

0

1

t

[
J0(ln t)J2(ln t)− J0(ln t)2

]
dt− β̂(1 + 2Y ∂Y )B0

∫ 1

0

1

t
J0(ln t)J1(ln t)dt

− β̂B0Y Y

∫ 1

0

1

t
J2

0 (ln t)dt. (114)

In this form the integrals involving the factor 1/t are infinite in the interval t = [0, 1]. Hence,
we restrict the interval of integration further such that we integrate from t = b to t = 1,
where b = e−j0,1 and j0,1 is the first root of the Bessel function of the first kind J0(z). This
is equivalent to integrating from z = 0 to z = j0,1. Proceeding in this manner, we obtain

0 = −c2
0B0XXXX 2F3

(
1

2
,
1

2
; 1, 1,

3

2
;−(j0,1)2

)
j0,1 +

2c2N
2
0 r

c0
B0XX −

4N2
0 s

c0
B0XXB0X

+
β̂

2
Y 2B0

[
2F3

(
1

2
,
1

2
; 1, 1,

3

2
;−(j0,1)2

)
j0,1 −

1

6
2F3

(
3

2
,
3

2
; 1,

5

2
, 3;−(j0,1)2

)
(j0,1)3

]
− β̂B0Y Y 2F3

(
1

2
,
1

2
; 1, 1,

3

2
;−(j0,1)2

)
j0,1 +

β̂

2
(1 + 2Y ∂Y )B0. (115)

Here, 2F3 is the generalized hypergeometric function and r ≈ 0.4171, s ≈ 0.3756. We write
Eq. (115) more compactly as

−a1B0XXXX + a2B0XX − a3B0XXB0X + a4Y
2B0− a5B0Y Y + a6(1 + 2Y ∂Y )B0 = 0, (116)
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where the constants a1 to a6 are positive. Then, by introducing the scalings S = f1B0,
ξ = f2X and η = f3Y , we obtain the simpler equation

Sξξξξ − Sξξ + SξξSξ + α1Sηη − (η2 + α2 + 2α2η∂η)S = 0. (117)

The constants α1 = a5f
4
2 /a1f

2
3 and α2 = a6f

4
2 /a1 are functions of β̂, N0 and the phase

speeds c0 and c2. Eq. (117) is a generalization of the Kadomtsev-Petviashvili (KP) equation
[14], with the additional terms 2ηSη, η

2S and Sηη. As with the SH equation, the KP
equation permits localized solutions (e.g. [15; 18]). It is possible to remove the η dependence
in Eq. (117) such that it is an ODE in ξ only. We assume that S is separable, e.g. S(ξ, η) =
E(ξ)D(η), where E(ξ) and D(η) are related by a separation constant γ, and find that the
solution to D(η) from the homogeneous part of Eq. (117) (i.e. ignoring the nonlinear term)
can be expressed in terms of parabolic cylinder functions. When γ = γn = (2n + 1)α2 for
the nonnegative integer n, then D is equatorially constrained. Choosing the lowest order
mode, D0, we multiply Eq. (117) by D0 and integrate from −∞ to ∞ to remove the η
dependence. Finally we rescale E(ξ) to obtain the following equation

Eξξξξ − Eξξ + EξξEξ + κE = 0. (118)

Like Eq. (98), Eq. (118) contains only the one parameter κ = α2(2 −
√

2) + α1α2(
√

2 −
1) −

√
2α1/α2(α1 − 1). Some solutions to Eq. (118) using Neumann boundary conditions

are illustrated in figure 7. As with Eq. (98), these are not true localized solutions as they
depend on the boundary conditions even for a large domain.

In this section we have undertaken a preliminary investigation of the nonlinear quasi-
geostrophic model. Two alternative scalings have been presented that result in two different
amplitude equations when the stratification is assumed to be constant and a function of
height, respectively. The benefit of the latter scaling is that it does not restrict the resulting
equation to the small β limit. As for Eq. (98), a future work will further investigate localized
solutions to Eq. (118).

6 Conclusion

The aim of this work was to further that of Boyd in understanding the dynamics and
evolution of nonlinear equatorial waves in the context of a reduced, quasi-geostrophic model.
The model was derived based on the assumption that the Rossby number is small at the
equator, which is perfectly valid when both the vertical and horizontal components of the
Earth’s rotation are taken into account. Non-hydrostatic effects and the vertical component
of momentum were also included in the model. The derivation assumed that the meridional
length scale is large compared to the zonal and vertical length scales, such that the quasi-
geostrophic balance in this model was between the u and w components of the momentum.

In the first section, the results from the non-hydrostatic, linearized primitive equations
were contrasted with those of the shallow water equations. The horizontal component of
the Earth’s rotation added curvature to the y, z phase planes and introduced an imaginary
component into the solutions. Furthermore, non-hydrostatic effects modified the dispersion
relation for the inertio-gravity, Kelvin and mixed Rossby-gravity modes, such that their
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Figure 7: Some solutions to the amplitude equation, Eq. (118), for different values of κ.
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frequencies were necessarily less than or greater than the Brunt-Väisälä frequency in the
case of vertical traveling and standing waves, respectively.

In contrast with the linearized primitive equations, when a vertical traveling wave solu-
tion was assumed in the linearized quasi-geostrophic model, the system was not equatorially-
constrained. Rather, a vertical standing wave with rigid lid boundary conditions was re-
quired to produce an equatorially-constrained wave. This result held in the small β limit,
under which the even modes with respect to the equator were filtered out. It is likely that an
alternative scaling of the linearized quasi-geostrophic model that includes the even modes
can be found.

Multiple scalings of the nonlinear quasi-geostrophic model were undertaken. The first
involved a small β limit, and under the assumption of constant stratification, equatorial
waves behaved according to a generalized Swift-Hohenberg equation. Under an alternative
scaling that did not require β to be small, and with the assumption that the stratifica-
tion depended on height, equatorial waves behaved according to a generalized Kadomtsev-
Petviashvili equation. Solitary wave solutions to the conserved Swift-Hohenberg equation
and the Kadomtsev-Petviashvili equation have been found in previous studies and are a
motivation for further work on the equations presented here.

This work is a first step in describing the effects of nonlinearity on equatorial waves in
a context apart from the shallow water equations. It is acknowledged that many questions
remain to be addressed with respect to the quasi-geostrophic model: for example, what
rescaling will yield the even modes, and what effect does changing the vertical dependence
of the Brunt-Väisälä frequency have? One clear benefit of this work on the quasi-geostrophic
model is that it hints at appropriate methods for analyzing the nonlinear primitive equa-
tions, which will be investigated in a subsequent work.
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