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1 Pinning region (SH23)

Recall that the Swift-Hohenberg (SH) equation has multiple steady states in a ‘snakes-and-
ladders’ structure, which is contained in a region of r called the snaking or pinning region.
The width of this region can be understood on the basis of a geometrical picture of phase
space behavior and a physical (“intuitive”) picture in terms of front pinning. The pictures
are complementary as well as useful.

1.1 Mathematical explanation of the pinning region

The time-independent SH equation is of fourth order in space,

uxxxx + 2q2
cuxx + (q4

c − r)u = f(u) (1)

so the phase space is four-dimensional. This equation conserves the spatial Hamiltonian

H = −1
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(
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)
u2 + q2

cu
2
x −

1

2
u2
xx + uxuxxx −

∫ u

0
f(v)dv, (2)

i.e., dH/dx = 0. Since the homogeneous state uxxx = uxx = ux = u = 0 corresponds to
H = 0 any homoclinc orbit connecting this state, hereafter O, to itself must lie in the level
set H = 0, i.e., in a three-dimensional surface in four dimensions. As explained in lecture 6
to find such homoclinics it is advantageous to look for a heteroclinic cycle between O and a
periodic orbit γ that also lies in H = 0. Near this cycle we expect to find orbits homoclinic
to O that start from O and wind a finite number of times around γ before returning to O.

Because of translation invariance periodic orbits of Eq. (1) are not isolated – for each H
there is a continuous family of such orbits. In the following we pick H = 0 and select one
representative from this family, for example by assigning the origin x = 0 to the maximum
value of u along the orbit. We call the resulting orbit γ. A point on this orbit with phase φ
relative to x = 0, γ(φ), will be a fixed point of a“time-T”map, where T is the (spatial) period
of the orbit, and we may pick φ to correspond to a point of symmetry on γ, for example
φ = 0 [15]. Note that T depends in general on H. By construction the “time-T” map is two-
dimensional and has two fixed points, O and γ(φ). The result of repeated application of the
“time-T” map can therefore be represented in a plane, as shown in fig. 1. The figure shows
the two fixed points as solid black points; these lie on a green line representing solutions with
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Figure 1: A cartoon of the stable and unstable manifolds for the fixed points O and γ(φ)
in the planar representation, at different values of µ in the pinning region. From [15, 2].

the symmetry u(−x) = u(x). The figure shows the intersections of the stable and unstable
manifolds of O, labeled W s,u(O), with the surface H = 0. Both are one-dimensional and are
shown in blue, and consist of points that approach O after an infinite number of backward
and forward applications of the map. The intersection of corresponding (three-dimensional)
center-stable and center-unstable manifolds of γ with H = 0 are shown in brown and are
also one-dimensional. Since we are dealing with a discrete map these manifolds consist
of discrete sequences of points obtained by applying the map to different points in the
stable and unstable manifolds of these fixed points. Because of the discrete nature of the
resulting two-dimensional dynamics we expect the unstable manifold W u(O) to intersect
transversally with the center-stable manifold W s(γ) (top right panel in the figure). The
point of intersection is simultaneously on both manifolds implying that forward iterations
take it to γ(φ) while backward iterations take it to O, i.e., such a point is a heteroclinic
point. Each image of this point, forward or backward, will also be a heteroclinic point since
it must again lie on an intersection of these manifolds. Since the forward iterates accumulate
on γ the unstable manifold W u(O) must execute increasingly wild gyrations near γ(φ) as
indicated in the figure. This is a consequence of the Hamiltonian nature of Eq. (1) which
implies that the “time-T” map is area-preserving. Thus the areas of the (primary) lobes are
all the same and since the foot of the lobes shrinks towards γ(φ) their length must grow
in proportion. Spatial reversibility implies that W s(O) undergoes identical behavior and
hence that W u(O) and W s(O) must intersect. The primary intersections must lie on the
green curve and hence correspond to solutions with u(−x) = u(x) that lie simultaneously
in W u(O) and W s(O) (large red dot). Such solutions represent symmetric homoclinic
solutions of Eq. (1). Observe that since the primary intersections accumulate on γ(φ) there
will in fact be an infinite number of such homoclinic solutions corresponding to symmetric
localized structures of ever larger length. The figure also indicates that associated with each
primary intersection there is a pair of secondary intersections (small red dots, bottom right
panel in the figure). These do not lie in the green line and hence correspond to asymmetric
homoclinic points, i.e., the rung states of lecture 7.

Figure 1 shows that the heteroclinic tangle described above is created, as the bifurcation
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Figure 2: A cartoon of the motion of a front separating phase 1 (liquid) from phase 2 (gas)
either side of the Maxwell point F (1) = F (2) (bottom panels). The quantity F represents
the free energy. The front is stationary only at the Maxwell point (middle panel). The top
panel shows the case when phase 2 is a crystalline solid.

parameter µ (equivalently r) increases, at the point of first tangency between W u(O) and
W s(γ) (top left panel) and destroyed at the point of last tangency (bottom left panel).
Thus the snaking region is bounded on either side by the location of tangencies between
these manifolds and no (long) localized states are present outside of the parameter interval
between these two tangencies [2, 15].

An essentially identical picture applies to reversible but non-Hamiltonian systems since
the fundamental properties of the heteroclinic tangle depend only on the presence of a
transversal intersection between W u(O) and W s(γ) together with spatial reversibility. For
this reason the geometrical picture sketched here has a far greater applicability than one
may imagine at first sight. This is a consequence of the fact that a transversal intersection
between manifolds cannot be destroyed by small perturbations in the parameter µ, i.e., it
is a consequence of structural stability.

1.2 Physical explanation of the pinning region

Consider now the energetics of the system. The Lyapunov function F (defined in lecture 7)
can be thought of as the free energy of the system. This allows us to compare the energy
of the zero state and of the periodic state. Equilibria correspond to critical points of F ,
and without loss of generality we can define F = 0 at u = 0. We can calculate F for
the periodic orbit with onset wavenumber qc, which is a well-defined integral, and find the
point where F = 0 for the periodic orbit. This construction define the “Maxwell point”
r = rM by analogy with standard phase transitions, for example, a transition between a
gas and a liquid (fig. 2). At a critical temperature Tc (equivalently rc) the liquid (phase
1) and gas (phase 2) coexist with equal energy and the insertion of a front separating the
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Figure 3: (a) The two types of fronts ξ1 (unstable) and ξ2 (stable) in SH23. (b) A section
of the bifurcation diagram. (c) Three different localized states constructed from ξ1 and ξ2.
From [3].

two states does not cost additional energy (middle panel in fig. 2). If the temperature is
lowered (bottom left panel in fig. 2), T < Tc, the energy of the liquid phase is less than the
energy of the gas phase, and we expect the gas to condense. In this case the front between
the two phases moves into the gas phase, effectively replacing the gas with liquid. If the
temperature is raised (bottom right panel in fig. 2), T > Tc and the front will propagate
to the left turning the liquid into gas. The front is therefore stationary only when T = Tc
(that is, the critical temperature can be thought of as the ‘Maxwell temperature’). Now
suppose that one of the phases is structured, for example a crystalline solid (top panel in
fig. 2). Here, small temperature perturbations will not result in front motion as the front is
held back by a “pinning potential” due to the structured state behind it [13]. This pinning
allows stationary fronts over a range of T about Tc, and the temperature must be changed
by a finite amount to overcome the effective pinning potential and allow the fronts to move.
There are many coexisting steady states within the interval of temperatures around Tc,
where the fronts are pinned since in this region it costs little to insert fronts between the
two competing phases.

At each value of r in the pinning region one can identify two types of front, ξ1 and
ξ2, as shown in fig. 3(a). These fronts can be placed back to back to contruct localized
structures. The three different localized states that can be constructed from these fronts at
each parameter value are shown in fig. 3(c), with the location of these states indicated in
the bifurcation diagram in fig. 3(b) using solid dots. There are symmetric states with either
(i) ξ1 fronts at either end or (iii) ξ2 fronts at either end; asymmetric states (ii) consist of
one ξ1 and one ξ2 front. We can assign stability to these fronts and find that front (i) is
unstable while front (ii) is stable. These stability assignments are indicated in fig. 3(b) by
solid (stable) and dotted (unstable) lines. The pinning region can thus be thought of as an
unfolding of the Maxwell point due to the heterogeneity of one of the states.

1.3 Wavelength selection (SH23)

Consider the wavenumber inside the localized structure. Computations show that the
wavenumber (equivalently the wavelength) of the pattern depends on the value of r within
the pinning region. This wavenumber is not given by minimizing the free energy F because
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Figure 4: The wavenumber k found by minimizing F (dotted black line), minimizing F
with the H = 0 constraint (solid red line) and results from numerical simulations (blue
diamonds). The pinning region is shaded in grey. From [3].

of the H = 0 constraint required of all homoclinic orbits. Figure 4 shows that to the left
of the Maxwell point r = rM , k is higher than the Maxwell value, so the wavelength is
less than the Maxwell wavelength. For r < rM , the periodic state has a higher energy F
than the zero state, so in the absence of pinning the fronts would move inwards eliminating
the periodic state. However, in the pinning region they are prevented from moving by the
pinning effect. Instead the energy difference between the two states manifests itself in a
compression of the resulting steady structure. Conversely, for r > rM the periodic state
has lower energy than the zero state, so in the absence of pinning the fronts would move
outwards and the structure would grow. Since the fronts are prevented from moving by the
pinning effect the structure instead stretches. The variation of k(r) can be calculated by
minimising F subject to the constraint H = 0, and the result agrees well with measurements
from numerical calculations (fig. 4).

We remark that the presence of the fronts at either end leads to a unique wavenumber
between them, however far apart the fronts are. This is in contrast to spatially periodic states
for which there is an interval of stable wavenumbers within the so-called Eckhaus stability
limits. Evidently wavenumber selection is very sensitive to what happens “at infinity” and
in particular the boundary conditions applied there. We may say that the fronts collapse
the Busse balloon [8].

1.4 The pinning region in parameter space

The extent of the pinning region for SH23 in the (r, b2) plane is shown in fig. 5. The pinning
region is shaded and bounded by two blue lines corresponding to first and last tangencies
as explained above. The region is exponentially thin near its tip at (0,

√
27/38q2

c ) [6]. Near
the tip, i.e., when r = O(ε4) and b2 = O(ε2), ε � 1, the width of the snaking region is
exponentially thin, of order ε−4 exp(−π/ε2), a result that requires the use of exponential
asymptotics [9].

Away from the exponentially thin region near r = 0, the snaking region broadens but
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Figure 5: The pinning region (shaded in blue) for SH23 in the (r, b2) parameter plane. The
pinning region for SH35 is similar. From [3].

always straddles the Maxwell line, which is the purple dot-dash line in fig. 5. The red line
shows the fold (saddle-node bifurcation) of the periodic orbit γ with wavenumber qc. The
snaking region tracks the fold, but does not reach it. A similar plot can be drawn for the
SH35 equation [5].

Additional Maxwell points involving nontrivial homogeneous states are also present and
considerably complicate the full picture [6]. These are responsible, for example, for the
boundary E∗+ in fig. 5. In fact SH23 is still by no means completely understood.

2 Depinning

If r is moved sufficiently far from rM the energy difference between the zero state and γ
exceeds the pinning potential and the fronts depin. The resulting motion can be predicted
by projecting SH23 onto the near-marginal eigenfunctions present at either edge of the
pinning region.

At the boundary of this region the marginally stable amplitude eigenfunctions are lo-
calized near either front of the structure (see lecture 7). Near E+, where the state of the
system evolves towards the lower energy periodic state, this fact indicates incipient nu-
cleation of new cells just outside the localized state. Direct integration of Eq. (1) reveals
time-dependent growth of the structure via sequential nucleation of new cells (fig. 6(a)). The
nucleation time depends on the distance from the edge of the pinning region, as indicated
in fig. 6(b). The time diverges at the edge of the pinning region (where it takes an infinite
amount of time to nucleate a new cell) and decreases as the distance from the pinning region
increases. The speed of the front, which is a ‘pushed front’ because it propagates into a
stable state [14], can be calculated from the time it takes to nucleate cells at the front. To
the left of the pinning region (where the solution moves towards the lower energy zero state)
the fronts move inwards via sequential annihilation of cells with the same dependence on
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Figure 6: (a) Space-time plot of the evolution of a localized structure in time, and (b) the
nucleation time T as a function of r. From [3].

the distance from E− as in the E+ case.

2.1 Theory

To calculate the speed of the front we need the time taken to nucleate (or annihilate) a cell
[6]. For this purpose we suppose that

r = r(E−) + δ, (3)

where r(E−) denotes the left edge of the pinning region and |δ| � 1. Thus δ determines
the distance away from the edge of the pinning region: if δ > 0, then r is inside the pinning
region and if δ < 0 then r is outside the pinning region. We anticipate that nucleation
takes place on an O(|δ|−1/2) time scale and therefore introduce the slow time τ = |δ|−1/2t.
Finally we write

u(x, t) = u0(x) + |δ|1/2u1(x, τ) + |δ|u2(x, τ) +O(|δ|3/2), (4)

where u0(x) is one of the stationary localized states at the edge of the pinning region,
assumed to be of even parity.

Substituting this Ansatz into SH23, we find at O(|δ|1/2)

L[dx, u0]u1(x, τ) = 0, (5)

where L is the linearised SH operator evaluated at r = r(E−). The solutions of this problem1

were found in lecture 7:

u1(x, t) = a(t)Ũamp + b(t)Ũph + c(t)ŨG. (6)

Of these marginal modes the amplitude mode Ũamp is even while the remaining two are
odd. We may therefore suppose that the ‘centre of mass’ remains fixed and take b = c = 0.

1In the following we treat the exponentially small phase eigenvalue as zero.
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Thus it suffices to determine the evolution of a(t), the amplitude of the mode responsible
for depinning.

For this purpose we proceed to O(|δ|) obtaining

L[dx, u0]u2(x, τ) = ∂τu1 − [sgn(δ)u0 + b2u
2
1 − 3u0u

2
1]. (7)

For the ordering assumed in the Ansatz (4) to remain valid on the timescale τ = O(1) the
solution u2(x, τ) must remain O(1) on this timescale. This will only be so if an appropriate
solvability condition is imposed on the right hand side of Eq. (7). To find this solvability
condition we apply the so-called Fredholm alternative [] and multiply Eq. (7) by Ũamp and
integrate over x from −∞ to ∞. Since L[dx, u0] is self-adjoint the left hand side vanishes
after integration by parts, leaving the condition

α1dta = α2sgn(δ) + α3a
2, (8)

where

α1 ≡
∫ ∞

−∞
Ũ2
ampdx, α2 ≡

∫ ∞

−∞
u0Ũampdx, α3 ≡

∫ ∞

−∞
(b2 − 3u0)Ũ3

ampdx. (9)

This is the required evolution equation for the amplitude of the nucleation mode. The
nucleation time, which is the time T for the solution to move from one fold of the snaking
branch to the next one below, is approximately the time taken for a(τ) to go from −∞ to
∞. Writing this condition in terms of the original time we obtain

T− =
πα1

(α2α3δ)1/2
≈ 4.388|δ|−1/2, δ < 0. (10)

This prediction compares well with the simulation result

T− ≈ (4.57± 0.34)|δ|−0.499±0.006, δ < 0. (11)

The method can be similarly applied near the right edge of the snaking region, r = r(E+)+δ,
0 < δ � 1, with corresponding prediction

T+ =
πα1

(α2α3δ)1/2
≈ 5.944δ−1/2, δ > 0, (12)

and simulation result

T+ ≈ (6.04± 0.18)δ−0.501±0.003, δ > 0. (13)

The nucleation time, T , thus depends on the inverse square root of the distance from the
folds in the snaking region. These are very well aligned high up the bifurcation diagram, so
here T is independent of which fold is considered and the nucleation front therefore moves
with constant speed. This is not so low down the snaking diagram where the folds do not
line up with the edge of the pinning region.
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Figure 7: One set of isolas with b2 = 2 and γ = 0.05, 0.10, 0.20, 0.35. From [4].

3 Broken symmetry and drift

It is interesting to examine the effect of broken spatial reversibility on the nucleation process.
For this purpose we may add a dispersive term to SH23 to obtain

∂tu =
(
r − (1 + ∂2

x)2
)
u+ γ∂3

xu+ b2u
2 − u3. (14)

We anticipate that when γ 6= 0 the solutions will drift, and therefore look for steady solutions
drifting with speed c. Such solutions satisfy the ODE

0 =
(
r − (1 + d2

x)2
)
u+ cdxu+ γd3

xu+ b2u
2 − u3, (15)

where x is now the comoving coordinate and c is a nonlinear eigenvalue, i.e., c is determined
as part of the solution.

Figure 7 shows the solution to this problem. One finds that the presence of dispersion
destroys the snakes-and-ladders structure of the snaking region and that the drifting local-
ized states fall on a stack of figure-eight isolas, one of which is shown in the figure. All the
localized states now travel: c = c(r) along each isola (not shown). Note in particular that
as γ increases the isolas shrink and eventually disappear. Thus drifting localized structures
are absent for large dispersion.

To the immediate right of the pinning region, r = r(E+) + δ for δ � 1, the nonzero
value of γ leads to asymmetry between the nucleation rates associated with the leading
and trailing fronts. This is shown in fig. 8, where all the patterns drift slowly to the right.
For small enough δ, nucleation only occurs at the leading front but fails at the trailing
front (fig. 8(a)). Further from the saddle-node, the rate of nucleation increases (as in
the symmetric case) so that nucleation now takes place at both fronts, albeit at different
rates. As a result the trailing front overcomes the slow drift of the structure downstream,
and propagates upstream (fig. 8(b)). However, increasing γ can prevent nucleation at the
trailing front so that the pattern only grows at the leading front (fig. 8(c)). The front
speed for the asymmetric problem (15) can be calculated in much the same way as in the
symmetric problem (see section 2.1) as discussed next.
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Figure 8: Space-time plots showing asymmetric front propagation when b2 = 2: (a) γ =
0.001, δ = 0.00015; (b) γ = 0.001, δ = 0.00065; (c) γ = 0.01, δ = 0.00065. From [4].

3.1 Theory

For small dispersion the drift speed c is expected to be of order γ. We therefore write
r = r(E+) + δ, take γ = σ|δ|, σ = O(1), and write []

u(x, t) = u0(x+ θ(T )) + |δ|1/2u1(x+ θ(T ), τ) + |δ|u2(x+ θ(T ), τ) + . . . , (16)

where τ = |δ|1/2t, T = |δ|t and θ(T ) captures the drift of the leading order localized
structure, i.e., c = θt = |δ|θT . Note that the drift and nucleation occur on disparate
timescales: the perturbations u1 and u2 drift on the same slow time T as u0, but can also
grow on a different, and faster, timescale τ . The leading order, O(1), terms are

r(E+)u0 − (1 + ∂2
x)2u0 + b2u

2
0 − u3

0 = 0. (17)

This is the equation for steady solutions of the reversible SH23 equation with solutions
u0 = u0(x+ θ(T )). At next order, O(|δ|1/2),

L[∂,u′]u1 ≡
(
r(E+)− (1 + ∂2

x)2 + 2b2u0 − 3u2
0

)
u1 = 0, (18)

and u1, as in section 2.1, is a superposition of three (almost) marginal modes. Since the
translation has been included by introducing the phase θ(T ), the ŨG mode is already in-
cluded. Thus

u1 = a(τ)Ũamp(x+ θ(T )) + b(τ)Ũph(x+ θ(T )). (19)

At O(|δ|),
u′0θT + u1τ = Lu2 + sgn(δ)u0 + σu′′′0 + (b2 − 3u0)u2

1. (20)

Since the kernel of L is spanned by three independent solutions, the three marginal modes,
we must impose three different solvability conditions on u2. These will in turn determine
the evolution of θ(T ), a(τ) and b(τ).

To obtain the solvability conditions we multiply Eq. (20) in turn by the three marginal
modes, u′0 (i.e., the Goldstone mode), Ũamp and Ũph, and integrate over x from −∞ to ∞.
The first solvability condition predicts the drift speed

θt = −0.9663γ, (21)

which agrees well with the drift speed measured from numerical simulations. The solvability
conditions for the phase and amplitude modes give coupled equations for a and b. However,
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if the structure described by u0 is long enough, the two fronts at either end decouple from
one another (lecture 6) and the two equations reduce to [4]

(a± b)τ = α1sgnδ ∓ βσ + α3(a± b)2. (22)

We define the nucleation time at the leading front as

Tleading =

∫ ∞

−∞

dτ

a− b =
π

α
1/2
3

1

(α1δ + βγ)1/2
(23)

and at the trailing front as

Ttrailing =

∫ ∞

−∞

dτ

a+ b
=

π

α
1/2
3

1

(α1δ − βγ)1/2
. (24)

The value of δ for which the nucleation time diverges corresponds to the value at which
nucleation ceases, and is given by

δleadingc = −βγ/α1 = −0.3543γ, δtrailingc = βγ/α1 = 0.3543γ. (25)

These predictions agree well with numerical simulations [4].

4 Two-dimensional structures

We now consider the two-dimensional (2D) Swift-Hohenberg equations SH23

ut = ru− (∇2 + 1)2u+ b2u
2 − u3, (x, y) ∈ R2, (26)

and SH35
ut = ru− (∇2 + 1)2u+ b3u

3 − u5, (x, y) ∈ R2. (27)

In both these equations u = u(x, y, t) and ∇2 ≡ ∂2
x + ∂2

y . These equations are reversible in
both x and y but steady state solutions still correspond to critical points of the Lyapunov
energy function F . In 2D, there is a larger range of different types of localized structures
that arise, including stripes, spots, targets, squares and hexagons. For a more extensive
treatment of this topic, we refer the reader to [5].

4.1 Wall and body modes

Stripe-like localized structures in 2D (e.g. fig. 9) are only stable inside a subregion of the
1D pinning region (fig. 10). This is a consequence of the presence of distinct 2D instabilities
that destabilize localized stripes that are stable in 1D. These instabilities can be divided
into “wall” modes which are characterized by a y-dependent eigenfunction that is localized
at the fronts, and “body” modes whose eigenfunction extends across the whole localized
structure.

Figures 11(a,b) show the evolution of a wall mode in SH23. Depending on the parameters
the excitation of the wall mode may lead to depinning (fig. 11(a)) with both inward and
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Figure 7.1: (a) A stationary localized state u0(x) in one dimension, and (b) the corre-
sponding localized stripe u(x, y) in two dimensions. Parameters: r = 0.7106, b3 = 2. The
domain shown in (b) is (x, y) ∈ [−70, 70] × [−30, 30].

where u = u(x, y, t) and ∇2 = ∂2
x + ∂2

y . As in the one-dimensional version, this equation is

variational and stationary states correspond to local minima of the associated free energy.

We are particularly interested in time-independent solutions to (7.1) that satisfy

u(x, y) = u0(x) . (7.2)

The function u0(x) is a stationary solution to the Swift-Hohenberg equation (3.47), so each

one-dimensional solution in Chapter 3 generates a solution in two dimensions (Fig. 7.2a).

The spatially periodic states correspond in two dimensions to stripes (or rolls), and the

localized states correspond to localized stripes. Those profiles u0(x) that are unstable in

one dimension will necessarily generate localized stripes that are also unstable. However,

the profiles that are stable in one dimension are not necessarily stable in two because of

various transverse instabilities that may be present (Fig. 7.2b).

Although (7.1) is defined on (x, y) ∈ R2, in practice we solve this equation on a

bounded domain. Recall that the localized states u0(x) determined numerically in Chap-

ter 3 are defined on x ∈ [−Γx/2,Γx/2] where Γx � 2π/k0. We also restrict the transverse

coordinate to y ∈ [0,Γy] with periodic boundary conditions at y = 0 and y = Γy, since our

focus is on solutions in two-dimensions which satisfy (7.2).

In general the stability of any stationary solution to (7.1) is found by considering

infinitesimal perturbations of the form ��U(x, y)eσt, � � 1, which leads to a two-dimensional

Figure 9: Localized 2D stripe in SH23. From [5].

Figure 10: Stability regions for the 1D (light) and 2D (dark) localized structures in (a)
SH23 and (b) SH35. From [5].

outward front propagation that converts the stripe state into a hexagonal array of spots
that invades the whole domain. It is also possible to choose parameters such that there
is not enough energy to depin the front connecting the structure to the background state
(fig. 11(b)). In this case the outer fronts remain pinned and the instability propagates only
inwards, turning the localized stripes into a localized patch of hexagons.

An example of the body mode is illustrated in fig. 11(c). As the mode evolves the whole
structure buckles into a zigzag structure. In the case shown the buckling is strong enough
to depin the fronts on either side resulting in the growth of a set of transverse stripes. The
wavelength of the stripes is determined dynamically by the motion of the fronts and so is
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Two spatial dimensions: SH23

Edgar Knobloch (UC Berkeley) Localized patterns June 2012 28 / 53

Figure 11: Evolution of (a,b) the wall mode, and (c) the body mode in SH23. From [5].

not the equilibrium wavelength. As a result the perpendicular stripes undergo their own
zigzag instability that brings their wavelength closer to their equilibrium wavelength. SH35
undergoes similar instabilities but hexagonal coordination is no longer the preferred case.
Instead the instabilities may generate moving fronts that undergo dendrite-like instabilities
or lead to a dynamically selected labyrinthine pattern.

4.2 Two-dimensional spatially localized states

In the preceding section we have seen that time evolution can lead to stable localized states
with nontrivial 2D structure. It is possible to follow solutions of this type numerically as a
function of the parameters. Figure 12(a) from [1] shows one such steady-state solution of
SH35 (right panel, corresponding to the red dot in the bifurcation diagram in the left panel).
Following the solution numerically towards lower values of r (fig. 12(b)), we find that the
amplitude ||u||22 begins to grow as the structure sends out “fingers” that extend farther and
farther outwards. Since the front that connects this “finger” state with the background
states only sees behind it a translation-invariant state no pinning takes place. In this
case the pinning region is absent (we speak of collapsed snaking) and a heteroclinic cycle
between the background state and the “finger” state is only present at a single parameter
value. However, as we follow the solution in the other direction, we observe the formation
of a rug-like structure associated with a snaking bifurcation diagram (fig. 12(c)). Here,
the snaking is caused by the pinning of each front to stripes parallel to the front. It is
remarkable that solutions of the form shown in figs. 12(b,c) in fact lie on the same solution
branch.
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Figure 12: Bifurcation diagram of a localized stripe pattern in SH35. (a) A localized state
identified through time integration. (b) Collapsed snaking. (c) Snaking. Each figure shows
the appropriate portion of the bifurcation diagram (left panel) and the solution profile
u(x, y) (right panel) corresponding to the location indicated by the red dot. The profiles
are shown with x vertically and y horizontally. From [1].

It is useful to think of structures such as that shown in fig. 12(b) in terms of a phase space
representation, treating x as an unbounded time-like variable while y remains bounded (with
Neumann boundary conditions imposed). This description is analogous to that employed
in fig. 1: in fig. 13(a) the black dot represents the zero state while the red point represents
an extended state of periodic stripes with finite y-wavenumber that fills the whole domain.
A connection (1) between these two fixed points in the phase plane represents a front con-
necting the zero state to the pattern state (a heteroclinic orbit). An excursion (2) from the
patterned state back to itself represents a defect in the patterned state. Spatial reversibility
implies the existence of a complete heteroclinic cycle. As in 1D, numerical calculations
identify homoclinic orbits with exactly this template, such as state (3) in fig. 13(b).

Figure 14 shows a detail of the bifurcation diagram for SH35. The sequence of transitions
along the snaking branch produces alternating stable and unstable states, which grow in
space. The growth mechanism is slightly different at points 3 and 7 compared with points
1, 5 and 9 owing to the Neumann boundary conditions in y used in the calculation. This
leads to the observed misalignment of successive folds.

The rug-like structures in fig. 14 are just one set of localized structures present in this
system; however, other structures are present as well. For example, it is possible to produce
odd rug-like structures that also snake (dotted grey line in fig. 15). There are also rungs
(blue line of fig. 15) of asymmetrical states that connect even states (solid grey line in
fig. 15) to odd states. These Z-shaped rungs are unstable throughout as indicated by the
eigenvalues shown in fig. 15(a). However, S-shaped rungs connecting even states to even
states possess a stable middle segment (fig. 16).

Other structures that arise in 2D are checkerboard rugs (this live on isolas, of which
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Figure 11: The non-snaking branch of the bifurcation diagram from panel 2 in Figure 10 is displayed in more detail.

As we move along the branch, the solution develops blue and red spots along the interface. These red spots subsequently

develop into vertical stripes, which progressively cover the entire domain. The vertical asymptote occurs at the Maxwell

point µr = 0.6753 of the 1D rolls.
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Figure 12: We illustrate the spatial-dynamics interpretation of the y-dynamics of almost planar stripes along the

non-snaking branch. We can interpret the almost planar stripe pattern shown in the right panel as a homoclinic orbit

to U = 0 that bifurcates from the heteroclinic network shown in the left panel. The heteroclinic network consists of

a codimension-one heteroclinic cycle between U = 0 and vertical 1D rolls, which exists only at the Maxwell point of

1D rolls, and a robust reversible homoclinic orbit to vertical 1D rolls. Note that vertical 1D rolls are equilibria in the

y-dynamics.
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Figure 13: In the centre, we show a section of the snaking branch from the right panel of Figure 10. As we move

along the branch, the pattern grows horizontal stripes via a sequence of nine saddle nodes as shown in panels (1)-(9).

For the pattern shown in panel (1), the interface between rolls and the trivial state is made up of blue spots. As we

move up on the branch through panels (2)-(5), red spots are added to the interface, whilst the blue spots merge to

form the first half of a new roll. Panels (6)-(9) show the development of new blue spots along the interface, whilst the

red spots merge to complete the formation of the new roll seen in panel (9). Inspecting panels (1) and (5), we find

that the interface regions, plotted here over four full periods in x so that x ∈ (0, 8Lx), are related by the symmetry

operator κ, which corresponds to multiplication of the pattern by −1 and reflecting it in x across x = Lx.
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Figure 13: Phase plane description of collapsed snaking. From [1].
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Figure 14: A section of the snaking branch from fig. 12 and the corresponding solution
profiles at successive folds. From [1].

there is likely an infinite stack; fig. 17) and barrel-shaped structures (fig. 18). The latter are
of particular interest since the fronts on the left and right are clearly pinned to the stripe
pattern inbetween, while the curved boundaries likely experience weaker pinning arising
from the circumferential wavelength gradient introduced by the curvature of the boundary.
Perhaps of greatest interest are the leaf-like structures shown in fig. 19. These structures
have a convex boundary that becomes, in some cases, concave near the cusps of the leaf.
This fact implies that it is not possible to think of these structure as being produced by an
effective surface tension since surface tension cannot produce structures that are concave.
An understanding of the sharp, internally-generated cusp-like features of these structures
represents a major challenge from the point of view of pde theory.

In SH23 the presence of the quadratic nonlinear term leads to a preference for hexagonal
structures instead of stripes [8]. The different localized structures present in SH23 are
discussed in [10]. As shown in fig. 20, localized hexagons, targets and spots occur in the
different regions in the parameter plane as shown in fig. 20(a). The green line shows the fold
of the extended periodic hexagonal pattern. Figure 20(b) shows the region near r = 0 and
fig. 20(c) shows the bifurcation diagram for two different localized states, namely localized
targets and hexagons. Pinning takes place as in 1D, although as the structure grows its
effect decreases and snaking may collapse. We mention that target patterns behave quite
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Figure 15: Unstable rung-like Z-shaped branches of asymmetrical states connecting even
and odd parity branches (middle panel). The eigenvalues of the solutions as a function
of arclength are shown in the left panel. The changes in the solution structure across the
Z-shaped branch are shown in the right panel. From [1].

Figure 16: Rung-like S-shaped branches of asymmetrical states connecting even states to
even states (middle panel). The eigenvalues of the solutions as a function of arclength (left
panel) show that the middle segment is stable. The changes in the solution structure across
the S-shaped branch are shown in the right panel. From [1].

differently from spots. The former are present only in the subcritical regime while spots
are present even in the supercritical regime [11].2 This important point may explain the

2There are in fact two types of spots, spot A which is present regardless of the direction of branching of
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Figure 17: Left panels: localized checkerboard patterns on an isola. Solid line represents
stable solutions. Right panel: part of a stack of such isolas with broader structures at the
top and narrower structures at the bottom. From [1].

Figure 18: Left panel: barrel-shaped localized structures initially snake but large structures
of this type lead to collapsed snaking. Right panel: subsidiary barrel-shaped structures
differing by one stripe. From [1].

prevalence of spots in experiments.
Consider the hexagonal patch corresponding to the first fold in parameter space shown

in fig. 21. It is possible to follow the solution branch numerically in parameter space [10].
At point 1, a regular hexagonal crystalline solution is present (note the “echoes” along
the periphery the structure, which is a consequence of the oscillatory front between the

the stripe pattern and spot B which is only found in the subcritical regime [12].
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Figure 19: Planar leaf-like solutions of SH35. From [1].

hexagonal structure and the background state). By point 2 the structure has evolved by
adding a cell at the mid-point of every edge. Further cells have been added symmetrically
along the boundary by point 3, but the resulting structure is not hexagonal. The hexagonal
structure reforms near point 4. Since the edges now consist of five cells apiece and the
subsequent evolution differs from that just described. One must therefore proceed further
up the solution branch on order to form a hexagonal structure with an even number of
cells along each edge before the type of growth described in going from point 1 to point 4
recurrs. The misalignment of the folds provides an indication of the energy associated with
the nucleation of cells in different locations along the edges. Comparison of the energy F
for the different states shown in fig. 21 could provide an explanation why the hexagonal
structure grows in the manner it does.

5 Oscillons

In lecture 6, we saw the difference between “standard” and “reciprocal” oscillons. Here,
we consider steady, localized solutions to the forced complex Ginzburg-Landau (FCGL)
equation. Our motivation for looking at this problem is two-fold. Firstly, oscillons have
been observed in experiments. Secondly, the FCGL equation is similar to the SH equation
when written in terms of the real and imaginary parts as coupled second order equations
are equivalent to a problem of fourth order in space. However, the equation does not have
a Lyapunov function, so we expect interesting dynamics.

5.1 Forced Ginzburg-Landau equation

Oscillons are typically subharmonic instabilities, and are easily observable in the vicinity
of a subharmonic resonance (or 2:1 resonance) when an oscillatory system with natural
frequency ω is driven with a driving frequency Ω ≈ 2ω. If the detuning ν ≡ ω−Ω/2 is small
the system will oscillate with frequency Ω/2 instead of ω. This oscillation is called a phase-
locked oscillation since the phase of the driving and response remain in phase. Outside
of this region, the response frequency is no longer locked to the forcing frequency and the
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Figure 20: Localized hexagons, targets and spots in SH23. From [10].

phase slips [7]. We can describe the resulting phase-locked oscillations, including standard
and reciprocal oscillons by examining the small amplitude

have been observed in the solutions of the FCGL equation for the amplitude of the
phase-locked oscillation.

We suppose a dynamic observable w(x, t) can be written in the form

w(x, t) = w0 +A(x̃, t̃)eiΩt/2 + c.c. + ..., (28)

where w0 is a steady homogeneous state of the system, A(x̃, t̃) is the (small) complex
amplitude of the forced subharmonic response, and x̃ and t̃ are suitable slow spatial and
temporal scales. The oscillation amplitude A(x̃, t̃) obeys the following evolution equation

At̃ = (µ+ iν)A− (1 + iβ)|A|2A+ (1 + iα)Ax̃x̃ + γA, (29)

where µ represents the (small) distance from onset of a (supercritical) homogeneous os-
cillatory instability and γ is the (small) amplitude of the forcing. The coefficients α, β
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Figure 21: Bifurcation diagram for localized hexagons in SH23 showing the L2 norm as
a function of the bifurcation parameter −r. The sidepanels illustrate the solution profiles
at the points labeled in the middle panel. Solid (dashed) lines indicate stable (unstable)
solutions. From [10].

represent dispersion and nonlinear frequency correction, and are assumed to be O(1).3 In
the following we drop the tildes on x̃ and t̃.

Given the large number of parameters in equation (29), we expect that the system will
display a wide range of behaviors. We restrict our attention to two cases corresponding to
the parameter µ, namely when µ < 0 and µ > 0, respectively. In the case µ > 0 the unforced
system is self-exciting, but the free oscillations are damped when µ < 0. In both cases, we
assume that β > 0 and allow α to be positive or negative. The key observation is that the
subharmonic forcing in the damped case creates a region of bistability between A = 0 and
and a large amplitude phase-locked state A+

u with uniform amplitude [7]. Inside this region
one expects localized states created by the same mechanism as in the Swift-Hohenberg
equation.

We consider the damped case µ < 0 in the (ν, γ) plane and find that a saddle-node
bifurcation involving the uniform phase-locked states A+

u and A−u occurs at γ = γb ≡ |ν −
βµ|/ρβ, ρβ ≡

√
1 + β2, whenever ν > νβ ≡ −µ/β. At this point, the uniform state has two

zero spatial eigenvalues and two real nonzero spatial eigenvalues. Along the larger amplitude
A+
u branch the zero eigenvalues split along the real axis and A+

u has two-dimensional stable
and unstable manifolds. Thus localized states may exist in the form of orbits homoclinic to
A+
u . We calculate these as follows.

To find these states, we expand γ about the fold γb: γ = γb + ε2δ, where ε2δ depends on
the distance to the fold, ε� 1 and δ > 0. We solve the time-independent problem as in [7]
(their Appendix C)

(L+N )

[
U
V

]
= 0, (30)

where A = U + iV , L is a linear operator and N is a nonlinear operator. Localized states

3Specifically if µ = O(ε2) the forcing amplitude and frequency must satisfy γ = O(ε2), ν = O(ε2) and
the response satisfies A = O(ε), x̃ = εx and t̃ = ε2t.
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biasymptotic to A+
u take the form

[
U
V

]
=

[
U
V

]+

+

[
u
v

]
, (31)

where the first term is the phase-locked state A+
u and the second term corresponds to space-

dependent terms that decay to zero in the limit x→ ±∞. We can approximate A+
u by the

series [
U
V

]+

=

[
U0

V0

]
+ ε

[
U1

V1

]
+ ε2

[
U2

V2

]
+ ..., (32)

where [
U0

V0

]
=

[
ηb
1

]
Υ0,

[
U1

V1

]
=
√
δ

[
ξb
1

]
Υ1. (33)

Here

ηb = β + ρβ, ξb =
ηbν + (1− βηb)|Au(γb)|2
ν − (β + ηb)|Au(γb)|2

, (34)

Υ0 =
|Au(γb)|√

1 + η2
b

, Υ1 = sgn[ξbηb + 1]

√
ηb

(ξbηb + 1)(ξb − ηb)
. (35)

We expand the space-dependent second term in equation (31) as

[
u
v

]
= ε

[
u1

v1

]
+ ε2

[
u2

v2

]
+ ...,

noting that all the quantities in this equation depend on x in the slow spatial scaleX ≡ ε1/2x.
The linear operator in equation (30) can be written L = L0 + εL1 + ε2L2, where

L0 =

[
µ+ γb −ν
ν µ− γb

]
, L1 =

[
1 −α
α 1

]
∂XX , L2 =

[
δ 0
0 −δ

]
. (36)

The nonlinear terms can be written N = N0 + εN1 + ε2N2 + ..., where

N0 = −
[
U0 V0

] [U0

V0

] [
1 −β
β 1

]
, N2 = −2

[
U0 V0

] [U1 + u1

V1 + v1

] [
1 −β
β 1

]
, (37)

N2 = −
{[
U1 + u1 V1 + v1

] [U1 + u1

V1 + v1

]
+ 2

[
U0 V0

] [U2 + u2

V2 + v2

]}[
1 −β
β 1

]
. (38)

At order ε0, the stationary solutions to equation (30) satisfy

{L0 +N0}
[
U0

V0

]
=

[
0
0

]
. (39)

This equality can be determined from the definition of U0 and V0. At order ε, we have the
following expression

{L0 +N0}
[
U1 + u1

V1 + v1

]
= −{L1 +N1}

[
U0

V0

]
. (40)
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The X-independent terms in this equation cancel (from the definition of U1 and V1), and
we obtain {

L0 +N0 − 2

[
1 −β
β 1

] [
U2

0 U0V0

U0V0 V 2
0

]}[
u1

v1

]
=

[
0
0

]
. (41)

Hence, we write [
u1

v1

]
=

[
ξb
1

]
B(X), (42)

where B(X) is an unknown function of X. We proceed to order ε2, obtaining

{L0 +N0}
[
U2 + u2

V2 + v2

]
= −{L1 +N1}

[
U1 + u1

V1 + v1

]
− {L2 +N2}

[
U0

V0

]
. (43)

As previously, the X-independent terms cancel. To obtain the solvability condition for this
equation, we take the scalar product with

Ξb =
[
−ηb 1

]
, (44)

and eliminate the u2, v2 terms, so that

abBXX = bb(2V1B +B2). (45)

Here,

ab = 1 + αξb + αηb − ηbξb, bb = −Υ0(1 + η2
b )

Υ2
1

, (46)

and we must have bb < 0. Equation (45) yields either spatially homogeneous solutions
B = −2V1, or the solution [

U
V

]
=

[
U0

V0

]
− ε
[
U1

V1

]
+ ..., (47)

corresponding to the other branch of uniform phase-locked states, A−u . Equation (45) also
possesses X-dependent solutions of the form

B(X) = −3Υ1

√
δsech2





(
Υ1

√
δ

2ab/bb

)1/2

X



 . (48)

These correspond to the solution

[
U
V

]
=

[
U
V

]+

− 3Υ1
√
γ − γb

[
ξb
1

]
sech2

{
(γ − γb)1/4

(
Υ1

2ab/bb

)1/2

x

}
, (49)

describing reciprocal oscillons, i.e., ‘holes’ in an otherwise uniformly oscillating state. If this
state is followed numerically one finds that the holes deepen and fill with the trivial state
A = 0. Pinning is absent since the spatial eigenvalues of A+

u are real.
Other localized states are also present and these are discussed in [7].
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