A real-time, camera-operated multicorer system can be used in a variety of sedimentary settings where spatially restricted habitats occur. Examples of these habitats include hydrocarbon seeps, mud volcanoes, sediment-covered hydrothermal vents such as Guaymas Basin, the zone where the chemocline impinges the seafloor in silled basins such as the Cariaco Basin, Black Sea, Deep Hypersaline Anoxic Basins (DHABs) and fjords such as Saanich Inlet.
Key Objectives of NSF-Funded Multicorer Project:
• Provide modular attachment fixtures for MISO camera, CTD, batteries, strobes, & water sampling bottle that would work for any MC-800 multicorer in the UNOLS system
• Ensure functionality of imaging and water sensing/sampling components without compromising functionality of the multicorer
• Carry out field testing to quantitatively assess working loads/tensions on both 0.680” coax and 0.322” CTD standard UNOLS cables, improve core recovery and quality of cores.

UNOLS – RVTech Feb. 2013
Field area for testing multicorer with camera & CTD was the Santa Barbara Basin – 17 lowerings were carried out, 15 successful lowerings in terms of good core top recovery.

Water depths from ~150 m to ~600 m.
• MC-800 rigged on R/V Melville’s CTD cable and deployed over the starboard A-frame.
• We used the WHOI-MISO DataLink network extender electronics (Marshall Swartz) to transmit images up the CTD cable and the 0.680 coax cable.
• Altitude and depth data were viewed at 1 Hz and provided by the SBE-25 CTD as well as serially through the DataLink for a SBE-50 depth sensor and a PSA-916 altimeter.
17 multicorer stations conducted during 4 days on station in the Santa Barbara Basin using R/V Melville (MV1214) in late Oct. 2012.
Pull-out tensions at \(~<600\) m depth for SB Basin sediments averaged between 1600-2000 lbs.

MC-800 system on CTD wire at depth = \(~1300\) lbs
MC-800 system on coax 680 wire at depth = \(~2200\) lbs

<table>
<thead>
<tr>
<th>MC #</th>
<th>Max Wire Out (M)</th>
<th>Max Tension (Lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC-1S</td>
<td>595</td>
<td>3432</td>
</tr>
<tr>
<td>MC-2S</td>
<td>590</td>
<td>3242</td>
</tr>
<tr>
<td>MC-3S</td>
<td>593</td>
<td>3077</td>
</tr>
<tr>
<td>MC-4S</td>
<td>591</td>
<td>3541</td>
</tr>
<tr>
<td>MC-5C</td>
<td>579</td>
<td>2311</td>
</tr>
<tr>
<td>MC-6C</td>
<td>571</td>
<td>2368</td>
</tr>
<tr>
<td>MC-7S</td>
<td>582</td>
<td>3083</td>
</tr>
<tr>
<td>MC-8S</td>
<td>592</td>
<td>3848</td>
</tr>
<tr>
<td>MC-9C</td>
<td>558</td>
<td>2151</td>
</tr>
<tr>
<td>MC-10C</td>
<td>566</td>
<td>2191</td>
</tr>
<tr>
<td>MC-11C</td>
<td>592</td>
<td>2093</td>
</tr>
<tr>
<td>MC-12C</td>
<td>567</td>
<td>2400</td>
</tr>
<tr>
<td>MC-13C</td>
<td>567</td>
<td>2214</td>
</tr>
<tr>
<td>MC-14C</td>
<td>568</td>
<td>2163</td>
</tr>
<tr>
<td>MC-15C</td>
<td>583</td>
<td>2176</td>
</tr>
<tr>
<td>MC-16S</td>
<td>482</td>
<td>3031</td>
</tr>
<tr>
<td>MC-17S</td>
<td>116</td>
<td>2452</td>
</tr>
</tbody>
</table>

S= 0.680" Coax Wire
C= 0.322" CTD Wire

Blue Bars = .680 cable deployment
Examples of time-series plots of wire out & tension using 0.680” coax cable.
Examples of time-series plots of tension using 0.322” CTD cable.
Seafloor photo on bottom approach 16:40:04Z MC-7S ~3 m altitude 571 m depth
(OIS 16 megapixel domed camera - 4928 x 3264 pixels 57° H/40°V) UNOLS – RVTech Feb. 2013
Seafloor photo on bottom approach 16:40:44Z MC-7S ~1.7 m altitude

UNOLS – RVTech Feb. 2013
Seafloor photo on bottom approach 16:41:24Z MC-7S ~0.8 m altitude

UNOLS – RVTech Feb. 2013
Seafloor photo on bottom approach 23:39:52Z MC-13C ~4.7 m altitude 559 m depth

UNOLS – RVTech Feb. 2013
Seafloor photo on bottom approach 23:40:42Z MC-13C ~1.4 m altitude
Seafloor photo on bottom approach 23:40:52Z MC-13C ~2 m altitude
Seafloor photo on bottom approach 23:41:02Z MC-13C ~1.4 m altitude
Seafloor photo on bottom approach 19:25:00Z MC-16S ~3 m altitude 470 m depth
Splotchy seeps, note fish and small orange gastropods – above anoxic zone

UNOLS – RVTech Feb. 2013
Seafloor photo on bottom approach 19:26:00Z MC-16S ~2.4 m altitude

UNOLS – RVTech Feb. 2013
Seafloor photo on bottom approach 19:27:00Z MC-16S ~1.3 m altitude

UNOLS – RVTech Feb. 2013
Seafloor photo on bottom approach 19:27:20Z MC-16S ~0.8 m altitude

UNOLS – RVTech Feb. 2013
Seafloor photo on bottom approach 19:27:30Z MC-16S ~0.5 m altitude

UNOLS – RVTech Feb. 2013
Shallow mobile fauna above anoxic boundary MC11C site ~ 3.6 m altitude 285 m depth

UNOLS – RVTech Feb. 2013
Shallow mobile fauna above anoxic boundary MC11C site ~2.5 m altitude
Core top photo MC-12C showing filamentous sulfur-oxidizing bacteria

UNOLS – RVTech Feb. 2013
Core top photo MC-13C showing filamentous sulfur-oxidizing bacteria

UNOLS – RVTech Feb. 2013
Core top photo MC-14C showing filamentous sulfur-oxidizing bacteria

UNOLS – RVTech Feb. 2013
Core top photos MC-16S

Note gastropods also seen in bottom photos
Implementing routine science operations with the multicorer with camera & CTD system via the MISO Facility

• Planned Eos article on results from multicorer w/camera & CTD test cruise

• Contact PIs who have used multicorer systems in the past 5 years to inform them of this new capability

• Add multicorer system information to MISO website:
 http://www.whoi.edu/page.do?pid=13575

• Costs for supporting multicorer system equivalent to TowCam lowering costs primarily at-sea engineering support for camera/CTD systems ~$2400/day with 5 day minimum, plus travel and shipping costs.