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1 Introduction

The aim of this lecture is to introduce briefly the various kinds of nonlinear equations which
have been proposed as models of water waves. These equations are presented here on physi-
cal grounds, and are derived more formally in following lectures. We begin by summarizing
the properties of linear waves, and under which limits the linear approximations are thought
to break down. Then, we investigate these limits and discuss basic nonlinear water wave
equations.

1.1 Linear water waves

A one-dimensional linear wave can be represented by Fourier components

u = ℜ{A exp(ikx − iωt)} , (1)

where k is the wavenumber, ω is the frequency, and A is the amplitude. Both ω and A may
be functions of k. The linear wave dynamics are determined by the dispersion relation

ω = ω(k), (2)

the form of which depends on the circumstances. In the instance of surface water waves
where surface tension is negligible, we saw in Lecture 2 that the dispersion relation is

ω2 = gk tanh(kh) (3)

where g is gravity and h is the still water depth. Note that there are two branches of the
dispersion relation ±ω, corresponding to leftward and rightward traveling waves respec-
tively. Depending on the physical system considered there may be any number of branches
of solution. For stable waves, ω is real for all real valued k.

We also saw that there are two important velocities when considering waves,

cp =
ω

k
(4)

cg =
dω

dk
, (5)
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where cp is the phase velocity and cg is the group velocity. For dispersive waves, these
two velocities are not the same. The phase velocity is the speed at which the phase of the
wave propagates (for instance, a wave crest). Meanwhile, the wave energy propagates at
the group velocity. The energy, E, of each Fourier component is usually given by the form,

E = F (k)|A|2. (6)

As will be seen in subsequent lectures, in the case of water waves the energy is given by
E = g|A|2/2.

As time evolves in a linear dispersive system, each Fourier component propagates at its
own phase velocity and thus, a group of waves of mixed k disperses. Meanwhile, the effect of
non-linearities becomes important, typically leading to three possible scenarios depending
on the waves considered:

1. long waves: for k → 0, the dispersion relation is only weakly dispersive as ω =
c0k+O(k3) (see equation 3). This dispersion is comparable with the weakly nonlinear
effects in modulating the amplitude of the wave.

2. wave packets: when the wave energy is concentrated about a finite wavenumber, k0

say, dispersion is also weak and the wave group propagates with approximately a
uniform group velocity. Again, the weak dispersion is comparable with the weak
nonlinearity and modulates the amplitude of the wave group.

3. resonant wave interaction: due to non-linearities, two linear waves of wavenumber k1

and k2 may interact to form another wave k0 = k1 + k2. In the instance where there
is resonance with ω0 ≈ ω1 + ω2, this can potentially be a strong effect in amplifying
and/or modulating the waves. This third scenario is discussed in other lectures.

1.2 The Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equation [6] is used to consider the weakly nonlinear, weakly
dispersive behavior of the long wave case discussed in the previous section, that is, when
k → 0. If we use a Taylor expansion about kh = 0 of the dispersion relation (3), and retain
the first two non-trivial terms only, we get an approximate dispersion relation with error
O(k5),

ω = c0k − βk3. (7)

where c0 is the limit of both phase and group velocity as k → 0. Identifying −iω with ∂/∂t,
and ik with ∂/∂x for each Fourier component, we deduce that the evolution equation for u
is:

ut + c0ux + βuxxx = 0. (8)

In the long-wave approximation the dominant terms are the first two, showing that the
wave nearly propagates with constant velocity c0 except for the weak dispersion (the third
term).
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The original system being nonlinear, we expect that the dispersion term is balanced
by another weak, but this time nonlinear term. The exact identification of the correct
nonlinear term requires a formal study of the original equations, which will be done in the
following lectures. For the moment, it is sufficient to say that a term of the form µuux

suitably balances the dispersive term, hence introducing

ut + c0ux + µuux + βuxxx = 0, (9)

which is the KdV equation. We can simplify the equation by performing the transform
x → x− c0t, which puts the observer in a reference frame moving with velocity c0, in which
case

ut + µuux + βuxxx = 0. (10)

Equation (10) is an integrable equation, a fact established in the 1960’s. The principle
solution of the KdV equation are solitons. Solitons are solitary waves, that is, they are
isolated, steadily propagating pulses given by,

u = asech2(γ(x − V t)), (11)

where V = µa/3 = 4βγ2 is the soliton velocity in the moving frame.

Solitons form a one-parameter family of solutions, parameterized for example by their
amplitude a. The speed, V , is proportional to the amplitude and is positive when β > 0.
Conversely, V is negative when β < 0. The soliton wavenumber γ is proportional to the
square root of a. As such, large-amplitude waves are thinner and travel faster. Note that
solitons are waves of elevation when µβ > 0 and of depression when µβ < 0.

A consequence of integrability means that the initial-value problem is solvable, with
methods such as the Inverse Scattering Transform (IST) for a localized initial condition
(see Lecture 5). The generic outcome the initial value problem is a finite number of solitons
propagating in the positive x direction and some dispersing radiation propagating in the
negative x direction (when µβ > 0).

1.3 Nonlinear Schrödinger equation

To deal with the nonlinearity associated with the wave envelopes mentioned in section 1.1
we assume that the solution is a narrow-band wave packet, where the wave energy in Fourier
space is concentrated around a dominant wavenumber k0. The dispersion relation ω = ω(k)
can then be approximated for k ≈ k0 by

ω − ω0 = cg0(k − k0) + δ(k − k0)
2, (12)

where ω0 = ω(k0), cg0 = cg(k0) and δ = cgk(k0)/2, and we recall that cg(k) = dω/dk, so
that cgk = ωkk. This translates to an evolution equation for the wave amplitude

i(At + cg0Ax) + δAxx = 0, (13)

where u = ℜ[A exp(ikx − iωt)]. Here it is assumed that the envelope function A(x, t) is
slowly-varying with respect to the carrier phase kx−ωt. The dominant term is At+cg0Ax ≈
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0, showing that the wave envelope propagates with the group velocity cg0, modified by the
effect of weak dispersion due to the term Axx. This equation is well-known in quantum
mechanics as the Schrödinger equation. As for the KdV equation, the small dispersion
effect introduced in (13) needs to be balanced by nonlinearity. In this case, the lowest
possible nonlinearity has to be a cubic term of the form ν|A|2A, for some constant ν. This
form can be roughly argued on the grounds that the associated phase for all the terms in
(13) should be the same, eikx−iωt. By contrast, a quadratic term for example would have
phase e2ikx−2iωt or no phase at all (e.g. as in the |A|2 term). A proper derivation of the
NLS is presented later in this lecture series.

Thus the model evolution equation for the wave envelope is the nonlinear Schrödinger
equation (NLS), expressed here in the reference frame moving with speed cg0 (as before,
transform x → x − cg0t),

iAt + ν|A|2A + δAxx = 0. (14)

Like the KdV equation, (14) is a valid model for many physical systems, including notably
water waves and nonlinear optics, a result first realized in the late 1960’s. Remarkably,
and again like the KdV equation, it is also an integrable equation through the IST, first
established by Zakharov and collaborators in 1972 ([9]). Equation (14) also has soliton
solutions, and the single soliton or solitary wave solution has the form

A(x, t) = a sech(γ(x − V t)) exp(iKx − iΩt), (15)

γ2 =
νa2

2δ
, V = 2δK, and Ω = δ(K2 − γ2). (16)

This solution forms a two-parameter family, the parameters being the amplitude, a,
and the “chirp” wavenumber K; however, K amounts to a perturbation of the carrier
wavenumber k to k + K, |K| ≪ |k|, and so can be removed by a gauge transformation.
Note that this soliton solution exists only when δν > 0 which is the so-called focusing case.

2 Higher space dimensions

2.1 The 2D dispersion relation

In two space dimensions the wavenumber becomes a vector k = (k, l) and the dispersion
relation is then in the form of

ω = ω(k) = ω(k, l), (17)

where the wave phase is k · x−ωt = kx+ly−ωt. The phase velocity is the vector c = ωk/κ2,
where κ = |k|. The group velocity becomes the vector

cg = ∇k · ω =

(

∂ω

∂k
,
∂ω

∂l

)

. (18)

Note that in general, the group velocity and the phase velocity differ in both magnitude
and direction.
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For water waves the dispersion relation is

ω(k, l) = gκ tanh κh. (19)

This is an example of an isotropic medium, where the wave frequency depends only on the
wavenumber magnitude, and not its direction. In this case the group velocity is parallel to
the wavenumber k, and hence parallel to the phase velocity, with a magnitude cg = dω/dκ.

2.2 Kadomtsev-Petviashvili equation

The Kadomtsev-Petviashvili equation (KP equation [5]) is the two-dimensional extension
of the KdV equation for isotropic systems. In the reference frame moving with the linear
long-wave phase speed c0 aligned with the x-direction, the KP equation is

(ut + µuux + βuxxx) +
c0

2
uyy = 0. (20)

Equation (20) assumes that there is weak diffraction in the y-direction, that is ∂/∂y ≪ ∂/∂x.
The linear terms can be deduced from the linear dispersion relation ω = ω(κ), κ = (k2 +
l2)1/2, where it is assumed that l2 ≪ k2. In the long-wave limit we then have κ ≈ k+ l2/2k,
so that

ω ≈ c0k − βk3 +
c0 l2

2k
... . (21)

Identifying, as in Section 1.2, −iω with ∂/∂t, ik ∼ ∂/∂x, and il ∼ ∂/∂y, we see that (20)
follows. When c0β > 0, the system is referred to as the “KPII” equation, and it can be
shown that the solitary wave solution (11) is stable to transverse disturbances. This is the
case for water waves. On the other hand if βc0 < 0, (20) is the “KPI” equation for which
the 1D solitary wave is unstable; instead this equation supports fully 2D “lump” solitons.
Like the KdV equation, both KPI and KPII are integrable equations.

2.3 Benney-Roskes equation

Finally, for systems with an isotropic dispersion relation, the NLS equation can also be
extended to two dimensions. In the reference frame moving with the group velocity cg0

aligned with the x-direction

iAt + ν|A2|A + δAxx + δ1Ayy + QA = 0. (22)

where Q is a functional of the amplitude A(x, t). This equation deserves a little discussion.
The linear term in (22) can be found by expanding the dispersion relation as in the one-
dimensional case (12), so that for k ≈ k0 ≈ l ≈ 0,

ω − ω0 = cg0(k − k0) + δ(k − k0)
2 + δ1l

2, (23)

where, as before δ = ωkk(k0, 0)/2 = cgk(k0, 0)/2 and δ1 = ωll(k0, 0) = cg0/2k0.
The final term QA on the other hand arises from the 2D extension of the cubic term.

The quantity Q depends on |A|2 only, a quantity which does not oscillate, and is therefore
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typically called the “wave-induced mean flow”. The term QA is then interpreted as the
effect of mean flows, generated by the nonlinear wave stresses, back on the wave-packet
amplitude A(x, t). The precise form of Q depends on the particular physical system being
considered. For water waves, where c0

2 = gh, it has been shown that

(

1 −
c2

g0

c2

0

)

Qxx + Qyy + ν1|A|2yy = 0. (24)

Note that if we set the y−derivatives to 0 in this equation then Qxx = 0, and the Q term
vanishes thus recovering the NLS equation.

The resulting system (22, 24) form the Benney-Roskes equations [1], also known as the
Davey-Stewartson equations. Note that for water waves δ < 0, δ1 > 0 and cg0 < c0, so that
(22) is hyperbolic, but (24) is elliptic.
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