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Abstract. We present here a new solution for the astronomical computation of the insolation quantities on Earth spanning
from −250 Myr to 250 Myr. This solution has been improved with respect to La93 (Laskar et al. 1993) by using a direct
integration of the gravitational equations for the orbital motion, and by improving the dissipative contributions, in particular
in the evolution of the Earth–Moon System. The orbital solution has been used for the calibration of the Neogene period
(Lourens et al. 2004), and is expected to be used for age calibrations of paleoclimatic data over 40 to 50 Myr, eventually
over the full Palaeogene period (65 Myr) with caution. Beyond this time span, the chaotic evolution of the orbits prevents a
precise determination of the Earth’s motion. However, the most regular components of the orbital solution could still be used
over a much longer time span, which is why we provide here the solution over 250 Myr. Over this time interval, the most
striking feature of the obliquity solution, apart from a secular global increase due to tidal dissipation, is a strong decrease of
about 0.38 degree in the next few millions of years, due to the crossing of the s6 + g5 − g6 resonance (Laskar et al. 1993).
For the calibration of the Mesozoic time scale (about 65 to 250 Myr), we propose to use the term of largest amplitude in the
eccentricity, related to g2 − g5, with a fixed frequency of 3.200′′/yr, corresponding to a period of 405 000 yr. The uncertainty of
this time scale over 100 Myr should be about 0.1%, and 0.2% over the full Mesozoic era.
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1. Introduction

Due to gravitational planetary perturbations, the elliptical ele-
ments of the orbit of the Earth are slowly changing in time, as is
the orientation of the planet’s spin axis. These changes induce
variations of the insolation received on the Earth’s surface. The
first computation of the secular variations of the Earth’s or-
bital elements were made by Lagrange (1781, 1782), and then
Pontécoulant (1834), but it was the work of Agassiz (1840),
showing geological evidence of past ice ages, that triggered
the search for a correlation between the geological evidence of
large climatic changes, and the variations of the Earth’s astro-
nomical parameters. Shortly after, Adhémar (1842) proposed
that these climatic variations originated from the precession of
the Earth’s rotation axis.

After the publication of a more precise solution of the Earth
by Le Verrier (1856), that took into account the secular pertur-
bations of all main planets except for Neptune, Croll (1890)
proposed that the variation of the Earth’s eccentricity was also
an important parameter for the understanding of the past cli-
mates of the Earth.

The first computations of the variations of the obliquity
(angle between the equator and orbital plane) due to the sec-
ular variations of the orbital plane of the Earth are due to

Pilgrim (1904), and were later used by Milankovitch (1941) to
establish his theory of the Earth’s insolation parameters. Since
then, the understanding of the climate response to the orbital
forcing has evolved, but all the necessary ingredients for the
insolation computations were present in Milankovitch’s work.

The revival of the Milankovitch theory of paleoclimate
can be related to the landmark work of Hays et al. (1976),
that established a correlation between astronomical forcing and
the δ18O records over the past 500 kyr. The Milankovitch the-
ory has since been confirmed overall with variations in the cli-
mate response to the insolation forcing (see Imbrie & Imbrie
1979; Imbrie 1982, for more historical details; and Zachos et al.
2001; Grastein et al. 2004, for a recent review on the astronom-
ical calibration of geological data).

Since the work of Pilgrim (1904) and Milankovitch (1941),
the orbital and precession quantities of the Earth have un-
dergone several improvements. Le Verrier’s solution (1856)
consisted in the linearized equations for the secular evolu-
tion of the planetary orbits. Stockwell (1873), and Harzer
(1895) added the planet Neptune to Le Verrier’s computa-
tions. A significant improvement is due to Hill (1897) who
discovered that the proximity of a resonance in Jupiter and
Saturn’s motion induces some important complements at the
second order with respect to the masses. The solution of
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Brouwer & Van Woerkom (1950) is essentially the solution of
Le Verrier and Stockwell, complemented by the higher order
contributions computed by Hill. This solution was used for in-
solation computations by Sharav & Boudnikova (1967a,b) with
updated values of the parameters, and later on by Vernekar
(1972). The computations of Vernekar were actually used by
Hays et al. (1976).

The next improvement in the computation of the orbital
data is by Bretagnon (1974), who computed the terms of second
order and degree 3 in eccentricity and inclination in the secu-
lar equations, but omitted the terms of degree 5 in the Jupiter-
Saturn system from Hill (1897). This solution was then used by
Berger (1978) for the computation of the precession and inso-
lation quantities of the Earth, following Sharav & Boudnikova
(1967a,b). All these works assumed implicitly that the motion
of the Solar system was regular and that the solutions could be
obtained as quasiperiodic series, using perturbation theory.

When Laskar (1984, 1985, 1986) computed in an extensive
way the secular equations for the Solar system, including all
terms up to order 2 in the masses and 5 in eccentricity and in-
clination, he realized that the traditional perturbative methods
could not be used for the integration of the secular equations,
due to strong divergences that became apparent in the system
of the inner planets (Laskar 1984). This difficulty was over-
come by switching to a numerical integration of the secular
equations, which could be done in a very effective way, with a
very large stepsize of 500 years. These computations provided
a much more accurate solution for the orbital motion of the
Solar system (Laskar 1986, 1988), which also included a full
solution for the precession and obliquity of the Earth for inso-
lation computations over 10 Myr (million of years). Extending
his integration to 200 Myr, Laskar (1989, 1990) demonstrated
that the orbital motion of the planets, and especially of the ter-
restrial planets, is chaotic, with an exponential divergence cor-
responding to an increase of the error by a factor of 10 every
10 Myr, thus destroying the hope to obtain a precise astronom-
ical solution for paleoclimate studies over more than a few tens
of million of years (Laskar 1999).

The first long term direct numerical integration (without av-
eraging) of a realistic model of the Solar system, together with
the precession and obliquity equations, was made by Quinn
et al. (1991) over 3 Myr. Over its range, this solution pre-
sented very small differences with the updated secular solution
of Laskar et al. (1993) that was computed over 20 Myr, and
has since been extensively used for paleoclimate computations
under the acronym La93. The orbital motion of the full Solar
system has also been computed over 100 Myr by Sussman
& Wisdom (1992), using a symplectic integrator with mixed
variables (Wisdom & Holman 1991), confirming the chaotic
behaviour found by Laskar (1989, 1990). Following the im-
provement of computer technology, long term integrations of
realistic models of the Solar system become more easy to per-
form, but are still challenging when the time interval is the age
of the Solar system or if the accuracy of the model is compa-
rable to the precision of short term planetary ephemeris. The
longest integration was made over several billions of years by
Ito & Tanikawa (2002) with a Newtonian model that did not
contain general relativity or lunar contributions, while a recent

long term integration of the orbital motion of the Solar system
including general relativity, and where the Moon is resolved
was made by Varadi et al. (2003) over about 50 Myr.

Here we present the result of the efforts that we have con-
ducted in the past years in our group in order to obtain a new
solution for Earth paleoclimate studies over the Neogene pe-
riod (≈23 Myr) and beyond. After a detailed analysis of the
main limiting factors for long term integrations (Laskar 1999),
and the design of new symplectic integrators (Laskar & Robutel
2001), we have obtained a new numerical solution for both or-
bital and rotational motion of the Earth that can be used over
about 50 Myr for paleoclimate studies, and even over longer pe-
riods of time if only the most stable features of the solution are
used. Apart from the use of a very complete dynamical model
for the orbital motion of the planets, and of the new symplec-
tic integrator of Laskar & Robutel (2001) (see next section), a
major change with respect to La93 (Laskar et al. 1993) is the
consideration, in the precession solution, of a more complete
model for the Earth–Moon tidal interactions (Sect. 4.1).

The present solution (La2004) or some of its previous
variants have already been distributed (Laskar 2001) and
used for calibration of sedimentary records over extended
time interval (Pälike 2002), and in particular for the con-
struction of a new astronomically calibrated geological time
scale for the Neogene period (Lourens et al. 2004). The
full solution is available on the Web site www.imcce.fr/
Equipes/ASD/insola/earth/earth.html, together with a
set of routines for the computation of the insolation quantities
following (Laskar et al. 1993).

In addition to the numerical output of the orbital and rota-
tional parameter of the Earth that is available on the Web site,
we have made a special effort to provide in Sect. 8 very com-
pact analytical approximations for the orbital and rotational
quantities of the Earth, that can be used in many cases for
a better analytical understanding of the insolation variations.
Finally, in the last sections, the stability of the solution La2004
is discussed, as well as the possible chaotic transitions of the
arguments present in the main secular resonances.

2. Numerical model

The orbital solutions La90−93 (Laskar 1990; Laskar et al.
1993) were obtained by a numerical integration of the aver-
aged equations of the Solar system, including the main general
relativity and Lunar perturbations. The averaging process was
performed using dedicated computer algebra routines. The re-
sulting equations were huge, with about 150 000 polynomial
terms, but as the short period terms were no longer present,
these equations could be integrated with a step size of 200
to 500 years, allowing very extensive long term orbital com-
putations for the Solar system.

Although these averaged equations solutions could be im-
proved by some new adjustment of the initial conditions and
parameters (Laskar et al. 2004), it appears that because of the
improvements of computer technology, it becomes now pos-
sible to obtain more precise results over a few tens of mil-
lion of years using a more direct numerical integration of
the gravitational equations, and this is how the present new
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Table 1. Main constants used in La2004. IAU76 refers to the resolutions of the International Astronmical Union of 1976, IERS1992,
and IERS2000, refers to the IERS conventions (McCarthy 1992; McCarthy & Petit 2004).

Symbol Value Name Ref.

ε0 84 381.448 Obliquity of the ecliptic at J2000.0 IAU76

ω0 7.292115 × 10−5 rad s−1 Mean angular velocity of the Earth at J2000.0 IERS2000

ψ0 5029.0966 ′′/cy Precession constant IERS2000

δψ0 −0.29965 ′′/cy Correction to the precession IERS2000

k2 0.305 k2 of the Earth (Lambeck 1988)

k2M 0.0302 k2 of the Moon (Yoder 1995)

∆t 639 s Time lag of the Earth

∆tM 7055 s Time lag of the Moon

J2E 0.0010826362 Dynamical form-factor for the Earth IERS1992

J2M 0.000202151 Dynamical form-factor for the Moon IERS1992

J2S 2. × 10−7 Dynamical form-factor for the Sun IERS2000

RE 6378.1366 km Equatorial radius of the Earth IERS2000

RM 1738 km Equatorial radius of the Moon IAU76

Rsun 696 000 000 m Equatorial radius of the Sun IAU76

GS 1.32712442076 × 1020 m3 s−2 Heliocentric gravitational constant IERS2000

Mmer 6 023 600 Sun – Mercury mass ratio IERS1992

Mven 408 523.71 Sun – Venus mass ratio IERS1992

Mear 328 900.56 Sun – Earth and Moon mass ratio IERS1992

Mmar 3 098 708 Sun – Mars mass ratio IERS1992

Mjup 1047.3486 Sun – Jupiter and satellites mass ratio IERS1992

Msat 3497.9 Sun – Saturn and satellites mass ratio IERS1992

Mura 22 902.94 Sun – Uranus and satellites mass ratio IERS1992

Mnep 19 412.24 Sun – Neptune and satellites mass ratio IERS1992

Mplu 135 000 000 Sun – Pluto and Charon mass ratio IERS1992

µ 0.0123000383 Moon-Earth mass ratio IERS2000

solution La2004 is obtained. A detailed account of the dynami-
cal equations and numerical integrator is not in the scope of the
present paper, but will be made in a forthcoming publication.
Nevertheless, we will report here on the main issues concern-
ing the numerical integrator, and will more extensively discuss
on the dissipative terms in the integration (see Sect. 4.1).

2.1. Dynamical model

The orbital model differs from La93, as it comprises now
all 9 planets of the Solar System, including Pluto. The post-
Newtonian general relativity corrections of order 1/c2 due to
the Sun are included following Saha & Tremaine (1994).

The Moon is treated as a separate object. In order to obtain
a realistic evolution of the Earth–Moon system, we also take
into account the most important coefficient (JS

2 ) in the gravi-
tational potential of the Earth and of the Moon (Table 1), and
the tidal dissipation in the Earth–Moon System (see Sect. 4.1).
We also integrate at the same time the precession and obliq-
uity equations for the Earth and the evolution of its rotation

period in a comprehensive and coherent way, following the
lines of Néron de Surgy & Laskar (1997), Correia et al. (2003)
(see Sect. 3).

2.2. Numerical integrator

In order to minimize the accumulation of roundoff errors, the
numerical integration was performed with the new symplectic
integrator scheme SABAC4 of (Laskar & Robutel 2001), with
a correction step for the integration of the Moon. This inte-
grator is particularly adapted to perturbed systems where the
Hamiltonian governing the equations of motion can be written
in the form H = A + εB, as the sum of an integrable part A
(the Keplerian equations of the planets orbiting the Sun and
of the Moon around the Earth), and a small perturbation po-
tential εB (here the small parameter ε is of the order of the
planetary masses). Using this integrator with step size τ is then
equivalent to integrate exactly a close by Hamiltonian H̃, where
the error of method H − H̃ is of the order of O(τ8ε) + O(τ2ε2),
and even O(τ8ε) + O(τ4ε2) when the correction step is added,
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while the same quantity is of the order O(τ2ε), in the widely
used symplectic integrator of (Wisdom & Holman 1991). More
precisely, the integration step S 0(τ) with SABA4 is

S 0(τ) = eτc1LA eτd1LB eτc2LA eτd2LB eτc3LA

×eτd2LB eτc2LA eτd1LB eτc1LA (1)

where τ is the integration step, L f is the differential operator de-
fined by L f g = { f , g}, where { f , g} is the usual Poisson bracket,
and the coefficients ci and di are

c1 = 1/2 −
√

525 + 70
√

30/70

c2 =

(√
525 + 70

√
30 −

√
525 − 70

√
30

)
/70

c3 =

(√
525 − 70

√
30

)
/35 (2)

d1 = 1/4 − √30/72

d2 = 1/4 +
√

30/72.

For the integration of the Earth–Moon system, we have added
a correction step (see Laskar & Robutel 2001), and the full in-
tegrator steps S 1(τ) of SABAC4 then becomes

S 1(τ) = e−τ
3ε2b/2LC S 0(τ)e−τ

3ε2b/2LC (3)

where b = 0.00339677504820860133 and C = {{A, B}, B}.
The step size used in the integration was τ = 5 × 10−3 yr =
1.82625 days. The initial conditions of the integration were
least square adjusted to the JPL ephemeris DE406, in order to
compensate for small differences in the model. In particular, we
do not take into account the effect of the minor planets, and the
modelization of the body interactions in the Earth–Moon sys-
tem is more complete in DE406 (see Williams et al. 2001). The
integration time for our complete model, with τ = 5×10−3 yr is
about one day per 5 Myr on a Compaq Alpha (ev68, 833 Mhz)
workstation.

2.3. Numerical roundoff error

In Fig. 1a is plotted the evolution of the total energy of the sys-
tem from −250 Myr to +250 Myr. The energy presents a secu-
lar trend that corresponds to the dissipation in the Earth–Moon
system. Indeed, after removing the computed energy change
due to the secular evolution of the Earth–Moon semi-major
axis, the secular trend in the energy evolution disappears and
we are left with a residual that is smaller than 2.5 × 10−10 af-
ter 250 Myr, and seems to behave as a random walk (Fig. 1b).
The normal component of the angular momentum is conserved
over the same time with a relative error of less than 1.3× 10−10

(Fig. 1c).
In order to test the randomness of the numerical error in the

integration, we have plotted the distribution of the difference of
total energy from one 1000 year step to the next. After normal-
ization to 1 of the area of the distribution curve (Fig. 2), we ob-
tain a curve that is almost identical to the normalized Gaussian
function

f (t) =
1

σ
√

2π
exp

− x2

2σ2

 (4)

Fig. 1. Conservation of integrals. a) Relative variation of the total en-
ergy of the system versus time (in Myr) from −250 Myr to +250 Myr.
b) The same after correction of the secular trend due to the tidal dissi-
pation in the Earth–Moon system. c) Relative variation of the normal
component of the total angular momentum.

Fig. 2. Normalized repartition of the energy numerical error
for 1000 yr steps, over the whole integration, from −250 Myr
to +250 Myr. Practically superposed to this curve is the computed
normal distribution given by Eqs. (4) and (5).

where σ = 2.6756× 10−13 is the computed standard deviation

σ =

√∑
i

(xi − m)2/(N − 1) (5)

while the mean m = −2.6413 × 10−18 is neglected. The in-
tegration stepsize is 5 × 10−3 yr, the standard deviation per
step is thus σ1 = 5.9828 × 10−16, that is about 2.7εM,
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Fig. 3. Fundamental planes for the definition of precession and obliq-
uity. Eqt and Ect are the mean equator and ecliptic at date t. Ec0 is the
fixed ecliptic at Julian date J2000, with equinox γ0. The general pre-
cession in longitude ψ is defined by ψ = Λ −Ω. ω is the longitude of
the node, and i the inclination. The angle ε between Eqt and Ect is the
obliquity.

where εM ≈ 2.22 × 10−16 is the machine Epsilon in double
precision. Assuming that the machine error is uniformly dis-
tributed in the interval [−εM/2,+εM/2], the standard error of
an elementary operation is σ0 = εM/

√
12, and the error over

one step thus corresponds to (σ1/σ0)2 ≈ 87 elementary oper-
ations. This value is thus extremely small, and we believe that
we will not be able to improve σ1 unless we decrease σ0 by
switching to higher machine precision. For example, in quadru-
ple precision (128 bits for the representation of a real num-
ber), εM ≈ 1.93 × 10−34. Moreover, the Gaussian distribution
of the increments of the energy (Fig. 2) ensures that we do not
have systematic trends in our computations, and that the nu-
merical errors behave as a random variable with zero mean.
The total energy error reflects mostly the behavior of the outer
planets, but we can assume that the numerical error will behave
in roughly the same for all the planets, although for Mercury,
due to its large eccentricity, some slight increase of the error
may occur. This should not be the case for the error of method,
resulting from the truncation in power of τ in the integrator,
where the error should decrease as the period of the planet
increases.

3. Precession equations

We suppose here that the Earth is a homogeneous rigid body
with moments of inertia A < B < C and we assume that its
spin axis is also the principal axis of inertia. The precession ψ
and obliquity ε (Fig. 3) equations for the rigid Earth in the pres-
ence of planetary perturbations are given by Kinoshita (1977),
Laskar (1986), Laskar et al. (1993), Néron de Surgy & Laskar
(1997).



dX
dt
= L

√
1 − X2

L2

(
B(t) sinψ −A(t) cosψ

)
dψ
dt
=
αX
L
− X

L
√

1 − X2

L2

(
A(t) sinψ + B(t) cosψ

)
− 2C(t).

(6)

With X = cos ε, L = Cω, where ω is the spin rate of the
Earth, and



A(t) =
2√

1 − p2 − q2

[
q̇ + p(qṗ − pq̇)

]
B(t) =

2√
1 − p2 − q2

[
ṗ − q(qṗ − pq̇)

]
C(t) = qṗ − pq̇

(7)

where q = sin(i/2) cosΩ and p = sin(i/2) sinΩ, and where α
is the “precession constant”:

α =
3G

2ω

 m�(
a�

√
1 − e�2

)3

+
mM

(aM

√
1 − eM

2)3

1 − 3

2
sin2 iM


 Ed. (8)

For a fast rotating planet like the Earth, the dynamical elliptic-
ity Ed = (2C − A − B)/C can be considered as proportional
to ω2; this corresponds to the hydrostatic equilibrium (see for
example Lambeck 1980). In this approximation, α is thus pro-
portional to ω. The quantities A, B and C are related to the
secular evolution of the orbital plane of the Earth and are given
by the integration of the planetary motions.

4. Contributions of dissipative effects

4.1. The body tides

4.1.1. Rotational evolution

Following (Darwin 1880; Mignard 1979), we assume that the
torque resulting from tidal friction is proportional to the time
lag∆t needed for the deformation to reach the equilibrium. This
time lag is supposed to be constant, and the angle between the
direction of the tide-raising body and the direction of the high
tide (which is carried out of the former by the rotation of the
Earth) is proportional to the speed of rotation. Such a model is
called “viscous”, and corresponds to the case for which 1/Q is
proportional to the tidal frequency.

After averaging over the mean anomaly of the Moon and
Earth (indices M and ⊕), and over the longitude of node and
perigee of the Moon, we have at second order in eccentricity
for the contributions of the solar tides



dL
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= − 3Gm2�R5k2∆t

2a�6

×
[(

1 + 15
2 e�2
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X2

L2

) L
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(
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)X
C
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(
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2 e�2
)
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]

(9)
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where n� is the mean motion of the Sun (index �) around the
Earth, while the contribution of the lunar tides is

dL
dt
= −3Gm2

MR5k2∆t

2a6
M

×
[

1
2

(
1 + 15

2 eM
2
) [

3 − cos2 iM + (3 cos2 iM − 1)
X2

L2

]
L
C

−2
(
1 + 27

2 eM
2
) X

L
nM cos iM

]

dX
dt
= −3Gm2

MR5k2∆t

2a6
M

×
[(

1 + 15
2 eM

2
)
(1 + cos2 iM) X

C

−2
(
1 + 27

2 eM
2
)

nM cos iM

]
.

(10)

The “cross tides”, are obtained by the perturbation of the tidal
bulge raised by the Sun or the Moon on the other body. Their
importance was noticed by Touma & Wisdom (1994). These
tidal effects tend to drive the equator towards the ecliptic, and
have both the same magnitude

dL
dt
= −3Gm�mMR5k2∆t

4a�3aM
3

×
1 + 3

2
e�2


1 + 3

2
eM

2

 (
3 cos2 iM − 1

) (
1 − X2

L2

) L
C

dX

dt
= 0.

(11)

4.1.2. Orbital evolution

At second order in eccentricity, we have for the orbital evolu-
tion of the Moon (Mignard 1979, 1980, 1981; Néron de Surgy
& Laskar 1997)

daM

dt
=

6GmM
2R5k2∆t

µaM
7

×
[(

1 + 27
2 eM

2
) X
CnM

cos iM − (1 + 23eM
2)

]
deM

dt
=

3GmM
2R5k2∆t eM

µaM
8

[
11
2

X
CnM
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]

dcos iM
dt

=
3GmM

2R5k2∆t
2µaM

8

(
1 + 8eM

2
) X

CnM
sin2 iM

(12)

where µ = m⊕mM/(m⊕ + mM), and for the Sun

da�
dt
=

6Gm�2R5k2∆t
µ′a�7

×
[ (

1 + 27
2 e�2

) X
Cn�

−
(
1 + 23e�2

) ]
de�
dt
=

3Gm�2R5k2∆t e�
µ′a�8

[
11
2

X
Cn�

− 9
]

(13)

where µ′ = m⊕m�/(m⊕ + m�). However, both last varia-
tions are negligible: about 3 meters per Myr for da�/dt and
10−12 per Myr for de�/dt.

4.1.3. Tides on the Moon

We have also taken into account the tidal effect raised by
the Earth on the Moon, following Néron de Surgy & Laskar
(1997), with the following simplifying assumptions that the
Moon is locked in synchronous spin-orbit resonance with the
Earth (i.e. ωM = nM), and expanding only at first order in
the Moon inclination (6.41◦ at t = J2000). We thus obtain the
additional contributions

daM

dt
= −57Gm⊕2RM

5k2M∆tMeM
2

µaM
7

deM

dt
= −21Gm⊕2RM

5k2M∆tMeM

2µaM
8

·
(14)

With the numerical values from Table 1, these contributions
represent 1.2% of the total daM/dt and 30% of the total deM/dt
for present conditions. Finally, the tides raised on the Moon by
the Sun can be neglected because the ratio of the magnitudes
of solar and terrestrial tides on the Moon is(m�
m⊕

)2( a�
aM

)6
� 3.2 × 10−5. (15)

4.2. Other dissipative effects

4.2.1. Core-mantle friction

The core and the mantle have different dynamical ellipticities,
so they tend to have different precession rates. This trend pro-
duces a viscous friction at the core-mantle boundary (Poincaré
1910; Rochester 1976; Lumb & Aldridge 1991). We will con-
sider here that an effective viscosity ν can account for a weak
laminar friction, as well as a strong turbulent one which thick-
ens the boundary layer (e.g. Correia et al. 2003).

The core-mantle friction tends to slow down the rotation
and to bring the obliquity down to 0◦ if ε < 90◦ and up
to 180◦ otherwise, which contrasts with the effect of the tides.
Furthermore, one can see that, despite the strong coupling by
pressure forces, there can be a substantial contribution to the
variation of the spin for high viscosities and moderate speeds
of rotation.

4.2.2. Atmospheric tides

The Earth’s atmosphere also undergoes some torques which
can be transmitted to the surface by friction: a torque caused by
the gravitational tides raised by the Moon and the Sun, a mag-
netic one generated by interactions between the magnetosphere
and the solar wind. Both effects are negligible; see respectively
Chapman & Lindzen (1970) and Volland (1978).

Finally, a torque is produced by the daily solar heating
which induces a redistribution of the air pressure, mainly driven
by a semidiurnal wave, hence the so-called thermal atmo-
spheric tides (Chapman & Lindzen 1970). The axis of sym-
metry of the resulting bulge of mass is permanently shifted out
of the direction of the Sun by the Earth’s rotation. As for the
body tides, this loss of symmetry is responsible for the torque
which, in the present conditions, tends to accelerate the spin
(Correia & Laskar 2003).
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Volland (1978) showed that this effect is not negligible, re-
ducing the Earth’s despinning by about 7.5%. But, although the
estimate of their long term contributions deserves careful atten-
tion, we have not taken the atmospheric tides into account in
the computations presented in the next sections, assuming that,
as the uncertainty on some of the other factors is still large, the
global results obtained here will not differ much when taking
this additional effect into consideration.

4.2.3. Mantle convection

Several internal geophysical processes are able to affect the mo-
ments of inertia of the Earth and thereby its precession con-
stant value. Redistribution of mass within the Earth can occur
as a consequence of plate subduction, upwelling plumes, man-
tle avalanches or density anomalies driven by mantle convec-
tion. Typical time-scales of these phenomena range from ∼10
to 100 Myr. However, their impact is still poorly known.
Forte & Mitrovica (1997) computed convection-induced per-
turbations in the dynamical ellipticity of the Earth over the
last 20 Myr, using different sets of 3D seismic heterogeneity
models and mantle viscosity profiles. Most of the models in-
dicate that mantle convection led to a mean relative increase
of the precession constant close to ∼0.5% since the beginning
of the Neogene period (∼23 Myr ago). Although this value is
similar to our estimate of the tidal dissipation effect (but in the
opposite direction, see Sect. 9), we did not take account of its
impact in our computations. Because of its still large uncer-
tainty, we feel that it is more appropriate to include its possible
contribution as a perturbation of the tidal dissipation parameter.

4.2.4. Climate friction

Climate friction is a positive and dissipative feedback between
obliquity variations and climate which may cause a secular
drift of the spin axis. In response to quasi-periodic variations
in the obliquity, glacial and interglacial conditions drive
transport of water into and out of the polar regions, affecting
the dynamical ellipticity of the Earth. A significant fraction
of the surface loading is compensated by viscous flow within
the Earth, but delayed responses in both climatic and viscous
relaxation processes may introduce a secular term in the
obliquity evolution (Rubincam 1990, 1995). Because both the
ice load history and the visco-elastic structure of the Earth are
not strongly constrained, it is difficult to produce accurate sim-
ulations and predictions of the coupled response of the entire
system. Nevertheless, simplifying assumptions have been used
to estimate the magnitude and the direction of the secular drift.
Several analyses have examined this phenomenon, suggesting
that climate friction could have changed the Earth’s obliquity
by more that 20◦ over its whole geological history (Bills 1994;
Ito et al. 1995; Williams et al. 1998). A more detailed theo-
retical and numerical treatment of climate friction has been
developped by Levrard & Laskar (2003). Using available con-
straints on the ice volume response to obliquity forcing based
on δ18O oxygen-isotope records, they showed that climate
friction impact is likely negligible. Over the last 3 Ma,

Fig. 4. Differences La2003-DE406 over the full range of DE406
(−5000 yr to +1000 from J2000). The units for semi-major axis (a)
are AU, arcsec for mean longitude (l) and longitude of perihelion
(perihelion). The eccentricity (e) and the inclinations variables (q =
sin (i/2) cos (Ω), p = sin (i/2) sin (Ω)), where i and Ω are the inclina-
tion and node from the ecliptic and equinox J2000.

corresponding to the intensification of the Northern
Hemisphere glaciation, a maximal absolute drift of
only ∼0.04◦/Myr has been estimated for a realistic lower
mantle viscosity of 1022 Pa. s. Before 3 Ma, climate friction
impact is expected to be much more negligible because of
the lack of massive ice caps. In this context, this effect was
not taken into account in our long-term computations. Indeed,
the uncertainty on the tidal dissipation is still important and
it is expected that most of the possible effect of climate
friction would be absorbed by a small change of the main tidal
dissipation parameters.

Nevertheless, glaciation-induced perturbations in the dy-
namical ellipticity of the Earth change the precession fre-
quency and thereby the obliquity frequencies leading to a
temporal shift between a perturbated and a nominal solution
(see Sect. 9). Estimates of this offset have been performed
by Mitrovica & Forte (1995) and Levrard & Laskar (2003)
for a large set of mantle viscosity profiles. It may reach be-
tween ∼0.7 and 8 kyr after 3 Myr, corresponding respectively
to extreme lower mantle viscosities of 3 × 1021 and 1023 Pa. s.
In the last case, the Earth is nearly rigid on orbital timescales
and the corresponding offset can be thus reasonably considered
as a maximal value.
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5. Comparison with DE406

Using a direct numerical integrator, our goal is to provide a
long term solution for the orbital and precessional elements
of the Earth with a precision that is comparable with the
usual accuracy of a short time ephemeris. We have thus com-
pared our solution with the most advanced present numerical
integration, DE406, that was itself adjusted to the observa-
tions (Standish 1998). Over the full range of DE406, that is
from −5000 yr to +1000 yr from the present date, the maxi-
mum difference in the position of the Earth–Moon barycenter
is less than 0.09 arcsec in longitude, and the difference in ec-
centricity less than 10−8. The difference in the longitude of the
Moon are more important, as the dissipative models that are
used in the two integrations are slightly different. They amount
to 240 arcsec after 5000 years, and the eccentricity difference is
of the order of 2 × 10−5, but it should be noted that only the av-
eraged motion of the Moon will have some significant influence
on the precession and obliquity of the Earth. Table 2 summa-
rizes the maximum differences between La2004 and DE406 for
the main orbital elements, over the whole interval of DE406,
for different time intervals.

6. Comparison with La93

We have compared in Figs. 5 and 6 the eccentricity and in-
clination of the secular solution La93 and the new present so-
lution La2004. Over 10 Myr, the two orbital solutions La93
and La2004 are nearly identical, and do not differ significantly
over 20 Myr. The differences in eccentricity increase regularly
with time, amounting to about 0.02 in the eccentricity after
20 Myr, about 1/3 of the total amplitude ≈0.063, while the dif-
ference in the orbital inclination reaches 1 degree, to compare
to a maximum variation of 4.3 degrees. These differences result
mostly from a small difference in the main secular frequency g6

from Jupiter and Saturn that is now g6 = 28.2450 arcsec/year
(Table 3) instead of 28.2207 arcsec/year in the previous so-
lution. Beyond 20 million years, the differences between the
two solutions become more noticeable. The solutions in obliq-
uity and climatic precession are plotted in Figs. 7 and 8. The
difference in obliquity over 20 Myr amounts to about 2 de-
grees, which means that the obliquity cycles of the two solu-
tions become nearly out of phase after this date. The differences
La2004-La93 are plotted in (a), while in (b) only the preces-
sion model has been changed and in (c) only the orbital model
has been changed. Comparing 7b and 7c shows that most of
the differences between the La93 and La2004 obliquity solu-
tions result from the change in the dissipative model of the
Earth–Moon system, while the only change of the orbital so-
lution would lead to a much smaller change of only 0.6 degree
in obliquity after 20 Myr. Similar conclusions can be made for
the climatic precession (Figs. 8a–c).

7. Secular frequencies

Over long time scales, the determination of longitude of the
planet on its orbit is not very important, and we are more con-
cerned by the slow evolution of the Earth orbit under secu-
lar planetary perturbations. The semi-major axis of the Earth

Table 2. Maximum difference between La2004 and DE406 over the
whole time interval of DE406 (−5000 yr to +1000 yr with origin
at J2000); Col. 1: −100 to +100 yr; Col. 2:−1000 to +1000 yr;
Col. 3: −5000 to +1000 yr. EMB is the Earth–Moon barycenter.

λ (′′ × 1000)

Mercury 8 60 90
Venus 12 107 143
EMB 3 28 79
Mars 19 171 277

Jupiter 5 69 69
Saturn 1 4 7

Uranus 1 3 4
Neptune 2 7 16

Pluto 3 9 17
Moon 13 470 85 873 221 724
Earth 10 88 238

a (UA × 1010 )

Mercury 4 43 58
Venus 13 23 27
EMB 29 62 62
Mars 27 76 76

Jupiter 268 470 565
Saturn 743 1073 1168

Uranus 1608 3379 3552
Neptune 3315 5786 6458

Pluto 4251 10 603 10 603
Moon 23 204 520
Earth 487 3918 10 238

e (×1010)

Mercury 33 52 144
Venus 12 33 103
EMB 30 80 98
Mars 62 130 468

Jupiter 30 95 158
Saturn 69 107 138

Uranus 99 135 144
Neptune 65 177 201

Pluto 92 215 215
Moon 11 152 252 832 252 832
Earth 460 3669 8694

sin (i/2) (×1010)

Mercury 2 18 88
Venus 5 55 144
EMB 17 190 414
Mars 48 492 2053

Jupiter 1 11 122
Saturn 1 6 100

Uranus 2 5 5
Neptune 2 6 6

Pluto 5 13 17
Moon 5765 97 275 600 789
Earth 19 202 841
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Fig. 5. Eccentricity of the Earth over 25 Myr in negative time from J2000. The solid line stands for the present solution La2004, while the
dotted line is the eccentricity in the La93 solution (Laskar et al. 1993). The differences of the two solutions becomes noticeable after 10 Myr,
and significantly different after 15−20 Myr.

Fig. 6. Inclination (in degrees) of the Earth with respect to the fixed ecliptic J2000 over 25 Myr in negative time from J2000. The solid line
stands for the present solution La2004, while the dotted line is the eccentricity in the La93 solution (Laskar et al. 1993). The differences of the
two solutions become noticeable after 15 Myr, and significantly different after 20 Myr.

has only very small variations (Fig. 11). Indeed, as shown by
Laplace (1773) and Lagrange (1776), there are no secular vari-
ations of the semi-major axis of the planets at first order with
respect to the masses, while some terms of higher order can
be present (Haretu 1885). These terms are very small for the

inner planets, but more visible in the solutions of the outer
planets where the proximity of some mean motion resonances
increases their contribution at second order with respect to the
masses (Milani et al. 1987; Bretagnon & Simon 1990). For the
solution of the Earth, they are so small that they will not induce
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Table 3. Main secular frequencies gi and si of La2004 determined
over 20 Ma for the four inner planets, and over 50 Ma for the 5 outer
planets (in arcsec yr−1). ∆100 and ∆250 are the observed variations of
the frequencies over respectively 100 and 250 Myr. In the last column,
the period of the secular term are given.

(′′/yr) ∆100 ∆250 Period (yr)

g1 5.59 0.13 0.20 231 843

g2 7.452 0.019 0.023 173 913

g3 17.368 0.20 0.20 74 620

g4 17.916 0.20 0.20 72 338

g5 4.257452 0.000030 0.000030 304 407

g6 28.2450 0.0010 0.0010 45 884

g7 3.087951 0.000034 0.000048 419 696

g8 0.673021 0.000015 0.000021 1 925 646

g9 −0.34994 0.00063 0.0012 3 703 492

s1 −5.59 0.15 0.16 231 843

s2 −7.05 0.19 0.25 183 830

s3 −18.850 0.066 0.11 68 753

s4 −17.755 0.064 0.14 72 994

s5 0.00000013 0.0000001 0.0000001

s6 −26.347855 0.000076 0.000087 49 188

s7 −2.9925259 0.000025 0.000025 433 079

s8 −0.691736 0.000010 0.000011 1 873 547

s9 −0.34998 0.00051 0.0011 3 703 069

Fig. 7. Differences in obliquity (in degrees) La2004−La93(1, 1) versus
time (in Myr) over 20 Myr from present a). In La2004 both orbital
and precession models have been changed. In b) only the precession
model has been changed, while in c) only the orbital motion has been
changed. It is thus clear that the main change in La2004 arise from the
change of precession model.

any noticeable change of the mean Earth–Sun distance, or of
the duration of the year in the geological past, at least over the
past 250 millions of years.

It was first shown by Lagrange (1774, 1777) that the incli-
nation and nodes of the planets suffer long term quasiperiodic
variations. Shortly after, Laplace (1776) demonstrated that this
was the same for the eccentricity and longitudes. Both com-
putations were made using the linearization of the first order

Fig. 8. Differences in climatic precession (e sinω, where ω = +ψ is
the perihelion from the moving equinox) La2004−La93(1, 1) versus
time (in Myr) over 20 Myr from present a). In La2004 both orbital
and precession models have been changed. In b) only the precession
model has been changed, while in c) only the orbital motion has been
changed. It is thus clear that the main change in La2004 arise from the
change of precession model.

averaged equations of motion. In this approximation, if we use
the complex notations

zk = ek exp(ik); ζk = sin(ik/2) exp(iΩk), (16)

the equations of motion are given by a linear equation

d[x]

dt
= iA[x] (17)

where [x] is the column vector (z1, . . . , z9, ζ1, . . . , ζ9), and

A =
(

A1 0
0 A2

)
(18)

where the 9 × 9 matrices (for 9 planets) A1, A2 depend on the
planetary masses and semi-major axis of the planets. The res-
olution of these equations is now classical, and is obtained
through the diagonalization of the matrix A by the change of
coordinates into proper modes u

[x] = S [u]. (19)

The solution in the proper modes [u] = (z•1, . . . , z
•
9, ζ
•
1 , . . . , ζ

•
9 )

is then given by the diagonal system

d[u]

dt
= iD[u] (20)

where D = S −1AS is a diagonal matrix D =

Diag(g1, g2, . . . , g9, s1, s2, . . . , s9), where all the eigenval-
ues gk, sk are real. The solutions of the proper modes z•k , ζ

•
k are

z•k(t) = z•k(0) exp(igk t) ; ζ•k (t) = ζ•k (0) exp(isk t). (21)

The solutions in the elliptical variables zk, ζk are then given as
linear combinations of the proper modes (19), and becomes
quasiperiodic functions of the time t, that is sums of pure peri-
odic terms with independent frequencies.

zk =

9∑
k=1

αk j eigk t; ζk =

9∑
k=1

βk j eisk t. (22)
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Lagrange (1781, 1782) actually did this computation for a plan-
etary system including Mercury, Venus, Earth, Mars, Jupiter
and Saturn. Pontécoulant (1834) extended it to the 7 known
planets of the time, but with several errors in the numerical
constants. The first precise solution for the Earth was given by
Le Verrier (1856) for 7 planets, and was later on extended by
Stockwell (1873) with the addition of Neptune. The validity of
the linear approximation (17) was also questioned and subse-
quent improvements introduced some additional contribution
of higher degree in eccentricity and inclination in Eq. (17),
as well as terms of higher order with respect to the plane-
tary masses in the averaged equations (Hill 1897; Brouwer
& Van Woerkom 1950; Bretagnon 1974; Duriez 1977; Laskar
1985). With the addition of additional non linear terms B(x, x̄)
(of degree ≥ 3 in eccentricity and inclination), the secular
equations

d[x]

dt
= iA[x] + B(x, x̄) (23)

are no longer integrable. Nevertheless, one can formally per-
form a Birkhoff normalization of Eq. (23) and after truncation,
obtain some quasiperiodic expressions

z∗j(t) =
9∑

k=1

a jkeigk t +
∑
(k)

a j(k)ei<(k),ν>t

ζ∗j (t) =
9∑

k=1

b jkeisk t +
∑
(k)

b j(k)ei<(k),ν>t (24)

where (k) = (k1, . . . , k18) ∈ ZZ18, ν = (g1, . . . , g9, s1, . . . , s9),
and 〈(k), ν〉 = k1g1+. . .+k9g9+k10s1+. . .+k18s9. The quasiperi-
odic expressions z∗j(t), ζ

∗
j (t), have been computed at various or-

ders and degrees in eccentricity and inclination of expansion
(Hill 1897; Bretagnon 1974; Duriez 1977; Laskar 1984, 1985),
but as forecasted by Poincaré (1893), it was found that when
all the main planets are taken into account, these formal ex-
pansions do not converge (Laskar 1984), for initial conditions
close to the initial conditions of the Solar System, even at the
lowest orders, and thus will not provide good approximation of
the Solar System motion over very long time. In other terms,
it appears that the actual solution of the Solar System is not
close to a KAM tori (see Arnold et al. 1988) of quasiperiodic
solutions.

Over a finite time of a few millions of years, one can still
numerically integrate the equation of motion, and then search
through frequency analysis (Laskar 1990, 1999, 2003) for a
quasiperiodic approximation of the solution of the form (23).
The non regular behavior of the solution will induce a drift of
the frequencies in time, related to the chaotic diffusion of the
trajectories (Laskar 1990, 1993, 1999).

In Table 3, the fundamental frequencies of the solu-
tion La2004 have been computed by frequency analysis
over 20 Myr of the proper modes (z•1, . . . , z

•
4, ζ
•
1 , . . . , ζ

•
4 ) re-

lated to the inner planets (Mercury, Venus, Earth, Mars), and
over 50 Myr for the proper modes (z•5, . . . , z

•
9, ζ
•
5 , . . . , ζ

•
9 ) as-

sociated to the outer planets (Jupiter, Saturn, Uranus, Neptune,
Pluto) (Table 3). This difference reflects the fact that the main

source of chaotic behavior comes from overlap of secular res-
onances in the inner planet system, and that the outer planets
secular systems is more regular than the inner one. Actually,
in Cols. 2 and 3 of Table 3, we give the maximum observed in
the variation of the secular frequencies over 100 and 250 Myr,
in both positive and negative time, for our nominal solution
La2004. These figures are in very good agreement with the
equivalent quantities given in Table X of (Laskar 1990) for the
integration of the secular equations. The number of digits of
the fundamental frequencies in Table 3 is different for each fre-
quency and reflects the stability of the considered frequency
with time. Additionally, we have given in Figs. 9 and 10 the
actual evolution of the secular frequencies obtained with a slid-
ing window with a step size of 1 Myr (compare to Laskar 1990,
Figs. 8 and 9).

8. Analytical approximations

8.1. Orbital motion

It is interesting for practical use to have an analytical expres-
sion for the main orbital quantities of the Earth. From the
numerical values of La2004, we have performed a frequency
analysis (Laskar 1990, 1999, 2003) in order to obtain a
quasiperiodic approximation of the solutions over a few Myr. In
order to be consistent with the remaining part of the paper, we
chose a time interval covering 20 Myr. As we are mostly inter-
ested over negative time, we made the analysis from −15 Myr
to +5 Myr, as usually, the precision of the approximation de-
creases at the edges of the time interval. The analysis of the
eccentricity variables z = e exp i is given in Table 4. z is ob-
tained as

z =
26∑

k=1

bkei(µk t+ϕk). (25)

It should be noted that in the present complex form, the approx-
imation is much more precise than what would give an equiva-
lent quasiperiodic approximation of the eccentricity. Even with
twice the number of periodic terms, the direct approximation of
the eccentricity is not as good as the approximation obtained in
complex variables. Moreover, here we obtain at the same time
the approximation of the longitude of perihelion of the Earth
from the fixed J2000 equinox (). The comparison of this ap-
proximation, limited to only 26 terms, to the actual solution for
the eccentricity of the Earth, is plotted in Fig. 12 (top).

Nevertheless, for information, we will give also here the
leading terms in the expansion of the eccentricity as they may
be useful in paleoclimate studies (Table 6). The three leading
terms in eccentricity are well known in paleoclimate studies
g2 − g5 (405 kyr period), g4 − g5 (95 kyr period), and g4 − g2

(124 kyr period).
The solution for the inclination variables ζ = sin i/2 exp iΩ

where i,Ω are the Earth inclination and longitude of node
with respect to the fixed ecliptic and equinox J2000, limited
to 24 quasiperiodic terms

ζ =
24∑

k=1

akei(νk t+φk), (26)
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Fig. 9. Variation of the secular frequencies g1−9 from −250
to +250 Myr. The frequencies are computed over 20 Myr for g1−4

and over 50 Myr for g5−9, after transformation of elliptical elements to
proper modes (Laskar 1990).

is given in Table 5. The comparison of this quasiperiodic ap-
proximation with the complete solution is given in Fig. 12 (bot-
tom). It should be noted that in Table 5, the first 22 terms are
the terms of largest amplitude in the frequency decomposition
of the inclination variable ζ, but the two last terms, of fre-
quency ν23 and ν24 are of much smaller amplitude. They have
been kept in the solution, as they are close to the resonance
with the main precession frequency.

Fig. 10. Variation of the secular frequencies s1−9 from −250
to +250 Myr. The frequencies are computed over 20 Myr for s1−4

and over 50 Myr for s6−9, after transformation of elliptical elements
to proper modes (Laskar 1990).

8.2. Obliquity and precession

The solutions for precession and obliquity are obtained through
the precession Eq. (6). In absence of planetary perturbations,
the obliquity is constant (ε = ε0), and

dψ

dt
= α cos ε0. (27)

We have thus ψ = ψ0 + p t where p = α cos ε0 is the precession
frequency. This can be considered as a solution of order zero.
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Table 4. Frequency decomposition of z = e exp i for the Earth on
the time interval [−15,+5] Myr (Eq. (25)).

n µk (′′/yr) bk ϕk (degree)

1 g5 4.257564 0.018986 30.739

2 g2 7.456665 0.016354 −157.801

3 g4 17.910194 0.013055 140.577

4 g3 17.366595 0.008849 −55.885

5 g1 5.579378 0.004248 77.107

6 17.112064 0.002742 47.965

7 17.654560 0.002386 61.025

8 6.954694 0.001796 −159.137

9 2g3 − g4 16.822731 0.001908 105.698

10 g6 28.244959 0.001496 127.609

11 18.452681 0.001325 156.113

12 5.446730 0.001266 −124.155

13 18.203535 0.001165 −92.112

14 7.325741 0.001304 −175.144

15 7.060100 0.001071 2.423

16 7.587926 0.000970 34.169

17 5.723726 0.001002 112.564

18 16.564805 0.000936 24.637

19 16.278532 0.000781 −90.999

20 18.999613 0.000687 0.777

21 3.087424 0.000575 120.376

22 17.223297 0.000577 −113.456

23 6.778196 0.000651 117.184

24 6.032715 0.000416 174.987

25 6.878659 0.000497 95.424

26 5.315656 0.000392 33.255

If we keep only the terms of degree one in inclination in
Eqs. (6), we obtain the solution of order one

dε

dt
= 2( ṗ sinψ − q̇ cosψ) = 2Re(ζ̇eiψ). (28)

With the quasiperiodic approximation

ζ =

N∑
k=1

akei(νk t+φk), (29)

of Table 5, the first order solution in obliquity will be a similar
quasiperiodic function

ε = ε0 + 2
N∑

k=1

akνk

νk + p
cos((νk + p) t + φk + ψ0), (30)

with a similar form for the solution of precession ψ. This first
order approximation will only be valid when we are far from
resonance, that is |νk + p| � 0. This is not the case for the last
term ν23 = s6 + g5 − g6 = −50.336259 arcsec yr−1 in Table 5,
as p ≈ 50.484 arcsec yr−1. This resonant term can lead to a

Fig. 11. Variation of the semi-major axis of the Earth–Moon barycen-
ter (in AU) from −250 to +250 Myr.

Table 5. Frequency decomposition of ζ = sin i/2 exp iΩ for the Earth
on the time interval [−15,+5] Myr (Eq. (26)).

n νk (′′/yr) ak φk (degree)

1 s5 −0.000001 0.01377449 107.581

2 s3 −18.845166 0.00870353 −111.310

3 s1 −5.605919 0.00479813 4.427

4 s2 −7.050665 0.00350477 130.826

5 s4 −17.758310 0.00401601 −77.666

6 −18.300842 0.00262820 −93.287

7 −7.178497 0.00189297 −65.292

8 −6.940312 0.00164641 −66.106

9 −6.817771 0.00155131 −46.436

10 −19.389947 0.00144918 50.158

11 −5.481324 0.00154505 23.486

12 s6 −26.347880 0.00133215 127.306

13 −19.111118 0.00097602 159.658

14 −2.992612 0.00088810 140.098

15 −6.679492 0.00079348 −43.800

16 −5.835373 0.00073058 −160.927

17 −0.691879 0.00064133 23.649

18 −6.125755 0.00049598 143.759

19 −5.684257 0.00054320 138.236

20 −18.976417 0.00040739 −105.209

21 −7.290771 0.00041850 106.192

22 −5.189414 0.00033868 50.827

23 s6 + g5 − g6 −50.336259 0.00000206 −150.693

24 −47.144010 0.00000023 −167.522

significative change in the obliquity variations, and have been
studied in detail in Laskar et al. (1993).

Another difficulty, arising with the obliquity solution, is due
to the dissipation in the Earth–Moon system, which induces
a significant variation of the precession frequency with time,
as the Earth rotation ω slows down, and the Earth–Moon dis-
tance aM increases.

We have plotted in Fig. 14 the evolution of the obliquity of
the Earth from −250 to +250 Myr. The effect of the tidal dis-
sipation is clearly visible on this timescale, and there is a gen-
eral increase of the obliquity from −250 Myr to present time.
In positive time, there is an obvious singularity in the obliq-
uity, with a decrease of about 0.4 degree. This results from the



274 J. Laskar et al.: Insolation quantities of the Earth

Fig. 12. (Top) Eccentricity of the Earth from −11 to +1 Myr. The solid curve is the solution La2004. Almost completely hidden behind the
solid curve is a dashed curve representing the quasiperiodic approximation of Table 4 with 26 periodic terms. (Bottom) Inclination of the
Earth from −11 to +1 Myr. The solid curve is the solution La2004. The dashed line (almost identical to the solid curve) is the quasiperiodic
approximation of Table 5 with 24 periodic terms. On both plots, as the two curves are nearly identical, the difference of the two solutions is
also plotted in dotted curve.

crossing of the resonance with the term s6 + g5 − g6 that was
already described in a different context in Laskar et al. (1993).
After this sudden decrease, the obliquity increases again, with
roughly the same trend. An additional (but smaller singularity
is observable around +150 Myr, that corresponds to the cross-
ing of the resonance with the term ν24 (Table 5). The averaged
obliquity can be well approximated in negative time with the
expression

εM = 23.270773+ 2.011295 T (31)

where εM is in degree, and T in billion of years (Gyr). In the
interval [+20 Myr,+130 Myr] this approximation becomes

εM = 22.893171+ 1.952715 T (32)

so the main effect of the crossing of the resonance is a decrease
of 0.377602 degree of the obliquity. This effect can be easily
understood with the analytical integration of a simple model,
in terms of Fresnel integrals (see Appendix A).

8.3. Approximation for the obliquity

As for the solutions of the orbital elements, we have obtained
an approximation formula for the evolution of the obliquity of
the Earth over the period from −15 Myr to +5 Myr. Obtaining
this solution presents some additional difficulties because of
the dissipative effects in the Earth–Moon system that induces a
significative change of the precession frequency. The obliquity
is obtained on the form

ε = ε0 +

N∑
k=1

a′k cos((ν′k + p1 t) t + φ′k), (33)

where ε0 = 23.254500 degrees, and the coefficients a′k, ν
′
k, φ
′
k

are given in Table 7. The coefficent p1 (Eq. (35)) results from
the secular change of the precession frequency (34) due to tidal
dissipation (see next).

The comparison with the full solution is given in Fig. 15,
over selected periods of time, from −11 Myr to the present.

Fig. 13. a) Evolution of length of the day for the Earth, in hours,
from −250 to +250 Myr. b) Residuals with the fit of the averaged
solution with the polynomial expression (41).

In Table 7, the terms of frequency ν′k are recognized as combi-
nations of the form p+ νk, where p is the precession frequency,
and νk a secular frequency from the secular motion of the or-
bital plane (from Table 5). The approximation is made over
the interval [−15 Myr,+2 Myr] with p = p0 + p1 T , where p0

and p1 are taken from Eq. (35).

8.4. Approximation for the precession

The full approximate solution for the precession is more com-
plicated because of the presence of the secular resonance s6 +

g5 − g6. In fact, the proximity of this resonance is responsible
for the largest periodic term in the expression of the precession



J. Laskar et al.: Insolation quantities of the Earth 275

Table 6. Frequency decomposition of the eccentricity of the Earth on the time interval [−15,+5] Myr. For all computations, the data of Table 4
should be preferred. Here, e = e0 +

∑20
k=1 b′k cos(µ′k t + ϕk) with e0 = 0.0275579. For each term, in the first column is the corresponding

combination of frequencies where gi are the fundamental frequencies (Table 3), and µ j the frequencies of the terms in z from Table 4.

k µ′k (′′/yr) P (yr) b′k ϕ′k (degree)

1 g2 − g5 3.199279 405 091 0.010739 170.739

2 g4 − g5 13.651920 94 932 0.008147 109.891

3 g4 − g2 10.456224 123 945 0.006222 −60.044

4 g3 − g5 13.109803 98 857 0.005287 −86.140

5 g3 − g2 9.909679 130 781 0.004492 100.224

6 µ7 − µ6 0.546076 2 373 298 0.002967 −168.784

7 g1 − g5 1.325696 977 600 0.002818 57.718

8 g4 − g1 12.325286 105 150 0.002050 49.546

9 g2 − g5 + µ6 − µ7 2.665308 486 248 0.001971 148.774

10 g2 − g1 1.883616 688 038 0.001797 137.155

11 µ6 − g5 12.856520 100 805 0.002074 24.487

12 g2 + g4 − 2g5 16.851127 76 909 0.001525 102.380

13 µ6 − g2 9.650041 134 300 0.001491 −167.676

14 2g3 − g4 − g5 12.563233 103 158 0.001316 69.234

15 2g4 − g2 − g3 10.975914 118 077 0.001309 −51.163

16 g1 − g3 11.788709 109 936 0.001300 −146.081

17 µ7 − g2 10.194846 127 123 0.001306 −139.827

18 g3 + g4 − g2 − g5 23.562689 55 002 0.001261 30.098

19 µ7 − g5 13.398519 96 727 0.001344 27.612

20 g2 + g4 − g3 − g5 3.742221 346 318 0.001058 178.662

angle (Fig. 16). The precession angle can thus be approximate
by (ψ in arcsec, t in years)

ψ = +49086 + p0 t + p1 t2

+42246
ν2

0

(ν0 + 2p1 t)2
cos(ν0 t + p1 t2 + φ0) (34)

where

ν0 = 0.150019 ′′/yr

p0 = 50.467718 ′′/yr (35)

p1 = −13.526564−9 ′′/yr2

φ0 = 171.424 degree.

It should be noted that in this formula, the cosine term is an
approximation for a more complicated expression that arises
from a double integration of the term cos (ν0 t + p1 t2 + φ0) in
the expression of the derivative of the obliquity (6). In order to
obtain an expression as simple as possible, without expressions
involving Fresnel integrals (Appendix A), we had to restrain its
interval of validity to [−15,+2] Myr.

For paleoclimate studies, the usual quantity that relates
more directly to insolation is the climatic precession e sin ω̄,
where ω̄ = ψ +  is the longitude of the perihelion from the
moving equinox. We have thus

e sin ω̄ = �(z eiψ(t)), (36)

where the decomposition of z = e exp(i) is provided in
Table 4, and the precession angle ψ is given by Eq. (34).

Fig. 14. Evolution of the obliquity of the Earth in degrees, from −250
to +250 Myr. The grey zone is the actual obliquity, while the black
curve is the averaged value of the obliquity over 0.5 Myr time inter-
vals. The dotted line is a straight line fitted to the average obliquity in
the past.

The comparison of this approximation with the complete so-
lution from −11 to +1 Myr is given in Fig. 17. The solution for
climatic precession is thus on the form

e sin ω̄ =
20∑

k=1

bk sin(µkt + ϕk + ψ(t)), (37)

where bk, µk, ϕk are from Table 4, and where ψ(t) is given by
Eq. (34). The frequencies of the terms of the climatic preces-
sion are thus of the form

µ′′k = µk + p + p1 t, (38)

where p, p1 are given in Eqs. (34) and (35).
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Table 7. Approximation for the obliquity of the Earth, following Eq. (33). This expression is not strictly quasiperiodic, because of the presence
of the dissipative term p1 in the evolution of the precesion frequency (33).

k ν′k (′′/yr) P (yr) a′k φ′k (d)

1 p + s3 31.626665 40 978 0.582412 86.645

2 p + s4 32.713667 39 616 0.242559 120.859

3 p + s6 24.124241 53 722 0.163685 −35.947

4 p + ν6 32.170778 40 285 0.164787 104.689

5 p + ν10 31.081475 41 697 0.095382 −112.872

6 p + ν20 31.493347 41 152 0.094379 60.778

7 p + s6 + g5 − g6 0.135393 9 572 151 0.087136 39.928

8 p + s2 43.428193 29 842 0.064348 −15.130

9 p + s1 44.865444 28 886 0.072451 −155.175

10 31.756641 40 810 0.080146 −70.983

11 p + ν13 31.365950 41 319 0.072919 10.533

12 32.839446 39 465 0.033666 −31.614

13 32.576100 39 784 0.033722 77.554

14 32.035200 40 455 0.030677 71.757

15 p + ν8 43.537092 29 768 0.039351 145.835

16 p + ν7 43.307432 29 926 0.030375 160.109

17 p + ν9 43.650496 29 690 0.024733 144.926

18 31.903983 40 622 0.025201 −173.656

19 30.945195 41 880 0.021615 −144.933

20 23.986877 54 030 0.021565 −79.670

21 24.257837 53 426 0.021270 −178.441

22 32.312463 40 108 0.021851 −24.566

23 44.693687 28 997 0.014725 124.744

8.5. Earth–Moon system

In Fig. 18, the evolution of the Earth–Moon semi-major aM axis
is plotted over 250 Myr in positive and negative time. The grey
area corresponds to the short period variations of the Earth–
Moon distance, obtained in the full integration of the system,
while the black curve is the integration of the averaged equa-
tions that is used for the precession computations. The agree-
ment between the two solutions is very satisfying.

We have searched for a polynomial approximation for the
secular evolution of aM, in order to provide a useful formula for
simple analytical computations. In fact, the Earth–Moon evolu-
tion is driven by the tidal dissipation equations (Sect. 4.1), that
involve the obliquity of the planet. The important singularity of
the obliquity in the future (see previous section) prevents from
using a single approximation over the whole time interval, and
we have used a different polynomial in positive and negative
time.

a−M = 60.142611
+6.100887 T
−2.709407 T 2

+1.366779 T 3

−1.484062 T 4

a+M = 60.142611
+6.120902 T
−2.727887 T 2

+1.614481 T 3

−0.926406 T 4

(39)

where T is in billions of years (Gyr), and a+−M in Earth radius
(see Table 1). In the residuals plot (Fig. 18b), we can check
that this polynomial approximation is very precise for negative
time, but in positive time, we have an additional singularity
around 150 Myr, resulting from the secular resonance of the
precession frequency with ν24 (Table 5).

In the same way, it is possible to approximate the evolution
of the precession frequency of the Earth p as the Moon goes
away and the rotation of the Earth slows down with time. The
polynomial approximation of the precession frequency is then
in arcsec yr−1, with T in Gyr

p− = 50.475838
−26.368583 T
+21.890862 T 2

p+ = 50.475838
−27.000654T
+15.603265T 2

. (40)

It should be said that the initial value is kept equal for both
positive and negative time to avoid discontinuities. It is clear
from Fig. 19 that for the period between +30 and +130 Myr, a
better approximation could be obtained by adding to the con-
stant part the offset +0.135052 arcsec yr−1. It is interesting to
note again the dramatic influence of the resonance ν23 on the
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Fig. 15. Comparison of the solution of the obliquity La2004 (solid
line) with its approximation using Table 7 (dotted line) with 26 pe-
riodic terms. The difference of two solutions (+22 degrees) is also
plotted.

evolution of the precession frequency. The equivalent formulas
for the length of the day are (in hours)

LOD− = 23.934468
+7.432167 T
−0.727046 T 2

+0.409572 T 3

−0.589692 T 4

LOD+ = 23.934468
+7.444649 T
−0.715049 T 2

+0.458097 T 3
. (41)

One should note that Eqs. (39) and (41) correspond at the ori-
gin J2000 to a change in the semi major axis of the Moon of
about 3.89 cm/yr, and a change of the LOD of 2.68 ms/century.
These values slightly differ from the current ones of Dickey
et al. (1994) (3.82 ± 0.07 cm/yr for the receding of the Moon).
This is understandable, as the Earth–Moon model in our inte-
gration that was adjusted to DE406 is simplified with respect
to the one of DE406.

9. Stability of the solution

In such long term numerical computations, the sources of er-
rors are the error of method due to the limitation of the numer-
ical integration algorithm, the numerical roundoff error result-
ing from the limitation of the representation of the real numbers

Fig. 16. Comparison of the solution of the precession La2004 with its
approximation from −15 to +2 Myr. The grey curve is obtained after
removing uniquely the secular trend ψ0+p0 t+p1 t2. The dark curve are
the residual (in radians) after removing the resonant term (Eq. (34)),
which is also displayed in solid line.

Fig. 17. Comparison of the solution of the climatic precession
of La2004 with its approximation from −11 to +1 Myr. The grey curve
is the full climatic precession e sin ω̄. The dark curve are the residual
after removing the approximation given by Eq. (37).

in the computer, and the errors of the initial conditions and of
the model which are due to our imperfect knowledge of all the
physical parameters in the Solar system, and to the necessary
limitations of the model. Some of the main sources of uncer-
tainty in the model for long term integrations were reviewed in
(Laskar 1999). The effect of all these errors is amplified by the
chaotic behaviour of the system, with an exponential increase
of the difference between two solutions with different settings,
until saturation due to the limited range of the considered vari-
ables. A summary of these limitations, extracted from (Laskar
1999) is given in Table 8, but it should be noted that these times
of validity are probably pessimistic, as they correspond to an-
alytical estimates based on the “worst case” situation. Our re-
quirement for the precision of a long term solution is also not
the same as for precise short term ephemeris. For the long term
solutions, aimed at paleoclimate or qualitative studies, two so-
lutions can be considered as similar, as long as the pattern of
the two solutions (eccentricity for example), resulting (at first
order) from the combination of various proper modes remain
similar. This will last until some of the main proper modes get
completely out of phase (see Sect. 7). It will be the same for
the solutions in obliquity and precession.
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Fig. 18. a) Evolution of the Earth–Moon semi major axis (in Earth
radii) from −250 to +250 Myr. The grey zone is the result of the in-
tegration of the full equations, while the black curve is the integration
of the averaged equations, as used in the precession computations;
b) residuals with the fit of the averaged solution with the polynomial
expression (39).

Fig. 19. a) Evolution of the precession frequency of the Earth p
(in arcsec/yr) −250 to +250 Myr; b) residuals with the fit of the aver-
aged solution with the polynomial expression (40).

9.1. Orbital motion

Practically, we have tested the stability of our solution by com-
parison of the eccentricity (Fig. 20) and inclination (Fig. 21)
with different solutions. In Figs. 20a and 21a, the nominal so-
lution La2004 (with stepsize τ = 5 × 10−3 years) is compared
to an alternate solution, La2004∗, with the same dynamical

Table 8. Main sources of uncertainty in the orbital solution (from
Laskar 1999). For each limiting factor, an analytical estimate of the
time of validity of the solution TV is given (in Myr), taking into ac-
count the exponential growth of the error.

Limiting factor TV

Uncertainty on the masses and intial conditions 38 Myr

Contribution of the main Galilean satellites 35 Myr

Uncertainty in the Earth–Moon system evolution 40 Myr

Effect of the main asteroids 32 Myr

Mass loss of the Sun 50 Myr

Uncertainty of 2 × 10−7 on the J2 of the Sun 26 Myr

Fig. 20. Stability of the solution for eccentricity of the Earth.
a) Difference of the nominal solution La2004 with stepsize τ =
5. × 10−3 years, and La2004∗, obtained with τ∗ = 4.8828125 × 10−3

years; b) difference of the nominal solution with the solution obtained
while setting JS

2 = 0 for the Sun (instead of 2 × 10−7 in the nominal
solution).

model, and a very close stepsize τ∗ = 4.8828125 × 10−3 years
(Table 9). This special value was chosen in order that our out-
put time span h = 1000 years corresponds to an integer num-
ber (204 800) of steps, in order to avoid any interpolation prob-
lems in the check of the numerical accuracy. This is thus a test
of the time of validity for obtaining a precise numerical solu-
tion, resulting from method and roundoff errors of the integra-
tor. It is thus limited here to about 60 Myr.

This limitation of 60 Myr is a limitation for the time of va-
lidity of an orbital solution, independently of the precision of
the dynamical model. In order to go beyond this limit, the only
way will be to increase the numerical accuracy of our compu-
tations, by improving the numerical algorithm, or with an ex-
tended precision for the number representation in the computer.

A second test is made on the uncertainty of the model.
Several sources of uncertainty were listed in (Laskar 1999),
and it was found that one of the main sources of uncer-
tainty was due to the imprecise knowledge of the Solar



J. Laskar et al.: Insolation quantities of the Earth 279

Fig. 21. Stability of the solution for inclination of the Earth.
a) Difference of sin i/2 for the nominal solution La2004 with step-
size τ = 5. × 10−3 years, and for La2004∗, obtained with τ∗ =
4.8828125 × 10−3 years; b) difference of sin i/2 for the nominal so-
lution with the solution obtained while setting JS

2 = 0 for the Sun
(instead of 2 × 10−7 in the nominal solution).

Table 9. Variants of the La2004 solutions. The nominal solution
La2004 is obtained for a stepsize τ = 5 × 10−3, and a Solar oblate-
ness JS

2 = 2.0 × 10−7. The other solutions, with different setting have
been computed to test the stability of the nominal solution. In the last
column γ is the tidal dissipation factor.

Name τ (yr) JS
2 γ

La2004 5 × 10−3 2.0 × 10−7 1

La2004∗ 4.8828125 × 10−3 2.0 × 10−7 1

La2004∗∗ 5.00000005 × 10−3 2.0 × 10−7 1

La20040 5 × 10−3 0 1

La20041.0 5 × 10−3 1.0 × 10−7 1

La20041.5 5 × 10−3 1.5 × 10−7 1

La20040.95 5 × 10−3 2.0 × 10−7 0.95

La20040.90 5 × 10−3 2.0 × 10−7 0.90

oblateness (JS
2 ) (Table 8). Its most recent determination, ob-

tained with the SOHO and GONG helioseismic data give JS
2 =

(2.18 ± 0.06) × 10−7 (Pijpers 1998), with a very similar value
adopted in DE406 (JS

2 = 2 × 10−7, Standish 1998), while
in DE200, it was not taken into account (Newhall et al. 1983).
We will thus consider that comparing the nominal solution
La2004 (with JS

2 = 2 × 10−7) with an alternate solution
(La20040) with JS

2 = 0 is representative of the uncertainty of
the dynamical model for our long term integrations1 (Table 9).

The results La2004 − La20040 for the Earth’s eccen-
tricity and inclination are displayed in (Figs. 20b and 21b)

1 This empirical assumption is motivated by the fact that in Table 8,
an error of 2×10−7 on JS

2 appear to be the largest limiting factor in the
long term evolution of the solution.

over 100 Myr. As for Mars (Laskar et al. 2004), the effect
of JS

2 becomes noticeable after about 30 Myr (26 Myr were
predicted with an analytical estimate in (Laskar 1999), and the
solution remains very similar over 40 Myr, and totally out of
phase after 45 Myr. We will thus consider here that 40 Myr
is about the time of validity of our present orbital solution
for the Earth. Other integrations made with JS

2 = 1.5 × 10−7

and JS
2 = 1.0 × 10−7 (Table 9) gave practically the same esti-

mates. It should be noted that with our present algorithms, we
are much more limited by the precision of the model (Figs. 20b
and 21b) than by the numerical accuracy (Figs. 20a and 21a).

9.2. Obliquity and precession

For the obliquity and precession, as was already mentioned
in (Laskar et al. 1993), the main source of uncertainty is the
evolution of the tidal dissipation and other related factors (see
Sect. 4.1). Among these factors, one can mention the variations
of the dynamical ellipticity of the Earth resulting from changes
of the ice caps, or mantle convections. The maximal contribu-
tion of these effects can be estimated (see Levrard & Laskar
2003), but it is very difficult to obtain at present a precise value
of their contributions. Moreover, the largest dissipative term,
resulting from body tides can evolve substantially as a result
of the variation of the distribution of the continents, as most
of the tidal dissipation occurs in shallow seas (Jeffreys 1920,
1976; Egbert & Ray 2000).

In Fig. 22, we have explicited the result of a difference
of 5% (Figs. 22a and c) and 10% (Figs. 22b and d) in the tidal
dissipation term of the Earth and the Moon (∆t and ∆tM in
Table 1). With 5% error (La2004(0.95)), the solution of obliquity
is valid over about 20 Myr, but with a 10% error (La2004(0.90)),
the solution is out of phase after 20 Myr. Nevertheless, the
uncertainty in the tidal dissipation appears mostly as a small
change of the precession frequency p, which reveals in the
obliquity solution as a time offset that does not change much
the obliquity pattern. Indeed, in Figs. 22e and f, we have made
a readjustment of the time scale for the solutions La2004(0.95)

and La2004(0.90) of respectively

δ t(0.95)= 1.3346× 10−5 t − 1.9362 × 10−5 t2

δ t(0.90)= 1.4358× 10−5 t − 3.9666 × 10−5 t2 (42)

where t is in Myr. With this new time scales, the different so-
lutions become very close over 40 Myr, that is over the full
range of validity of the orbital solution (Figs. 22e and f). An un-
certainty of 10% in the tidal dissipation term thus corresponds
mostly to an uncertainty in the timescale of 16 kyr after 20 Myr,
and 63 kyr after 40 Myr.

10. Resonant angles

10.1. Secular resonances

Using the secular equations, Laskar (1990, 1992), demon-
strated that the chaotic behavior of the Solar system arises from
multiple secular resonances in the inner solar system. In partic-
ular, the critical argument associated to

θ = (s4 − s3) − 2(g4 − g3) (43)
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Fig. 22. Difference in obliquity for different tidal dissipation factor
(Table 9): a) La2004 − La2004(0.95); b) La2004 − La2004(0.90). In c)
and d), the nominal solution of the obliquity is plotted in solid line,
while La2004(0.95) c) and La2004(0.90) d) are in dotted line. After an
adjustment of the time scale, the differences of the solutions are much
smaller over 40 Myr: e) La2004−La2004(0.95) ; f) La2004−La2004(0.90) .

where g3, g4 are related to the precession of the perihelion of
the Earth and Mars, s3, s4 are related to the precession of the
node of the same planets, is presently in a librational state, but
can evolve in a rotational state, and even move to libration in a
new resonance, namely

(s4 − s3) − (g4 − g3) = 0. (44)

This reveals that a region of relatively strong instability results
from the overlap (Chirikov 1979) of these two resonances. This
result was questioned by Sussman & Wisdom (1992), as they
did not recover such a large variation for the secular frequen-
cies, but reached only 2(s4 − s3) − 3(g4 − g3) = 0 instead of
Eq. (44). We have tested these resonant arguments in the nom-
inal solution La2004, and in the alternate solutions La2004∗∗,
La20040, La20041.5 (Table 9).

In all variants of La2004 (Fig. 23 (top)), the resonant ar-
gument corresponding to θ = (s4 − s3) − 2(g4 − g3) was in
libration over the first 40 Myr, while the transition to circu-
lation occurred at about 25 Myr in La93. All the solutions
La2004, La2004∗∗, La20040, La20041.5 differ significantly be-
yond 40 to 50 Myr, but they all enter the (s4 − s3) − (g4 −
g3) resonance within 100 Myr, comforting the conclusions of

Fig. 23. Resonant arguments (in radians versus time in Myr) θ =
(s4 − s3) − 2(g4 − g3) (top) and σ = (g1 − g5) − (s1 − s2) (bottom)
for different solutions: a) is the secular solution La93 (Laskar 1990;
Laskar et al. 1993) while b) is the present nominal solution La2004.
The characteristics of the other variants La20041.5 c), La20040 d),
La2004∗∗ e) are listed in Table 9. The arrows indicate the portions
of the solutions when the argument (s4 − s3)− (g4 − g3) is in libration.

(Laskar 1990, 1992). In Fig. 23 (top), the portions of the so-
lutions where the argument of (s4 − s3) − (g4 − g3) is in li-
bration are pointed by arrows. It should be noted that at least
over 250 Myr, the diffusion seems to remain confined between
the resonances (s4 − s3) − 2(g4 − g3) and (s4 − s3) − (g4 − g3).
The other important resonant argument ((g1 − g5) − (s1 − s2))
that was identified by Laskar (1990, 1992) as the origin of the
chaotic behavior of the inner planets presents in all the varia-
tions of the numerical solutions La2004, La2004∗∗, La20040,
La20041.5 a similar behavior as for the secular solution La93
(Fig. 23 (bottom)).

10.2. Geological evidence of chaos

The date of the first transition from libration to circulation of
the resonant argument related to θ = (s4 − s3) − 2(g4 − g3) is
a macroscopic feature displaying the chaotic diffusion of the
planetary orbits. It is thus very tempting to search whether this
feature could be observed in the geological data that extend
now in continuous records beyond 30 Myr.
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The direct observation of the individual arguments related
to g3, g4, s3, s4 is certainly out of reach. But it may be possi-
ble to follow the evolution in time of the differences g3 − g4

and s3 − s4. Indeed, s3 − s4 appears as a beat of about 1.2 mil-
lion of years in the solution of obliquity, as the result of the
beat between the p + s3 and p + s4 components of the obliq-
uity, where p is the precession frequency of the axis (see Laskar
2004, Fig. 7). In a similar way, g3 − g4 appears as a beat with
period of about 2.4 Myr in the climatic precession. One under-
stands that because of the occurrence of these beats, the detec-
tion of the resonant state in the geological data can be possible,
as one has to search now for phenomena of large amplitude in
the geological signal. Indeed, in the newly collected data from
Ocean Drilling Program Site 926, the modulation of 1.2 Myr
of the obliquity appears clearly in the spectral analysis of the
paleoclimate record (Zachos et al. 2001). Moreover, using the
ODP legs 154 and 199, Pälike et al. (2004) could find some
evidence that the critical argument of θ did not show a transi-
tion to circulation at 25 Myr, as in La93, but remained in libra-
tion over 40 Myr, as in the present new solution La2004. This
result is very impressive, although the search for the determina-
tion of these resonant angles in the geological data is just start-
ing. We may expect that a careful analysis, and new data span-
ning the most recent 60 to 100 Myr, will allow to determine
the possible succession of resonant states in the past, allowing,
for example, to discriminate between the solutions displayed in
Fig. 23. Of particular importance would be the detection of the
first transition from libration to circulation of the resonant ar-
gument (s4 − s3) − 2(g4 − g3). This program, if completed, will
provide some extreme constraint for the gravitational model of
the Solar System. Indeed, the observation of a characteristic
feature of the solution at 40 to 100 Myr in the past, because of
the exponential divergence of the solutions, will provide a con-
straint of 10−4 to 10−10 on the dynamical model of the Solar
System.

11. Mesozoic timescale

An astronomically calibrated time scale for geological data
has been achieved successfully over the Neogene period
(0−23.03 Myr) (Lourens et al. 2004), and the next challenge
will be to improve the astronomical precision of the solution, in
order to extend this over the Paleogene (23 to 65 Myr). Beyond
this time length, it is hopeless to expect to obtain a precise so-
lution for the orbital elements of the Earth. On the other hand,
some features of the solution have a longer time of stability, if
they are related to the outer planets secular frequencies (Laskar
1990).

A very important period present in geological records is the
405 kyr period related to the g2 − g5 argument, that is the lead-
ing term in the solution of eccentricity (Table 6). In Fig. 24, we
have tested the stability of this argument over the full period
of our integrations, that is over 250 Myr, that extents over the
Mesozoic geological era (about 65 to 250 Myr). First, we have
compared the argument related to g5 over 3 variants (La2004∗,
La20040, La20041.5) of La2004, that reflect both the numeri-
cal errors and the errors of the model. This argument, related
to Jupiter and Saturn is extremely stable, and does not show

Fig. 24. Stability of the g5 (top) and g2 − g5 (bottom) arguments. The
difference (in radians) of the angles related to g5 and g2 − g5 from
the nominal solution La2004 and an alternate solution La20041.5 a),
La20040 b), and La2004∗ c) (Table 9).

variations of more than 0.05 radians over the full 250 Myr
period (Fig. 24 (top)). In Fig. 24 (bottom), we have plotted
the same quantities for g2 − g5. The dispersions over 50, 100,
and 250 Myr are about 0.3, 1.0, 6.2 radians, that correspond to
absolute error in time respectively of about 20, 70, and 400 kyr
over the same periods.

It is thus possible to use this argument, that is visible in
many sedimentary records of the Early Mesozoic (Olsen &
Kent 1999, and references therein) as an absolute geological
time scale over the whole Mesozoic period. In order to facili-
tate the establishment of this timescale, we have searched for a
best fit or the period of this argument over all the solutions of
Table 9. Within the uncertainty of this procedure, the best value
for the frequency g2 − g5 is

ν405 = 3.200′′/yr (45)

which corresponds exactly to a period

P405 = 405 000 yr. (46)

This value differs by less than 0.001′′/yr from the same quan-
tity from Table 6, where the direct output of the frequency anal-
ysis is given. We propose here that in the establishment of ge-
ological timescales, the value 3.200′′/yr should be used. The
maximum error over 50, 100, 200, and 250 Myr should then be
less than respectively 30, 150, 350, and 500 kyr. The 405 kyr
term is the largest term of the eccentricity solution. In Fig. 26,
the eccentricity of the Earth from La2004, filtered in the



282 J. Laskar et al.: Insolation quantities of the Earth

Fig. 25. 405 kyr term in eccentricity. Maximum difference (in radians)
of the argument θg2−g5 of g2 − g5 in all 6 solutions of Table 9 (La2004,
La2004∗, La2004∗∗, La20040, La20041.0, La20041.5) with respect to
the linear approximation θg2−g5 = 2434′′ + 3.200′′ t where t is in yr.

Fig. 26. Eccentricity of the Earth. Nominal solution La2004 filtered
in the interval [2.2′′/yr, 8′′/yr] (solid line), and approximation with a
single periodic term (47) (dotted line).

interval [2.2′′/yr, 8′′/yr], is plotted, as well as a solution for
the eccentricity, limited to the single 405 Kyr term

e405 = 0.027558− 0.010739 cos(2434′′ + 3.200′′ t) (47)

where t is in yr. As it is apparent in the figure, the agreement
between the two solutions is extremely good over 100 Myr.
Beyond that time, the various possible solutions will become
out of phase, within the uncertainty of Fig. 25. One should note
that the initial phase at the origin (2434 arcsec) corresponds to
an offset of only 760 yr, so in most cases it can be neglected.

12. Discussion and future work

12.1. Discussion

The new orbital solution of the Earth that is presented
here can be used for paleoclimate computations over 40
to 50 Myr. Beyond that time interval, the precision

of the solution cannot be guaranteed but we neverthe-
less provide the solution over 100 Myr on our Web site
www.imcce.fr/Equipes/ASD/insola/earth/earth.html
as reference, and for a possible use, with caution, over the full
Paleogene period (up to 65 Myr). As in Laskar et al. (1993),
the solution for precession and obliquity is not as accurate as
the orbital solution. This is mainly due to the uncertainty that
remains in the tidal dissipation in the Earth–Moon system. We
expect the present solution to be precise over about 20 Myr
(see Sect. 9.2), but additional work is certainly needed here.

When taking into account the dissipation in the Earth–
Moon system, it is remarkable that in the time interval
[−250 Myr,+250 Myr], the only major event in the obliquity
of the Earth occurs in the vicinity of the present time (Fig. 14).
We have discarded the possibility of some numerical arte-
fact by integrating different models. In particular, we find the
same slow decrease of about 0.38 degrees in the obliquity
over about 20 Myr either when we integrate the obliquity and
precession equations of Sect. 4 at the same time as the or-
bital equations, or when the precession and obliquity are com-
puted afterwards, with a forced orbital motion. Moreover, the
behavior of the solution is perfectly explained by the crossing
of the s6 + g5 − g6 resonance, as it is explicited in full details in
the appendix.

The crossing of this resonance will occur in the next
20 Myr, but one could wonder whether this crossing could have
also occured in the recent past and thus had a possible impact
on the past Earth climate.

In (Laskar et al. 1993), we searched for the possibility to
encounter this resonance in the past by changing the momen-
tum of inertia of the Earth as a result of the ice load changes
occuring during an ice age, but it seems that our values for the
change of momentum of inertia during an ice age was overesti-
mated (Mitrovica & Forte 1995; Levrard & Laskar 2003). In a
similar way, Forte & Mitrovica (1997) have advocated the man-
tle convection as a mean to change the values of the momentum
of inertia of the Earth in the past, and thus to eventually cross
the s6+g5−g6 resonance in the past. Their results are very sen-
sitive to their models, and it is not clear that the induce change
of momentum of inertia will be able to counteract the effect of
tidal dissipation that drives the obliquity away from the reso-
nance in the past. Moreover, the analysis of geological data in
the past few Myr (Lourens et al. 2001; Pälike & Shackleton
2001) tends to show that the precession frequency has actually
increased in the past and thus, that the system was driven away
from the resonance. Additional studies on this topic are cer-
tainly welcome, and we should still search for the possibility
of a crossing of the s6 + g5 − g6 resonance in the past, as it may
have impacted the climatic history of the Earth, but in absence
of new evidence, we should consider that the proximity of this
resonance is pure coincidence.

12.2. Future work

The next step for the improvement of the solutions will be
to obtain an accurate orbital solution over the full Paleogene
period (65 Myr). The numerical accuracy of our integrator
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already fulfills this requirement (Fig. 23), although we ex-
pect to slightly improve it by switching to extended computer
precision.

The improvement of the model and parameters is much
more difficult, and will require additional work. First, we will
have to include in our model supplementary contributions in or-
der to compare much more closely to DE406. In particular, in
the present work, to save computer time, we had to simplify the
interactions in the Earth–Moon system. In the next integration,
we will take into account additional contributions in the body
body interactions of the Earth–Moon system, and also the li-
bration of the Moon. We will also have to adapt the tidal model
in the Earth–Moon system. We will need to take into account
the effect of the 5 main asteroids that are present in DE406,
and probably derive a small model for the contribution of the
295 additional asteroids that are considered in DE406. Indeed,
the consideration of the main asteroids appears as the next
most important source of uncertainty for the long term solu-
tion (Table 8). Some of the other factors listed in Table 8 can
easily be taken into account, as the consideration of the main
Galilean satellites, or the mass loss of the Sun.

Finally, it will also be important to reestablish the preci-
sion of the parameter of the model by a direct comparison to
the observations. For this part, we expect to benefit from the
effort that is developed at present in our laboratory for the im-
provement of short time ephemeris devoted to the reduction of
Earth based and space missions observations (Fienga & Simon
2004).

The fulfilment of this program will allow to improve on
the main limiting factors listed in Table 8. It should be stressed
again here that the limiting times listed in Table 8 are somewhat
pessimistic. We can thus hope that after completing this effort,
the orbital solution may be valid over 50 to 65 Myr.

Nevertheless, although this program may lead to a solu-
tion valid over about 60 Myr, obtaining a precise solution for
the precession and obliquity of the Earth’s axis over 65 Myr
is much more difficult, as it will require a modelization of the
evolution of the various dissipative contributions (see Sect. 4.1)
over this period. An alternate way will be to fit the evolu-
tion of the main precession frequency to the geological data
over the Paleogene period. Although some results have been
already obtained in this direction over some shorter time span
(Lourens et al. 2001; Pälike & Shackleton 2001), to extract the
variation of the precession frequency from paleoclimate strati-
graphic data is still a challenge, but we hope that the present
paper will provide a good basis for this future work.

Appendix A: Fresnel integrals and resonances

In this section, we show that Fresnel integrals are very good
approximations for the crossing of the resonance. Let us de-
fine the Fresnel integrals (we have dropped here the usual π/2
factor) as

C(x) =
∫ x

0
cos (t2) dt; S (x) =

∫ x

0
sin (t2) dt. (A.1)

Fig. A.1. Fresnel functions C(x) (solid line) and S (x) (dotted line).

We have the expansions, for x ≥ 0 (Abramowitz & Stegun
1965)

C(x)=
1

2

√
π

2
− P(x) cos x2 + Q(x) sin x2

S (x)=
1

2

√
π

2
− P(x) cos x2 − Q(x) sin x2

(A.2)

with the asymptotic expansions

P(x)� 1

2

 1

2x3
− 1.3.5

23x7
+ · · ·


Q(x)� 1

2

1

x
− 1

22x5
+

1.3.5.7

24x9
+ · · ·

 .
(A.3)

We thus have a jump from the asymptotic value at −∞ to the
value at +∞ of

√
π/2 ≈ 1.253 (Fig. A.1). Due to tidal dis-

sipation, the precession angle evolves in first approximation
as Eq. (34)

ψ = ψ0 + p0T + p1T 2 (A.4)

with this evolution, a term of frequency νk + p in Eq. (30) may
cross the resonance. In particular, we can compute the contri-
bution of the term ν23 in the quasiperiodic decomposition of ζ
(Table 5). We will have from Eq. (28),

dε

dt

∣∣∣∣∣∣∣
23

= −2a23ν23 sin((ν23 + p0)t + p1t2 + φ23 + ψ0). (A.5)

More generally, for a > 0, the integral of

sin (a t2 + b t + c) (A.6)

is

1√
a

cos(δ)S


x +

b

2a

 √a

 + sin(δ)C


x +

b

2a

 √a


 , (A.7)

where δ = c − b2/4a, and the asymptotic offset ∆(ε) due to the
crossing of the resonance of the term (A.6) is easily obtained as

∆(ε) =

√
π

a
cos

δ − π
4

 · (A.8)

With the data for the resonant term ν23, we have

a = p1; b = ν23 + p0; c = φ23 + ψ0, (A.9)
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Fig. A.2. Obliquity variation (in degree) versus time resulting from the
crossing of the resonance in the ν23 term (solid line). In the same plot,
the dependence of the precession phase is illustrated. for δ = −π/4 the
obliquity offset is null (dashed line) while it is maximal for δ = +π/4.
The nominal solution (solid line) corresponds nearly to a maximal
decrease of the obliquity.

and as the term is of amplitude −2a23ν23, we obtain (Fig. A.2)
an offset of amplitude

∆
(ε)
23 ≈ −0.398046 deg (A.10)

that is very close to the value 0.377602 deg obtained in Sect. 8.3
for the complete integration. It should be noted that the ampli-
tude of the offset depends critically of the phase c = φ23 + ψ0.
Indeed, a maximum amplitude for the offset will be obtained
when δ = π/4 mod(π) , which leads to∣∣∣∆(ε)

23

∣∣∣
max
= 2a23ν23

√
π/p1 ≈ 0.398721 deg. (A.11)

while no offset will occur when δ = −π/4 mod(π). In the
present case, the actual value of the offset is thus close to
its maximum possible value. One should also note that apart
from the drift that occurs at the resonance, which ranges from
about −0.4 to +0.4 degree, the maximum oscillation of the
obliquity is of about 0.1 degree (Fig. A.2).

Acknowledgements. J.L. thanks J. Landwehr for providing a copy
of Pilgrim’s work, A. Vernekar for a copy of his monograph, and
H. Pälike for his comments. This work benefited from support from
INSU-CNRS, PNP-CNRS, and CS, Paris Observatory.

References

Adhémar, J. 1842, Révolutions de la mer, (Paris: Bachelier)
Agassiz, L. 1840, Études sur les glaciers (Paris)
Arnold, V. I., Kozlov, V. V., & Neishtadt, A. I. 1988, Mathematical

aspects of classical and celestial mechanics, Dyn. Systems III, ed.
V. I. Arnold (New York: Springer)

Berger, A. L. 1978, J. Atmos. Sci., 35, 2362
Bills, B. G. 1994, Geophys. Res. Lett., 21(3), 177
Bretagnon, P. 1974, A&A, 30, 141
Bretagnon, P. 1984, Celest. Mech., 34, 193
Bretagnon, P., & Simon, J.-L. 1990, A&A, 239, 387
Brouwer, D., & Van Woerkom, A. J. J. 1950, Astron. Papers Am.

Ephem., XIII, Part II, 81
Chapman, S., & Lindzen, R. S. 1970, Atmospheric tides (Dordrecht:

D. Reidel)

Chirikov, B. 1979, Phys. Rep., 52, 263
Correia, A., & Laskar, J. 2003, J. Geophys. Res., 108(E11), 5123
Correia, A., Laskar, J., & Néron de Surgy, O. 2003, Icarus, 163, 1
Croll, J. 1890, Climate and Time (London)
Darwin, G. H. 1880, Philos. Trans. R. Soc. London, 171, 713
Dickey, J. O., Bender, P. L., Faller, et al. 1994, Science, 265, 182
Duriez, L. 1977, A&A, 54, 93
Egbert, G. D., & Ray, R. D. 2000, Nature, 405, 775
Fienga, A., & Simon, J.-L. 2004, submitted
Forte, A., & Mitrovica, J. X. 1997, Nature, 390, 676
Gradstein, F., Ogg, J., & Smith, A. 2004, A Geologic Time Scale 2004

(UK: Cambridge University Press), in press
Haretu, S. C. 1885, Annales de l’Observatoire de Paris, 18, I1
Harzer, P. 1895, Die Säcularen veränderungen der bahnen der grossen

planeten, Fürstlich Jablonowski’schen Gesellschaft, Leipzig
Hays, J. D., Imbrie, J., & Schackleton, N. J. 1976, Science, 194, 1121
Hill, G. 1897, AJ, 17(11), 81
Imbrie, J. 1982, Icarus, 50, 408
Imbrie, J., & Imbrie, K. P. 1979, Ice Ages: Solving the Mystery (MA:

Harvard University Press)
Ito, T., & Tanikawa, K. 2002, MNRAS, 336, 483
Ito, T., Masuda, K., Hamano, Y., & Matsui, T. 1995, J. Geophys. Res.,

100, 15147
Jeffreys, H. 1920, Phil. Trans. R. Soc. London, Ser. A, 221, 239
Jeffreys, H. 1976, The Earth, Its Origin, History, and Physical

Constitution, 6th ed. (Cambridge, UK: Cambridge University
Press)

Kinoshita, H. 1977, Cel. Mech., 15, 277
Lagrange, J. L. 1774, Oeuvres complètes, t. IV, Gauthier-Villars, Paris,

1869, 111
Lagrange, J. L. 1776, Oeuvres complètes, t. IV, Gauthier-Villars, Paris,

1869, 255
Lagrange, J. L. 1777, Oeuvres complètes, t. VI, Gauthier-Villars,

Paris, 1873, 633
Lagrange, J. L. 1781, Oeuvres complètes, t. V, Gauthier-Villars, Paris,

1870, 125
Lagrange, J. L. 1782, Oeuvres complètes, t. V, Gauthier-Villars, Paris,

1870, 211
Lambeck, K. 1980, The Earth’s variable rotation (UK: Cambridge

University Press)
Lambeck, K. 1980, Geophysical Geodesy (UK: Oxford University

Press)
Laplace, P. S. 1773–1776, Oeuvres complètes, t. VIII, Gauthier-

Villars, Paris, 1891, 199
Laplace, P. S. 1776, Oeuvres complètes, t. VIII, Gauthier-Villars,

Paris, 1891, 369
Laskar, J. 1984, Théorie générale planétaire: Eléments orbitaux des

planètes sur 1 million d’années, Thèse, Observatoire de Paris
Laskar, J. 1985, A&A, 144, 133
Laskar, J. 1986, A&A, 157, 59
Laskar, J. 1988, A&A, 198, 341
Laskar, J. 1989, Nature, 338, 237
Laskar, J. 1990, Icarus, 88, 266
Laskar, J. 1992, in Chaos, resonance and collective dynamical phe-

nomena in the solar system, Ferraz-Mello, S. (1) (Kluwer Acad.
Publ.), IAU Symp., 152

Laskar, J. 1999, Phil. Trans. R. Soc. Lond. A., 357, 1735
Laskar, J. 1999, Introduction to frequency map analysis, in NATO

ASI 533 3DHAM95, S’Agaro, Spain, C. Simò (Kluwer), 134
Laskar, J. : 2001, Astronomical Solutions for Paleoclimate Studies,.

AGU Fall Meeting 2001 Abstracts U11A-01
Laskar, J. 2003, Ann. Henri Poincaré, 4, Suppl. 2, S693
Laskar, J. 2003, in Hamiltonian systems and Fourier analysis, ed.

Benest et al. (Taylor, Francis), in press



J. Laskar et al.: Insolation quantities of the Earth 285

Laskar, J., Joutel, F., & Boudin, F. 1993, A&A, 270, 522
Laskar, J., & Robutel, P. 2001, Celest. Mech., 80, 39
Laskar, J., Correia, A. C. M., Gastineau, M., et al. 2004, Icarus, 170,

343
Le Verrier, U. 1856, Ann. Obs. Paris, II, Mallet-Bachelet, Paris
Levrard, B., & Laskar, J. 2003, Journal Geophys. Int., 154, 970
Lourens, L. J., Wehausen, R., & Brumsack, H. J. 2001, Nature, 409,

1029
Lourens, L. J., Hilgen, F. J., Shackleton, N. J., Laskar, J., & Wilson,

D. 2004, in The Neogene Period, ed. F. Gradstein, J. Ogg, & A.
Smith, A Geologic Time Scale 2004 (UK: Cambridge University
Press), in press

Lumb, L. I., & Aldridge, K. D. 1991, J. Geomagn. Geoelectr., 43, 93
MacCarthy, D. D. 1992, IERS Standards, IERS Technical note 13,

Observatoire de Paris
MacCarthy, D. D., & Petit, G. 2004, IERS Standards, IERS Technical

note 13, Observatoire de Paris
Mignard, F. 1979, The Moon and the Planets, 20, 301
Mignard, F. 1980, The Moon and the Planets, 23, 185
Mignard, F. 1981, The Moon and the Planets, 24, 189
Milani, A., Nobili, A. N., & Carpino, M. 1987, A&A, 172, 265
Milankovitch, M. 1941, Kanon der Erdbestrahlung und seine

Andwendung auf das Eiszeitenproblem, Royal Serbian Academy
Mitrovica, J. X., & Forte, A. 1995, Geophys. J. Int., 121, 21
Néron de Surgy, O., & Laskar, J. 1997, A&A, 318, 975
Newhall, X. X., Standish, E. M., & Williams, J. G. 1983, A&A, 125,

150
Olsen, P., & Kent, D. 1999, Phil. Trans. R. Soc. London, Ser. A., 357,

1761
Pälike, H. 2002, Thesis, University of Cambridge
Pälike, H., & Shackleton, N. J. 2001, EPSL, 400, 1029
Pälike, H., Laskar, J., & Shackleton, N. J. 2004, Geological constraints

on the chaotic diffusion of the Solar System, Geology, in press
Pijpers, F. P. 1998, MNRAS, 297, L76
Pilgrim, L. 1904, Versuch einer rechnerischen behandlung des

eiszeitenproblems. Jahreshefte fur vaterlandische Naturkunde in
Wurttemberg, 60

Poincaré, H. 1893, Méthodes nouvelles de la mécanique céleste,
(Paris: Gauthier-Villars), Vol. II

Poincaré, H. 1910, Bull. Astron., 27, 321
Pontécoulant, G. de 1834, Théorie Analytique du Système du Monde,

t. III, Bachelier, Paris
Quinn, T. R., Tremaine, S., & Duncan, M. 1991, AJ, 101, 2287
Rochester, M. G. 1976, Geophys. J. R. A. S., 46, 109
Rubincam, D. P. 1990, Science, 248, 720
Rubincam, D. P. 1995, Paleoceanography, 10, 365
Saha, P., & Tremaine, S. 1994, AJ, 108 (5), 1962
Sharav, S. G., & Boudnikova, N. A. 1967a, Bull. I.T.A, XI-4(127), 231
Sharav, S. G., & Boudnikova, N. A. 1967b, Trud. I.T.A, XIV, 48
Standish, E. M. 1998, JPL planetary and Lunar ephemerides,

DE405/LE405. JPL IOM 312.F-98-048, Pasadena
Stockwell, J. N. 1873, Memoir on the secular variations of the ele-

ments of the eight principal planets. Smith. Contr. Knowledge,
Washington, 18

Sussman, G. J., & Wisdom, J. 1992, Science, 257, 56
Touma, J., & Wisdom, J. 1994, AJ, 108, 1943
Varadi, F., Bunnegar, B., & Ghil, M. 2003, ApJ, 592, 620
Vernekar 1972, Long-period global variations of incoming solar radi-

ation, Meteorol. Monogr., 12
Volland, H. 1978, Earth’s rotation from eons to days, ed. Brosche and

Sündermann (Springer), 62
Williams, D. M., Kasting, J. F., & Frakes, L. A. 1998, Nature, 396,

453
Williams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T., & Dickey,

J. O. 2001, J. Geophys. Res., 106, 27933
Wisdom, J., & Holman, M. 1991, AJ, 102(4), 128
Yoder, C. F. 1995, Astrometric and geodetic properties of Earth and

the Solar System, in ed. T. J. Ahrens, Global Earth Physics: A
Handbook of Physical Constants, American Geophysical Union,
Washington DC, 1

Zachos, J. C., Shackleton, N. J., Revenaugh, J. S., Pälike, H., &
Flower, B. P. 2001, Science, 292, 274

Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. 2001,
Science, 292, 686


