Woods Hole Oceanographic Institution

Cruise Planning Synopsis


view revisions

AT18-07

Ship

R/V Atlantis

Vehicles

ROV Jason

Cruise Party

Keir Becker: Principal Investigator
Univ. Miami, RSMAS USA
+1 305 421 4661
Becker Keir

Jordan Clark: Principal Investigator
Univ. California, Santa Barbara USA
+1 805 450 1824
jfclark@geol.ucsb.edu

James Cowen: Principal Investigator
1000 Pope Road Honolulu, HI USA 96822
+1 808 956 7124
jcowen@soest.hawaii.edu

Katrina Edwards: Principal Investigator
Organization Name USA
+1 213 821 4390
kje@usc.edu

Andrew Fisher: Principal Investigator, Chief Scientist
UCSC 1156 High Street Santa Cruz, CA USA 95064
+1 831 459 5598


Brian Glazer: Principal Investigator
Organization Name USA
+1 808 956 6658
glazer@hawaii.edu

Charles Wheat: Principal Investigator
Univ. Alaska Fairbanks USA
+1 831 633 7033
Wheat Geoff

Departure: Jun 28, 2011

Astoria OR

Arrival: Jul 14, 2011

Astoria OR

Operations Area

Cascadia Basin, NE Pacific
Lat/Lon: 47° 45.3′ S / 127° 45.5′ W
Depth Range: 2600 / 2700
Will the vessel be operating within 200 NM of a foreign country? Canada
Are visas or special travel documents required? no

Science Objectives

OCE 1031808 (Project Leader: A. T. Fisher, 11 days) supports multidisciplinary borehole experiments in oceanic crust, to assess hydrogeologic, solute and colloid transport, and microbiological processes and properties at multiple spatial and temporal scales (meters to kilometers, minutes to years). Results of these experiments will comprise a major advance in our understanding of hydrogeologic properties and fluid processes within the volcanic oceanic crust. This grant supports scientific activities that follow completion of Integrated Ocean Drilling Program Expedition 327, which operated in Summer 2010. This expedition drilled two holes through sediments and into the volcanic crust on the 3.5 m.y. old seafloor on the eastern flank of the Juan de Fuca Ridge. These holes were drilled, cased, cored, and tested, then instrumented with subseafloor, borehole observatory systems (CORKs).

The Expedition 327 CORKs augment four additional observatory systems, all located within an area of about 2.5 square kilometers, creating a network of instrumented sites where researchers are monitoring pressure and temperature at depth, and sampling fluids and microbiological material using autonomous instrumentation. These CORK systems require servicing with a submersible or remotely operated vehicle (ROV) to download data, recover samples, and replace a variety of experimental systems. This is a primary goal of the Summer 2011 expedition with the ROV Jason II and the R/V Atlantis. In addition, we will install a new flow meter on the top of one of the CORK observatories, then open a large-diameter ball valve, allowing overpressured hydrothermal fluid from the crust to flow freely into the overlying ocean. This will provide a fluid and microbiological sampling opportunity, and will create a pressure perturbation that will extend within the seafloor to the other CORK observatories. By monitoring the formation pressure response at the different observatories, located at different distances and in different directions from the CORK that will be allowed to discharge fluid, researchers will be able to assess the nature of crustal hydrologic properties.

MCB-0604014 (Project Leader: J. Cowen, 1 day) is intended to collect clean samples of crustal fluid s for geochemical, microbiological and ecological characterization. Researchers are studying subseafloor microbial communities and metabolic diversity in association with geochemical processes. In situ, real-time voltammetric analyses will measure key dissolved redox species, helping to elucidate the metabolic climate of the basement fluids and guide biology portions of this research. Geochemical and biological data will serve as input parameters for thermodynamic calculations of potential metabolic reactions, which will provide a ‘reality-check’ for occurrence of specific metabolisms. Biomarkers and their carbon isotopic compositions will provide information about source organisms, carbon sources, and physiological processes. MCB-0604014 activities focus mainly on acquisition of pristine fluid samples from one or more of the six CORK observatory systems described above.

OCE-0726887 (Project Leader: K. Becker, 1 day) has overall project goals similar to those described for OCE-1031808, but also was to include servicing of an additional observatory system that is not part of the IODP Expedition 327 network. This additional system was installed on younger seafloor, ~50 nmi to the west, during ODP Leg 168 in 1996. At present this CORK system is being used for formation pressure monitoring. During the Summer 2011 Atlantis/Jason II expedition, we plan to visit this CORK, download pressure data, and may attempt recovery of an additional pressure measurement system installed nearby on the seafloor.

Science Activities

    Functional goals for AT18-08 are to service of a network of six subseafloor observatories (CORKs) separated by ~40 to 2460 m, collect fluid and microbiological samples, and complete cross-hole hydrogeologic, geochemical, and microbiological experiments. Because of the close spacing between the primary CORK systems that are the focus of AT18-08, it should be possible to combine operations at multiple wellheads during a single Jason dive, but this will depend on payload, electrical connection, elevator and other operational requirements.
    Active pressure measurement and logging systems are currently installed in the CORKs in Holes 1026B, 1301A, 1301B, 1362A, and 1362B. Data from Hole 1026B are being downloaded automatically using the Neptune Canada cable network. Data from the other CORKs will be downloaded with Jason. Pressure download operations will include manipulation of valves to check the hydrostatic pressure offset and evaluate potential gauge drift. The CORK in Hole 1027C contains an older generation of data logger installed in the top of the wellhead and held in place by a corroded electrical connector. We intend to recover and replace the pressure logger in Hole 1027C. The current Hole 1027C data logger might still be collecting data (depending on battery performance) or, even if it is not currently logging, may be capable of providing data for download. We should be prepared to download data from the old logger, but this will be attempted only if we can't recover it from the wellhead. Once the old 1027C logger is replaced (as described in more detail below), the new logger will be downloaded at least once to verify functionality and conditions in this hole. The pressure logger installed in Hole 1024C will be downloaded on a dedicated dive, as this hole is located ~50 nmi west of our primary work site.
    Replacement of the pressure logging system in Hole 1027C will require a series of special operations. First, we are building a tool to remove the corroded brass electrical connector from the top of the wellhead. Once this connector is removed, we will deploy another tool to latch onto the data logger and pull it out using a hydraulic ram (driven by hydrostatic pressure). These tools will be carried to the seafloor using Jason's basket or an elevator. Once the old logger is removed, we will install an insert into the wellhead. There will be a hydraulic coupler coming off the side of the insert, near the top. We will use this coupler to connect to a hydraulic umbilical plumbed into a pressure gauge and data logger, which will be deployed on the CORK landing platform. This data logger was intended for deployment in a CORK wellhead during Expedition 327, so it has the same kind of underwater mateable connector as the pressure loggers used on other CORKs in this area. The insert placed in the Hole 1027C CORK wellhead will have a rotating clamp on top, like that deployed on the Site 1362 CORKs. We will install a solid plug in the clamp during Summer 2011 Jason operations, but a plug supporting additional instrumentation (for fluid sampling, microbiological substrate, etc) could be deployed at a later time.
    We are developing an autonomous flowmeter system that is to be deployed on the top of a ball valve in the wellhead of one of the Expedition 327 CORKs, most likely the one in Hole 1362B. This flowmeter will use an electro-magnetic induction sensor to determine the rate of fluid outflow from the CORK over time, with measurements made every 15-60 minutes for the following year. The flowmeter will be held in place with a rotating clamp built into a ball valve positioned in one of the wellhead bays. Opening that valve will start a long-term flow experiment, which will last for at least 12 months, as the overpressured formation discharges fluid at 5–10 L/s, with pressure monitoring occurring in this hole and in nearby CORKs to determine the nature of the cross-hole response. There will be a vertical pipe with a diameter of ~4 that extends upward from the flowmeter sensor by about 1 m. Four autonomous thermal loggers will be installed along the length of this pipe, to provide an independent estimate of the upward fluid flow rate (using heat as a tracer). In addition, this pipe will provide fluid and microbiological sampling opportunities. Inlets to fluid samplers can be "hung" over the top of the pipe, allowing fluids to be sampled during discharge from the hole.
    OsmoSampler systems are currently installed on wellheads in Holes 1026B, 1301A, and 1301B. Existing and new OsmoSampling systems include Teflon coils, copper coils, and microbiological FLOCS incubation chambers. Existing systems will be recovered and new systems will be installed at these locations and on CORKs in Holes 1362A and 1362B, which were deployed on IODP Expedition 327 without samplers in place. The OsmoSamplers installed on the CORK in Hole 1362B will draw fluids from the discharge from the flowmeter system, rather than from lines on the wellhead.
    Additional fluid samples will be collected from wellheads using a variety of techniques. Active pumping systems use mechanical and hydraulic pumps and will be deployed and recovered on a short-term basis (hours to days). These systems can be used to draw fluids from valves and fittings on CORK wellheads, and to sample from flow discharging from the flowmeter. NOTE: when actively sampling from CORK wellhead fittings using a mechanical/hydraulic pump system, we may need to close OsmoSampler and/or pressure monitoring valves so that we don't damage associated instruments.

Additional Info

Pre-cruise Planning Meeting: Teleconference
Meeting Notes: I could also plan a visit if it would help later this spring or in a US port.
Media personnel on board: Video, Writer, Teachers, students, videographer
We are planning a significant education, outreach, and communication program, will have something like 5-6 teachers, bloggers, and maybe someone to help with making videos. Videographer will help to communicate with others on shore, and we want to have numerous web conferences with museums, summer camps, etc.

Stations:

Supporting documentation:

»1301068103889_3182_WHOI_AT18-06_StationInformation.pdf
Notes: Changed uploaded pdf for Station Information with old cruise number AT18-08 to match new cruise number AT18-06. 

Funding

Funding Agency: NSF
Grant or contract number: OCE-1031808
Funding Agency: NSF
Grant or contract number: OCE-0726887
Funding Agency: NSF
Grant or contract number: MCB-0604014

Scientific Instrumentation for R/V Atlantis

Shipboard Equipment

Bathymetry System 12 kHz
Bathymetry System 3.5 kHz
Deionized Water System
Relay Transponder for Wire Use
Transponder Navigation - Sonardyne USBL
Navigation - Heading
Multibeam
Fume Hood
Navigation - Position

Shipboard Communication

Basic Internet access via HiSeasNet
Is there a need to receive data from shore on a regular basis?
Is there a need to transfer data to shore on a regular basis?
Is there an expectation to use Skype or any other real-time video conference program?

CTD/Water Sampling

911+ Rosette 24-position, 10-liter bottle Rosette with dual T/C sensors

Critical CTD Sensors

Sample Storage

Climate Controlled Walk-in
Freezer -70°C 3.2 cu. ft. ea.
Freezer -70°C 25 cu. ft.
Refrigerator 8.6 cu. ft.
Scientific Walk-in Freezer
Storage Notes:

Navigation

Will you be using Long Base Line (LBL) navigation? no
How many nets? null
How many tansponders? null
Will you be using Ultra-short baseline (USBL) navigation?no

Navigation

GPS
LBL
USBL
Navigation Notes: Our primary work will be with Jason, not sure about LBL versuys USBL for that. If we have time and do some additional survey work on outcrops, nav requirements will depend on time available. Also, if we do outcrop work, we may wish to generate maps at sea. But if we just work at the primary sites (all CORK work), no maps will be needed.

Winches

CTD Winch with .322" Electro-mechanical wire
Hydro Winch with .25" hydro wire
Winch Notes: Not sure if CTD or Hydro wire might be used for deployment of elevators, if we want to position them with transponders close to CORKs. Also, we may wish to raise/lower the flow meter on a elevator and wire to calibrate early in the cruise.

Wire use and application

Hydro Winch with .25" hydro wire
CTD Winch with .322" Electro-mechanical wire
Winch Notes: We will launch and recover elevators with experimental componets to be delivered to the seafloor to be merged with CORK systems, or recovered from CORKs with aid of Jason. I have asked co-PIs and our development engineer to provide specs for these systems, weights, dimensions etc. but did not want to wait for this information before filing this report. I'll keep working on this to get detailed specs. We will also have OsmoSamplers, ODI UM connectors, and microbial sampling systems, as deployed/recovered during Summer 2010 Jason operations in same area.

Standard Oceanographic Cables

Slip ring required? no
Non-standard wire required? no
Traction winch required? no

Portable Vans

Chemical Storage Van
Isotope Van

Specialized Deck Equipment

Mooring Deployment/Recovery Equipment Required: no Type: 
Cruise Specific Science Winch Required: no Type: 
Nets Required: no Type: 

Over the Side Equipment

Will you be bringing any equipment (winches, blocks, etc.) that lowers instruments over the side? no

Special Requirements

Elecrical Power: no Identify 
Equipment Handling: no Identify: 
Inter/intraship Communications: no Identify: 
Science Stowage: no Identify: 
Water: no Identify: 

Additional Cruise Items/Activities

Explosive Devices:no
Portable Air Compressors:no
Flammable Gases:no
Small Boat Operations:no
SCUBA Diving Operations:no

Hazardous Material

Will hazardous material be utilized?yes
Describe deployment method and quantity:

Radioactive Material

Radioiosotopes:no

Additional Information

Is night time work anticipated on this cruise?yes
Specialized tech support (Seabeam, coring, other):
Night work will comprise mainly elevator operations (deploy and/or recovery), and one or more CTD operations. 
Other required equipment and special needs:
We are exploring options for use of FBB at 256k or 512k streaming to web conferences, blogging, transferring videos. We are also talking to third party vendors about communication options, are working with Laura Stolp and colleagues to test systems on Oceanus and Atlantis, to see what might work best for our group.

Scientific Instrumentation for HOV Jason


Current Chart(s):

<Could not load the preview of ROV Jason Information data >

Site Survey

Will you provide detailed charts of the work area(s)?no
If no, willl you need R/V Atlantis to generate maps of the work area(s)?no
Will you need post-dive maps of the work area generated?no

Navigation

Will you be using Long Base Line (LBL) navigation? no
How many nets? 0
How many tansponders? 0
Will you be using Ultra-short baseline (USBL) navigation?yes
Will you be using Doppler/GPS navigation? yes
What type of samples do you expect to collect?Fluids and microbial materials to be sampled from CORK wellheads. Co-PIs Wheat and Cowen to provide details.

Elevators

Will you be using elevators to transport samples to the surface?yes
If yes, how many would you anticipate? 12-15

Cameras & Video

Video & Photo data

Science Supplied Equipment

Are you supplying equipment to be used on HOV Jason yes
Has this equipment been used on Jason before? yes
Please give a brief description of the equipment, its intended purpose, the cruise # it was last used on if any and its deployment method.
I was not able to insert detailed information here, perhaps because amout of text exceeded available space. I'm attaching a PDF document with the upload tool below that itemizes the tools to be deployed and manipulated with Jason for pressure monitoring of subseafloor observatories. Jim Cowen is providing separate information on the fluid/MBIO sampling systems.

Does this equipment use an external pressure housing? no
If yes, what is the pressure rating?
and test pressure?
Has the pressure housing been tested per Alvin Pressure Test requirements? no
Pressure housing schematic with dimensions and include air and water weights.
»1303751660764_3242_JasonEquipFisherAT18-07_110425[1].pdf
Does the equipment have an associated computer or control panel for remote operation from the personnel sphere? no
Air weight of this equipment?
Water weight of this equipment?

Checklist & Notes

Checklist

U.S. Customs Form: no
Diplomatic Clearance: no
Date Submitted: Mar 25, 2011
Date Approved:
Agent Information:
FOR PRE LOADING JUNE 14 - 16, 2011
Ship Location:  10th Avenue Pier, San Diego CA.

Agent info:
SAN DIEGO CA.

Master R/V ATLANTIS
Attn: Scientist's Name - AT18-06
c/o Paxton, Shreve & Hays Inc.
453 54th Street Suite 101
San Diego, CA   92114

Contact: Tom Jenkins
Phone: (619) 232-8941
Fax: (619) 232-3006
Telex: 6731029 SHREVE SDG
Email: marineops@pshinc.net

Note: Agent and WHOI contacts should be copied on all communications. It is requested that shipment information of any equipment be communicated to the Agent and WHOI contacts

ASTORIA OR
Master R/V Ship Name
Attn: Scientist's Name
Inchcape Shipping Services
2323 NW Suffolk Street
Portland, OR  97210

Mailing Address:
Suite 200,
PO Box 5307
Portland, OR 97228-5307

Phone: +1 503 226 3093 (24 Hrs)
Fax: +1 503 525 6040
Telex: 3774438 isswcoast
Email: iss.portland@iss-shipping.com
Website: ISS Portland OR Microsite 

Contact:  Gary Martinke
Tel:   503 525-6026
Fax:  503 525-6040
Mobile:  503 780-4295

Email: iss.portland@iss-shipping.com

NOTEAll packages and shipments should be sent to the following address with shipping notification sent to WHOI contacts, Ship's Agent and Rita Fahrney, contact information below:

Rita Fahrney rfahrney@portofastoria.com

Port of Astoria Tel: 503 325-4521

Master R/V Ship Name
Attn: Scientist's Name
c/o Port of Astoria
422 Gateway Avenue
Suite 100
Astoria, OR   97103


Note: Agent and WHOI contacts should be copied on all communications. It is requested that shipment information of any equipment be communicated to the Agent and WHOI contacts
Countries:
Notes:
N/A.
Isotope Use Approval: no
Isotope Notes:
SCUBA Diving: no

Checklist

SSSG Tech:
Allison Heater (f), Dave Simms (m)
NEW May 25:  PRE LOADING WILL TAKE PLACE IN SAN DIEGO ONLY.
JUNE 14 - 16  
10TH  Avenue Pier
San Diego CA.

Atlantis will transit up to Astoria for FULL Mobilization June 24 - 27th.
Please use Astoria's port for all shipments (see Astoria agent info above).
Voyage Numbering:  Due to the addition of the transit up to Astoria - this cruise number has been changed from AT18-06 to AT18-07. (eb).