Supplemental Material

Note 1: Methods & Material

Bulk samples (2-3 mg) were collected from the surfaces of split cores during the cruise. The samples were freeze-dried and ground. Stable isotope analyses were conducted on automated gas source mass spectrometers in four laboratories. The Site 1262 and 1266 records were generated on an Autocarb prep system coupled to a PRISM Mass Spectrometer (MS) at the University of California, Santa Cruz. The Site 1263 record was generated on a Kiel device coupled to MAT 252 MS at Amsterdam University. The Site1267 record was generated on an Isocarb coupled to a PRISM MS at the University of Florida, and the Site 1265 record was generated on a Kiel device coupled to a MAT 251 MS at Bremen University. Analytical precision based on replicate analyses of standards was better than $\pm 0.05\%$ for δ^{13} C. All values are reported relative to vPDB (Table S2).

Note 2: Biostratigraphy

Biohorizons N1 to N4 are delineated from the abundance patterns of the following selected taxa: the genus *Fasciculithus (Fasciculithus spp.)*, *Rhomboaster calcitrapa* group (as defined by Raffi et al., in press), *Zygrhablithus bijugatus*. "Base" and "Top" indicates the first and last occurrence of the taxon (Table S4).

N1 - Decrease in diversification of Fasciculithus spp.

The uppermost Paleocene diversified fasciculith assemblage includes different species, as *F. thomasii*, *F. alanii*, rare *F. richardii* and *F. schaubii*, and abundant *F. tympaniformis* and *F. involutus*. At the onset of CIE fasciculiths show a drastic decrease in diversity and abundance compared to the pre-boundary situation. The two remaining species (*F. involutus* and *F. tympaniformis*) are consistently present (show peaks in abundance) throughout the CIE. This event is recorded in the known Paleocene-Eocene (P/E) boundary sections, from different areas at different latitudes (Backman, 1986; Monechi et al.,2000).

N2 - Base of Rhomboaster calcitrapa gr.

Within the CIE, *Rhomboaster* morphotypes belonging to the spined *R. calcitrapa* group and *R. cuspis* have the lowermost occurrence. *R. calcitrapa* gr. specimens have been consistently observed in most of the known P/E boundary sections (Cramer et al, 2000; Monechi et al., 2000; Aubry, 2001; Kahn and Aubry, 2004), and appears to represent a globally distributed evolutionary event (Raffi et al., in press).

N3 - Relative increase *Zygrhablithus bijugatus*/ decrease *Fasciculithus* (the "*Fasciculithus* spp./ *Zygrhablithus bijugatus* abundance cross-over") The demise of fasciculiths occurs concomitantly with the initial rise (Site1263) or marked abundance increase (Sire 1262) of *Zygrhablithus bijugatus*. In sedimentary successions from the North and South Atlantic oceans, the Indian Ocean, the Shatsky Rise in subtropical Pacific Ocean, and from Tethyan area, this cross-over in abundance was consistently observed close to the P/E boundary (Bralower, 2002; Tremolada and Bralower, 2004, Gibbs et al., 2004) whereas *Z. bijugatus* is very rare or missing, implying that this particular early Eocene turnover is absent in equatorial regions (Raffi et al, in press).

N4 - Top of *Rhomboaster calcitrapa* gr.

The characteristic presence of spined *Rhomboaster* spp. is restricted to the CIE interval at sites1263 and 1262. Similar distribution range has been recorded in several P/E sections, from different areas at different latitudes (Cramer et al, 2000; Monechi et al., 2000; Aubry, 2001; Kahn and Aubry, 2004)

Figure S1 – Location map of the Walvis Ridge Sites recovered during ODP Leg 208 (Zachos et al., 2004) and DSDP Legs 73 and 74 (Moore et al., 1984).

Figure S2 - High resolution Fe concentration records or MS records for ODP sites 1262, 1263, 1265, 1266, and 1266. Fe concentration was determined using an XRF core scanner at Bremen University Core Repository.

Supplemental Citations:

1. Raffi, I., Backman, J., Pälike, H., 2005. Changes in calcareous nannofossil assemblages across the Paleocene/Eocene transition from the paleo-equatorial Pacific ocean. Palaeogeogr., Palaeoclimatol., Palaeoecol., in press.

- Backman, J. 1986. Late Paleocene to Middle Eocene calcareous nannofossil biochronology from the Shatsky Rise, Walvis Ridge and Italy. Palaeogeogr., Palaeoclimatol., Palaeoecol. 57, 43-59.
- 3. Monechi, S., Angori, E., von Salis, K., 2000. Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain). Bull Soc. Géol. France 171, 477-489.
- 4. Cramer, B. S., Miller, K.G., Aubry, M.-P., Olsson, R.K., Wright, J.D., Kent, D.V., Browning, J.V., 2000. The Bass River Section: an exceptional record of the LPTM event in a neritic setting. Bull. Geol. Soc. Fr. 170, 883-897.
- Aubry, M.-P., 2001. Provincialism in the photic zone during the LPTM. In: Ash, A., Wing, S., (Eds.), Climate and Biota of the Early Paleogene. International Meeting, Powell, Abst., p. 6.
- 6. Kahn, A., Aubry, M.-P., 2004. Provincialism associated with the Paleocene/Eocene thermal maximum: Temporal constraint. Mar. Micropaleontol., 52, 117-131.
- 7. Bralower, T.J., 2002. Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Progam Site 690, Maud Rise, Weddell Sea. Paleoceanography 17, 1-13.
- Tremolada, F., Bralower, T.J., 2004. Nannofossil assemblage fluctuations during the Paleocene-Eocene thermal maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): paleoceanographic implications. Mar. Micropaleontol., 52, 107-116.
- 9. Gibbs, S.J., Bralower, T.J., Bybell, L.M., 2004. ICP XIII, Poster Abstracts, p.36.

Table S1 ODP Leg 208 PETM bulk carbonate weight % data

Leg	Site	Η	Cor	Т	Sc	Top(cm)	Depth (mbsf)	Depth (mcd)	CaCO3 (wt %)
208	1262	A	13	Η	5	1	120.01	138.12	92.5
208	1262	Α	13	Н	5	10	120.10	138.21	91.3
208	1262	Α	13	Н	5	20	120.20	138.31	94.7
208	1262	Α	13	Н	5	30	120.30	138.41	92.1
208	1262	Α	13	Н	5	40	120.40	138.51	91.7
208	1262	Α	13	Н	5	50	120.50	138.61	94.2
208	1262	Α	13	Н	5	60	120.60	138.71	93.1
208	1262	Α	13	Н	5	70	120.70	138.81	89.1
208	1262	Α	13	Н	5	80	120.80	138.91	93.0
208	1262	Α	13	Н	5	90	120.90	139.01	92.8
208	1262	Α	13	Н	5	100	121.00	139.11	91.2
208	1262	Α	13	Н	5	110	121.10	139.21	92.1
208	1262	Α	13	Н	5	120	121.20	139.31	92.4
208	1262	Α	13	Н	5	130	121.30	139.41	91.1
208	1262	Α	13	Н	5	140	121.40	139.51	91.9
208	1262	Α	13	Н	5	148	121.48	139.59	88.9
208	1262	Α	13	Н	6	5	121.55	139.66	89.1
208	1262	Α	13	Н	6	10	121.60	139.71	90.1
208	1262	Α	13	Н	6	15	121.65	139.76	78.9
208	1262	Α	13	Н	6	20	121.70	139.81	68.1
208	1262	Α	13	Н	6	24	121.74	139.85	48.7
208	1262	Α	13	Н	6	27	121.77	139.88	43.2
208	1262	Α	13	Н	6	30	121.80	139.91	27.7
208	1262	Α	13	Н	6	32	121.82	139.93	11.4
208	1262	Α	13	Η	6	35	121.85	139.96	0.8
208	1262	Α	13	Η	6	37	121.87	139.98	0.8
208	1262	Α	13	Н	6	40	121.90	140.01	0.4
208	1262	Α	13	Н	6	43	121.93	140.04	0.5
208	1262	Α	13	Н	6	45	121.95	140.06	0.7
208	1262	Α	13	Η	6	47	121.97	140.08	0.7
208	1262	Α	13	Η	6	48	121.98	140.09	0.8
208	1262	Α	13	Н	6	49	121.99	140.10	0.8
208	1262	Α	13	Η	6	50	122.00	140.11	0.7
208	1262	Α	13	Н	6	51	122.01	140.12	58.8
208	1262	Α	13	Н	6	52	122.02	140.13	72.0
208	1262	Α	13	Н	6	55	122.05	140.16	76.9
208	1262	Α	13	Н	6	60	122.10	140.21	82.9
208	1262	Α	13	Н	6	65	122.15	140.26	83.7
208	1262	Α	13	Н	6	70	122.20	140.31	84.6
208	1262	Α	13	Н	6	75	122.25	140.36	88.0
208	1262	Α	13	Н	6	80	122.30	140.41	86.0
208	1262	Α	13	Н	6	85	122.35	140.46	90.0
208	1262	Α	13	Н	6	90	122.40	140.51	90.5
208	1262	Α	13	Н	6	100	122.50	140.61	88.5
208	1262	Α	13	Н	6	110	122.60	140.71	86.5
208	1262	A	13	Η	6	120	122.70	140.81	90.1

Leg	Site	H	Cor	T	Sc	Top(cm)	depth (mbsf)	depth (mcd)	CaCO3 (wt%)
208	1263	C	14	Η	2	1	283.91	334.22	90.0
208	1263	С	14	Н	2	10	284.00	334.31	90.6
208	1263	С	14	Н	2	20	284.10	334.41	90.0
208	1263	С	14	Н	2	30	284.20	334.51	89.9
208	1263	С	14	Η	2	40	284.30	334.61	89.7
208	1263	С	14	Н	2	50	284.40	334.71	85.2
208	1263	С	14	Н	2	60	284.50	334.81	80.2
208	1263	С	14	Н	2	70	284.60	334.91	75.7
208	1263	С	14	Н	2	76	284.66	334.97	78.9
208	1263	С	14	Н	2	88	284.78	335.09	59.9
208	1263	С	14	Η	2	94	284.84	335.15	61.1
208	1263	С	14	Η	2	100	284.90	335.21	54.6
208	1263	С	14	Η	2	104	284.94	335.25	54.0
208	1263	С	14	Η	2	108	284.98	335.29	49.5
208	1263	С	14	Н	2	112	285.02	335.33	47.5
208	1263	С	14	Н	2	116	285.06	335.37	47.7
208	1263	С	14	Н	2	120	285.10	335.41	45.6
208	1263	С	14	Н	2	124	285.14	335.45	43.7
208	1263	С	14	Н	2	130	285.20	335.51	31.7
208	1263	С	14	Н	2	132	285.22	335.53	32.5
208	1263	С	14	Н	2	134	285.24	335.55	40.4
208	1263	С	14	Н	2	136	285.26	335.57	42.2
208	1263	С	14	Н	2	138	285.28	335.59	35.9
208	1263	С	14	Н	2	140	285.30	335.61	15.8
208	1263	С	14	Н	2	142	285.32	335.63	15.7
208	1263	С	14	Н	2	144	285.34	335.65	1.3
208	1263	С	14	Н	2	146	285.36	335.67	2.6
208	1263	С	14	Н	2	148	285.38	335.69	4.2
208	1263	С	14	Η	2	149	285.39	335.70	73.7
208	1263	С	14	Η	CC	1	285.41	335.72	83.9
208	1263	С	14	Η	CC	2	285.42	335.73	83.5
208	1263	С	14	Η	CC	3	285.43	335.74	86.6
208	1263	С	14	Η	CC	5	285.45	335.76	88.4
208	1263	С	14	Η	CC	7	285.47	335.78	87.5
208	1263	С	14	Η	CC	9	285.49	335.80	89.0
208	1263	С	14	Η	CC	11	285.51	335.82	87.1
208	1263	С	14	Η	CC	13	285.53	335.84	88.2
208	1263	С	14	Η	CC	15	285.55	335.86	88.5
208	1263	С	14	Η	CC	17	285.57	335.88	87.2

Leg	Site	H	Cor	T	Sc	Top(cm)	Depth (mbsf)	Depth (mcd)	CaCO3 (wt %)
208	1265	Α	29	Η	6	70	273.58	314.36	90.1
208	1265	Α	29	Η	6	75	273.63	314.41	92.4
208	1265	Α	29	Η	6	80	273.68	314.46	87.6
208	1265	Α	29	Η	6	85	273.73	314.51	85.7
208	1265	Α	29	Η	6	90	273.78	314.56	87.7
208	1265	Α	29	Η	6	95	273.83	314.61	89.9
208	1265	Α	29	Η	6	100	273.88	314.66	92.4
208	1265	Α	29	Η	6	105	273.93	314.71	91.3
208	1265	Α	29	Η	6	110	273.98	314.76	90.0
208	1265	A	29	Η	6	115	274.03	314.81	94.0
208	1265	A	29	Η	6	120	274.08	314.86	87.1

208	1265	A	29	Η	6	125	274.13	314.91	88.6
208	1265	A	29	Η	6	130	274.18	314.96	88.1
208	1265	A	29	Η	6	135	274.23	315.01	88.8
208	1265	Α	29	Н	6	140	274.28	315.06	88.6
208	1265	Α	29	Н	6	145	274.33	315.11	88.8
208	1265	A	29	Н	6	150	274.38	315.16	88.4
208	1265	Α	29	Н	7	5	274.43	315.21	90.0
208	1265	Α	29	Н	7	10	274.48	315.26	89.4
208	1265	Α	29	Н	7	15	274.53	315.31	90.3
208	1265	A	29	Н	7	20	274.58	315.36	87.5
208	1265	A	29	H	7	25	274.63	315.41	84.1
208	1265	A	29	H	7	30	274.68	315.46	81.0
208	1265	A	29	H	7	32	274.70	315.48	81.1
208	1265	A	29	H	7	34	274.72	315.50	74.5
208	1265	A	29	H	7	36	274.74	315.52	70.3
208	1265	A	29	H	7	38	274.76	315.54	71.3
208	1265	A	29	H	7	40	274.78	315.56	74.4
208	1265	A	29	H	7	42	274.80	315.58	72.2
208	1265	A	29	H	7	44	274 82	315.60	76.7
208	1265	A	29	H	7	46	274 84	315.62	59.7
208	1265	A	29	H	7	48	274.86	315.64	64.5
208	1265	A	29	н	7	50	274.88	315.66	62 1
208	1265		29	н	7	52	274.90	315.68	58.3
208	1265	Δ	29	н	7	54	274.00	315 70	56.0
208	1265		29	н	7	56	274.02	315 72	53.3
208	1265		29	н	7	58	274.96	315 74	48.1
208	1265		29	н	7	60	274.98	315 76	48.7
208	1265	A	29	н	7	62	275.00	315 78	47.0
208	1265	A	29	н	7	64	275.02	315 80	42.0
208	1265	A	29	н	7	66	275.04	315.82	30.0
208	1265	Δ	29	н	7	68	275.04	315.84	34.6
200	1200	<u> </u>	20			00	270.00	010.04	04.0
208	1265	Δ	29	н	7	70	275.08	315 86	76 7
200	1200		20	<u> </u>	-	10	210.00	010.00	
208	1265	Δ	29	н	7	75	275 13	315 91	87.2
208	1265	Δ,	29	н	7	80	275.18	315 96	89.1
208	1265	Δ	29	н	7	85	275.23	316.01	90.1
208	1265	Á	29	Н	7	90	275.28	316.06	94 7
208	1265	Á	29	Н	7	95	275.33	316 11	89.6
208	1265	Δ	29	н	7	100	275.38	316 16	89.2
208	1265	Δ	29	н	7	105	275.43	316 21	89.6
208	1265	Δ,	29	н	7	110	275.48	316.26	86.9
208	1265	Δ	29	н	7	115	275 53	316.31	84.2
208	1265	Δ	29	н	7	120	275 58	316.36	80.7
208	1265	Δ	29	н	7	125	275.63	316 41	86 7
208	1265	Δ	20	н	7	130	275.68	316.46	90.1
200	1265	Δ	20	н	7	135	275.00	316 51	92 4
200	1265	$\overline{\Delta}$	20	Н	7	140	275.75	316 56	91 5
200	1205		29 20		7	1/5	275.22	316.50	91.5
200	1205		29 20		7	150	275.00	316 66	90.5 Q1 Q
200	1200	IAI	2 9		1	100	210.00	310.00	31.3

Leg	Site	H	Cor	T	Sc	Top(cm)	Depth (mbsf)	Depth (mcd)	CaCO3 (wt %)
208	1266	C	17	H	2	10	264.59	304.25	92.7
208	1266	С	17	Н	2	19	264.68	304.34	93.7
208	1266	С	17	Н	2	28	264.77	304.43	90.4
208	1266	С	17	Н	2	37	264.86	304.52	88.6
208	1266	С	17	Н	2	46	264.95	304.61	93.2
208	1266	C	17	Н	2	55	265.04	304.70	92.1
208	1266	Ċ	17	н	2	64	265.13	304.79	92.4
208	1266	Ċ	17	H	2	73	265.22	304.88	92.5
208	1266	Ċ	17	H	2	82	265.31	304.97	92.2
208	1266	Ċ	17	H	2	88	265.37	305.03	89.3
208	1266	C C	17	н	2	94	265.43	305.09	93.8
208	1266	C C	17	н	2	100	265.49	305 15	87.7
208	1266		17	н	2	106	265 55	305 21	89.5
200	1266		17	н	2	112	265.61	305.27	90.2
200	1266		17	н	2	112	265.67	305.27	91.2 01.7
200	1266		17	н	2	12/	265.07	305.33	Q1 Q
200	1200	F	17		2	124	203.73	305.33	01.0
200	1200		17		2	100	200.19	303.43 305.54	<u> </u>
200	1200		17		2	140	203.03	305.51	90.7
200	1200		17		2	142	205.91	305.57	90.3
208	1266		17	н	2	148	265.97	305.63	90.8
208	1266		17	н	3	4	266.03	305.69	92.0
208	1266		17	H	3	10	266.09	305.75	91.8
208	1266	C	1/	H	3	16	266.15	305.81	91.3
208	1266	C	17	H	3	22	266.21	305.87	90.1
208	1266	C	17	Н	3	32	266.31	305.97	90.5
208	1266	C	17	Н	3	35	266.34	306.00	89.4
208	1266	C	17	н	3	38	266.37	306.03	88.8
208	1266	C	17	н	3	41	266.40	306.06	89.3
208	1266	С	17	Н	3	44	266.43	306.09	90.3
208	1266	С	17	Н	3	47	266.46	306.12	88.5
208	1266	С	17	Н	3	50	266.49	306.15	86.5
208	1266	С	17	Н	3	53	266.52	306.18	82.0
208	1266	С	17	Н	3	56	266.55	306.21	82.6
208	1266	С	17	Η	3	59	266.58	306.24	77.8
208	1266	С	17	Η	3	62	266.61	306.27	76.8
208	1266	С	17	Н	3	65	266.64	306.30	70.7
208	1266	С	17	Η	3	68	266.67	306.33	68.0
208	1266	С	17	Η	3	71	266.70	306.36	69.9
208	1266	С	17	Η	3	74	266.73	306.39	70.4
208	1266	С	17	Η	3	77	266.76	306.42	66.7
208	1266	С	17	Η	3	80	266.79	306.45	63.6
208	1266	С	17	Η	3	83	266.82	306.48	61.7
208	1266	С	17	Н	3	86	266.85	306.51	60.4
208	1266	С	17	Н	3	89	266.88	306.54	55.5
208	1266	С	17	Н	3	90	266.89	306.55	50.5
208	1266	С	17	Н	3	92	266.91	306.57	44.8
208	1266	С	17	Н	3	92	266.91	306.57	47.8
208	1266	С	17	Н	3	94	266.93	306.59	43.2
208	1266	Ċ	17	H	3	96	266.95	306.61	41.7
208	1266	C	17	Н	3	98	266.97	306.63	41.8
208	1266	c	17	н	3	100	266.99	306.65	27.3
208	1266	Ċ	17	H	3	102	267.01	306.67	8.5

208	1266	C	17	Η	3	104	267.03	306.69	1.0
208	1266	C	17	H	3	106	267.05	306.71	0.4
208	1266	С	17	Н	3	108	267.07	306.73	0.5
208	1266	С	17	Н	3	110	267.09	306.75	0.5
208	1266	С	17	Н	3	112	267.11	306.77	14.6
208	1266	С	17	Н	3	114	267.13	306.79	80.4
208	1266	С	17	Н	3	116	267.15	306.81	85.0
208	1266	C	17	Н	3	118	267.17	306.83	79.2
208	1266	C	17	Н	3	120	267.19	306.85	84.2
208	1266	Ċ	17	H	3	122	267.21	306.87	83.0
208	1266	C	17	H	3	124	267.23	306.89	83.8
208	1266	C C	17	H	3	126	267.25	306.91	83.4
208	1266	C C	17	H	3	128	267.20	306.93	83.3
208	1266	C C	17	н	3	130	267.29	306.95	82.8
200	1200	10	17		U	100	201.20	000.00	02.0
Log	Site	Ш	Cor	т	80	Top(om)	Donth (mhof)	Donth (mod)	$C_{0}C_{0}$
Leg	Sile		Cor		30	Top(cm)		Depth (mcd)	
208	1267	B	23	Н	3	0	204.7	230.53	91.21
208	1267	B	23	H	3	10	204.8	230.63	88.46
208	1267	B	23	H	3	20	204.9	230.73	88.80
208	1267	B	23	H	3	30	205	230.83	89.80
208	1267	B	23	H	3	40	205.1	230.93	90.63
208	1267	B	23	Н	3	45	205.15	230.98	89.30
208	1267	B	23	Н	3	50	205.2	231.03	87.05
208	1267	B	23	Н	3	55	205.25	231.08	90.38
208	1267	В	23	Н	3	60	205.3	231.13	89.88
208	1267	В	23	Н	3	65	205.35	231.18	84.05
208	1267	В	23	Н	3	68	205.38	231.21	79.80
208	1267	В	23	Η	3	70	205.4	231.23	77.80
208	1267	В	23	Η	3	72	205.42	231.25	70.14
208	1267	В	23	Η	3	74	205.44	231.27	56.56
208	1267	В	23	Η	3	76	205.46	231.29	56.39
208	1267	В	23	Η	3	78	205.48	231.31	53.23
208	1267	В	23	Η	3	80	205.5	231.33	53.73
208	1267	В	23	Η	3	82	205.52	231.35	48.06
208	1267	В	23	Н	3	84	205.54	231.37	42.23
208	1267	В	23	Н	3	86	205.56	231.39	38.07
208	1267	В	23	Н	3	88	205.58	231.41	20.49
208	1267	В	23	Η	3	90	205.6	231.43	6.16
208	1267	В	23	Η	3	92	205.62	231.45	5.33
208	1267	В	23	Η	3	94	205.64	231.47	1.83
208	1267	В	23	Η	3	96	205.66	231.49	0.92
208	1267	В	23	Н	3	98	205.68	231.51	1.17
208	1267	В	23	Н	3	100	205.7	231.53	1.42
208	1267	В	23	Н	3	102	205.72	231.55	52.06
208	1267	В	23	Н	3	104	205.74	231.57	80.13
208	1267	В	23	Н	3	106	205.76	231.59	80.97
208	1267	В	23	Н	3	108	205.78	231.61	81.63
208	1267	B	23	H	3	110	205.8	231.63	78.30
208	1267	B	23	H	3	115	205.85	231.68	83.88
208	1267	B	23	Н	3	120	205.9	231.73	87.13
208	1267	B	23	н	3	130	206	231.83	83.47
208	1267	B	23	н	3	140	206 1	231.93	85.97
208	1267	R	23	н	3	150	206.2	232 03	87.63
		10							

1262A	1262A	1263C/D	1263C/D	1265A	1265A	1266C	1266C	1267A	1267A
mcd	13C	mcd	13C	mcd	13C	mcd	13C	mcd	13C
135.11	1.89	332.23	1.71	311.61	1.95	304.25	1.67	229.75	1.85
135.21	1.91	332.26	1.75	311.66	1.94	304.34	1.71	229.85	1.89
135.31	1.90	332.29	1.71	311.71	1.93	304.43	1.73	229.95	1.87
135.41	1.90	332.32	1.69	311.76	1.91	304.52	1.68	230.05	1.78
135.51	1.89	332.35	1.70	311.81	1.90	304.61	1.75	230.15	1.65
135.61	1.83	332.38	1.83	311.86	1.91	304.70	1.74	230.25	1.84
135.71	1.86	332.41	1.73	311.91	1.97	304.79	1.63	230.35	1.81
135.81	1.88	332.44	1.67	311.96	1.92	304.88	1.70	230.45	1.73
135.91	1.76	332.47	1.64	312.01	1.98	304.97	1.68	230.50	1.76
136.01	1.90	332.50	1.66	312.06	2.00	305.03	1.71	230.55	1.75
136.11	1.81	332.53	1.59	312.11	2.00	305.09	1.63	230.60	1.75
136.21	1.79	332.56	1.63	312.16	1.98	305.15	1.61	230.65	1.74
136.31	1.75	332.62	1.67	312.21	1.99	305.21	1.61	230.70	1.73
136.41	1.78	332.65	1.63	312.26	1.95	305.27	1.64	230.75	1.62
136.51	2.03	332.68	1.60	312.31	1.97	305.33	1.62	230.80	1.57
136.61	2.00	332.74	1.61	312.36	1.95	305.39	1.60	230.85	1.50
136.71	2.02	332.77	1.61	312.41	1.95	305.45	1.58	230.90	1.55
136.81	1.95	332.80	1.59	312.46	1.95	305.51	1.59	230.95	1.40
136.91	1.96	332.81	1.62	312.51	1.92	305.57	1.49	230.97	1.37
137.01	1.97	332.82	1.60	312.56	1.88	305.63	1.45	230.99	1.38
137.11	1.85	332.83	1.64	312.61	1.86	305.69	1.38	231.01	1.34
137.21	1.91	332.84	1.60	312.66	1.89	305.75	1.34	231.03	1.34
137.31	1.75	332.86	1.60	312.71	1.91	305.81	1.30	231.05	1.42
137.41	1.97	332.87	1.66	312.76	1.87	305.87	1.27	231.07	1.25
137.51	1.83	332.90	1.65	312.81	1.85	305.97	1.24	231.09	1.29
137.61	1.97	332.92	1.62	312.86	1.91	306.00	1.26	231.11	1.33
137.71	1.94	332.93	1.66	312.91	1.92	306.03	1.29	231.13	1.32
137.81	1.93	332.95	1.64	312.96	1.89	306.06	1.27	231.15	1.31
137.91	2.01	332.96	1.67	313.01	1.86	306.09	1.25	231.17	1.31
138.13	1.95	332.98	1.62	313.06	1.81	306.12	1.28	231.19	1.17
138.15	1.95	332.99	1.68	313.11	1.77	306.15	1.22	231.21	1.07
138.17	1.94	333.01	1.65	313.16	1.78	306.18	1.15	231.23	0.98
138.19	1.95	333.02	1.70	313.21	1.78	306.21	1.01	231.25	0.85
138.21	1.89	333.02	1.70	313.26	1.83	306.24	0.81	231.26	0.78
138.23	1.94	333.04	1.59	313.31	1.81	306.27	0.69	231.27	0.71
138.25	1.94	333.05	1.70	313.36	1.77	306.30	0.69	231.28	0.73
138.27	1.92	333.07	1.60	313.41	1.83	306.31	0.23	231.29	0.40
138.29	1.96	333.08	1.67	313.46	1.83	306.33	0.41	231.30	0.28
138.31	1.97	333.10	1.60	313.51	1.90	306.35	0.69	231.31	0.27
138.33	1.96	333.11	1.69	313.56	1.77	306.37	0.57	231.32	0.33
138.35	1.95	333.13	1.62	313.61	1.73	306.39	0.68	231.33	0.25
138.37	1.94	333.14	1.67	313.66	1.70	306.41	0.49	231.34	0.31
138.39	1.99	333.16	1.59	313.71	1.68	306.42	0.32	231.35	0.24
138.41	1.94	333.17	1.62	313.76	1.72	306.48	0.16	231.36	0.15
138.43	1.91	333.19	1.63	313.81	1.73	306.51	0.15	231.37	0.12
138.45	1.86	333.20	1.62	313.86	1.71	306.54	0.05	231.38	0.35

Table S2 - Bulk sediment carbon isotope data (% vPDB)

1262A	1262A	1263C/D	1263C/D	1265A	1265A	1266C	1266C	1267A	1267A
mcd	13C	mcd	13C	mcd	13C	mcd	13C	mcd	13C
138.47	1.87	333.22	1.48	313.91	1.77	306.57	0.08	231.39	0.68
138.49	1.80	333.22	1.59	313.96	1.76	306.59	0.29	231.40	0.70
138.51	1.83	333.23	1.63	314.01	1.74	306.60	0.46	231.41	1.02
138.53	1.79	333.26	1.61	314.06	1.79	306.61	0.18	231.42	0.09
138.55	1.84	333.29	1.57	314.11	1.75	306.62	0.14	231.43	0.08
138.57	1.87	333.32	1.60	314.16	1.71	306.63	0.21	231.44	0.22
138.59	1.83	333.35	1.60	314.21	1.69	306.64	0.33	231.45	0.15
138.61	1.91	333.38	1.59	314.26	1.71	306.65	0.52	231.46	0.00
138.63	1.88	333.41	1.61	314.31	1.70	306.66	0.63	231.47	-0.15
138.65	1.88	333.42	1.51	314.36	1.68	306.67	0.46	231.48	0.10
138.67	1.88	333.44	1.59	314.41	1.68	306.69	0.34	231.49	-0.42
138.69	1.85	333.47	1.59	314.46	1.61	306.78	2.05	231.50	-0.16
138.71	1.90	333.50	1.64	314.51	1.64	306.78	2.08	231.51	IC
138.73	1.81	333.53	1.63	314.52	1.66	306.78	2.09	231.52	IC
138.75	2.01	333.56	1.60	314.54	1.69	306.79	2.13	231.53	IC
138.77	1.99	333.57	1.51	314.56	1.67	306.80	2.13	231.54	0.01
138.79	1.93	333.59	1.62	314.56	1.67	306.81	2.01	231.55	0.40
138.81	1.89	333.62	1.61	314.58	1.69	306.82	2.23	231.56	0.37
138.83	1.91	333.65	1.59	314.60	1.65	306.83	1.97	231.57	1.36
138.85	1.92	333.68	1.60	314.62	1.65	306.85	2.21	231.58	2.09
138.87	1.89	333.71	1.59	314.64	1.63	306.85	2.24	231.59	2.13
138.89	1.89	333.74	1.56	314.66	1.62	306.87	2.07	231.60	2.19
138.91	1.93	333.77	1.31	314.68	1.60	306.89	2.11	231.61	2.13
138.93	1.97	333.77	1.49	314.70	1.55	306.91	1.97	231.62	2.18
138.95	1.98	333.86	1.44	314.72	1.52	306.93	2.06	231.63	2.16
138.97	1.94	333.87	1.41	314.74	1.53	306.94	1.88	231.64	2.15
138.99	1.98	333.92	1.49	314.76	1.50	306.95	1.88	231.65	2.11
139.01	1.87	333.95	1.43	314.78	1.48	306.95	1.98	231.67	2.04
139.03	1.88	333.98	1.36	314.80	1.45	306.96	1.94	231.69	1.97
139.05	1.79	334.01	1.31	314.82	1.44	306.97	1.86	231.71	2.02
139.07	1.77	334.04	1.33	314.84	1.40	306.98	1.89	231.73	2.02
139.09	1.77	334.07	1.57	314.86	1.40	306.99	1.99	231.75	1.93
139.11	1.72	334.10	1.28	314.88	1.41	307.00	1.95	231.77	2.06
139.13	1.72	334.13	1.31	314.90	1.35	307.01	2.03	231.79	2.14
139.15	1.70	334.16	1.28	314.92	1.36	307.02	2.05	231.81	2.17
139.17	1.71	334.17	1.19	314.94	1.30	307.03	2.09	231.83	2.15
139.19	1.75	334.19	1.26	314.96	1.36	307.04	2.13	231.85	2.08
139.21	1.74	334.26	1.15	314.98	1.38	307.05	2.13	231.90	2.14
139.23	1.72	334.31	1.21	315.00	1.31	307.06	2.12	231.95	2.26
139.25	1.69	334.36		315.02	1.26	307.07	2.18	232.00	2.32
139.27	1.71	334.36	1.17	315.04	1.35	307.08	2.20	232.05	2.46
139.29	1.71	334.41	1.13	315.06	1.34	307.09	2.22	232.10	2.42
139.31	1./1	334.40	1.12	313.08 215.10	1.31	507.10 207.11	2.18	232.15	2.35
139.33	1.68	334.31	1.14	515.10 215.10	1.29	507.11 207.12	2.14	232.20	2.35
139.33	1.08	334.30	1.13	313.12 215 14	1.28	307.12	2.10	232.23	2.32
139.37	1.05	334.01	1.03	313.14	1.20	307.13	1.91	252.50	2.22

Table S2 - Bulk sediment carbon isotope data (% vPDB)

1262A	1262A	1263C/D	1263C/D	1265A	1265A	1266C	1266C	1267A	1267A
mcd	13C	mcd	13C	mcd	13C	mcd	13C	mcd	13C
139.39	1.65	334.66	0.88	315.16	1.25	307.14	2.05	232.35	2.24
139.41	1.60	334.71	0.74	315.18	1.28			232.40	2.21
139.43	1.54	334.76	0.17	315.21	1.28			232.45	2.15
139.45	1.48	334.76	0.26	315.25	1.31			232.50	2.19
139.47	1.49	334.81	0.20	315.27	1.28			232.55	2.15
139.49	1.48	334.86	-0.27	315.29	1.28			232.60	2.22
139.51	1.46	334.86	-0.14	315.31	1.27			232.65	2.37
139.53	1.38	334.91	-0.30	315.33	1.24			232.70	2.34
139.55	1.38	334.93	-0.45	315.35	1.29			232.75	2.34
139.57	1.36	334.93	-0.29	315.37	1.28				
139.59	1.37	334.95	-0.34	315.39	1.13				
139.61	1.34	334.95	-0.28	315.41	1.29				
139.62	1.24	334.97	-0.21	315.43	1.12				
139.63	1.33	334.99	-0.29	315.45	1.03				
139.64	1.36	334.99	-0.20	315.47	1.04				
139.65	1.30	335.01	-0.27	315.49	0.81				
139.66	1.28	335.03	-0.41	315.51	0.65				
139.67	1.32	335.03	-0.31	315.53	0.69				
139.68	1.33	335.05	-0.52	315.55	0.33				
139.69	1.28	335.07	-0.64	315.57	0.20				
139.70	1.28	335.11	-0.77	315.59	0.80				
139.71	1.31	335.11	-0.76	315.61	-0.18				
139.72	1.30	335.13	-0.59	315.62	0.29				
139.73	1.28	335.15	-0.80	315.63	0.29				
139.74	1.25	335.17	-0.78	315.64	0.18				
139.75	1.22	335.19	-0.81	315.65	0.14				
139.76	1.12	335.21	-0.84	315.66	0.20				
139.77	1.09	335.23	-0.87	315.67	-0.16				
139.78	0.76	335.25	-0.78	315.68	-0.11				
139.79	0.73	335.27	-0.83	315.69	-0.03				
139.80	0.64	335.29	-0.71	315.70	-0.23				
139.81	0.75	335.31	-0.67	315.71	0.00				
139.82	0.44	335.33	-0.53	315.72	-0.19				
139.83	0.25	335.35	-0.60	315.73	-0.40				
139.84	0.23	335.37	-0.35	315.74	-0.46				
139.85	0.28	335.39	-0.45	315.75	-0.30				
139.87	0.28	335.41	0.07	315.76	-0.41				
139.88	0.20	335.43	0.30	315.77	-0.35				
139.89	0.19	335.45	0.67	315.78	-0.36				
139.90	0.32	335.47	0.75	315.79	-0.30				
139.91	0.28	335.47	0.76	315.80	-0.35				
139.92	0.26	335.49	0.80	315.81	-0.25				
139.93	0.22	335.51	1.10	315.82	-0.33				
139.94	0.46	335.53	0.55	315.83	-0.09				
139.97	0.46	335.55	0.25	315.84	-0.09				
139.98	0.90	335.57	0.26	315.85	0.09				

Table S2 - Bulk sediment carbon isotope data (% vPDB)

1262A	1262A	1263C/D	1263C/D	1265A	1265A	1266C	1266C	1267A	1267A
mcd	13C	mcd	13C	mcd	13C	mcd	13C	mcd	13C
139.99	IC	335.57	0.29	315.86	0.16				
140.00	IC	335.59	0.53	315.87	0.35				
140.01	IC	335.61	0.68	315.88	0.46				
140.02	IC	335.61	0.79	315.90	1.57				
140.03	IC	335.63	0.80	315.91	2.18				
140.04	IC	335.65	0.68	315.93	2.12				
140.05	IC	335.69	0.20	315.95	2.03				
140.06	IC	335.71	1.85	315.96	1.97				
140.07	IC	335.71	1.97	315.97	1.95				
140.08	IC	335.73	1.71	315.99	1.99				
140.09	IC	335.75	1.59	316.03	1.96				
140.10	IC	335.75	1.77	316.07	1.95				
140.11	IC	335.77	1.83	316.09	1.97				
140.12	IC	335.79	1.91	316.11	2.10				
140.13	2.32	335.81	1.97	316.13	2.17				
140.14	2.22	335.83	2.01	316.17	2.12				
140.17	2.21	335.85	2.10	316.19	2.17				
140.18	2.20	335.87	2.03	316.21	2.18				
140.19	2.20	335.89	2.07	316.26	2.25				
140.20	2.57	335.91	2.10	316.36	2.21				
140.21	2.19	335.92	2.17	316.41	2.23				
140.22	2.25	335.94	2.07	316.46	2.22				
140.23	2.29	335.96	2.03	316.51	2.31				
140.24	2.31	335.98	2.02	316.56	2.40				
140.25	2.28	336.00	2.03	316.61	2.44				
140.26	2.32	336.02	1.94	316.66	2.46				
140.27	2.32			316.71	2.47				
140.28	2.33								
140.29	2.20								
140.30	2.36								
140.31	2.37								
140.32	2.33								
140.33	2.26								
140.34	2.36								
140.35	2.45								
140.36	2.43								
140.37	2.43								
140.38	2.56								
140.39	2.52								
140.40	2.53								
140.41	2.51								
140.46	2.41								
140.51	2.37								
140.56	2.40								
140.61	2.17								
140.66	2.26								

Table S2 - Bulk sediment carbon isotope data (% vPDB)

1262A	1262A	1263C/D	1263C/D	1265A	1265A	1266C	1266C	1267A	1267A
mcd	13C	mcd	13C	mcd	13C	mcd	13C	mcd	13C
140.71	2.21								
140.76	2.22								
140.81	2.36								
140.86	2.36								
140.91	2.39								
140.96	2.39								
141.01	2.33								
141.06	2.42								
141.11	2.45								
141.16	2.48								
141.21	2.52								
141.26	2.53								
141.31	2.50								
141.36	2.47								
141.41	2.49								
141.46	2.44								
141.51	2.45								
141.56	2.43								
141.61	2.44								
141.66	2.43								
141.71	2.39								
141.77	2.42								
141.82	2.48								
141.87	2.57								
141.92	2.63								
141.97	2.66								
142.02	2.72								

Table S2 - Bulk sediment carbon isotope data (% vPDB)

IC-insufficient carbonate

Table S3: Calcareous Nannofossil Biohorizons											
bioho	rizon	1263 (mcd)	1263 samples	1262 (mcd)	1262 samples						
N4	Top R.calcitrapa gr.	334.52	1263C-14H-2,31-32	139.71	1262B-15H-3,28-29						
		334.7	1263C-14H-2,49-50	139.72	1262B-15H-3,29-30						
N4a	decrease R.calcitrapa gr.	334.71	1263C-14H-2,50-51	139.76	1262B-15H-3,33-34						
		334.72	1263C-14H-2,51-52	139.77	1262B-15H-3,34-35						
N3	X fasculiths/Z.bijugatus	334.77	1263C-14H-2,56-57	139.77	1262B-15H-3,34-35						
	(decrease fasciculiths)	334.8	1263C-14H-2,59-60	139.79	1262B-15H-3,36-37						
N3a	beginning decrease in abundance of fasciculiths	334.9	1263C-14H-2,70-71	139.83	1262B-15H-3,50-51						
N2	Base R.calcitrapa gr.	335.25	1263C-14H-2,104-105	140.01	1262B-15H-3,58-59						
		335.26	1263C-14H-2,105-106	140.02	1262B-15H-3,59-60						
N1a	2nd Decrease in diversity	335.26	1263C-14H-2,107-108	barren	interval						
	of fasciculiths	335.28	1263C-14H-2,108-109								
N1	1st Decrease in diversity	335.6	1263D-4H-1,67-68	140.145	1262B-15H-3,73						
	of fasciculiths	335.61	1263D-4H-1,68-69	140.15	1262B-15H-3,72-74						

Table S4 - Carbon isotope tie points from ODP site 690 and assigned ages used for correlation and dating the leg 208 P-E boundary sections.

		690 Age	690 Age						
		(±kyr	(±kyr		1263B, C, D				
Tie Points	690 mbsf	Roehl00)*	F&E03)*	1262A (Mcd)	(Mcd)	1265 (Mcd)	1266 (Mcd)	1267A (Mcd)	1267B (Mcd)
MS tie point**				138.08	331.19	312.64	303.84	229.40	227.35
Н	166.13	230	183	139.20	333.14	314.50	305.37	230.50	230.46
G	167.12	218	118.6	139.40	333.73	314.70	305.60	230.75	230.66
F	169.05	108	100.15	139.73	334.56	315.39	306.13	231.15	231.15
E	169.39	88	93.6	139.83	334.75	315.56	306.44	231.29	231.29
D	169.56	76	90.2	139.92	335.10	315.70	306.56	231.46	231.41
C***	170.02	47.2	67	139.99	335.22	315.75	306.64	231.48	231.46
B***	170.33	28.4	37.48	140.04	335.39	315.88	306.69	231.52	231.49
Α	170.63	1	1	140.11	335.68	315.88	306.77	231.56	231.54
PEB	170.64	0	0	140.12	335.69	315.89	306.78	231.57	231.55
A-	171.24	-34	-62	140.15	336.00	316.05	306.97	231.73	231.68
B-	172.81	-125		141.15	337.82	317.69	308.43	232.82	231.98
MS tie point**				142.58	340.42		310.51	234.38	236.28

 Ms tie point**
 142.58
 340.42
 310.51
 234.38
 2

 The depths are in meters composite depth (Mcd)
 * Time (kyr) at ODP Site 690 relative to the P-E boundary set to 55 Ma. Ages are from Roehl et al. (2000) and Farley and Eltgroth (2003).
 For tie points G & H, because of the large differences in the two age models, we used the means for the 208 age model.
 *** Magnetic susceptibility tie points are from ODP Leg 208 Initial Reports volume (Zachos, Kroon, Blum et al., 2004)

 ****For Sites 1262, 1266, & 1267, the depths of tie points C & B were estimated by linear interpolation between points D & A using the temporal relationship established at Site 1263.