Origins II: Cosmology, stellar evolution and nucleosynthesis

Cosmic abundances, nucleosynthesis and origin of the elements

- The cosmic abundance of the elements
 - general patterns
- Creating the universe
 - Primordial nucleosynthesis
- The birth, life and death of a star
 - Origins and fusion modes
 - The end results
 - Nucleosynthesis

Cosmic abundance of the elements

Foundations

- The Four Forces
 - Strong nuclear Force
 - very short range, between nucleons, strength ~ 1
 - Electromagnetic Force
 - infinite range, but shielded, strength ~ 10^-2
 - Weak Nuclear Force
 - extremely short range, leptons, strength ~ 10^-13
 - Gravity
 - infinite range, no shielding, strength ~ 10^-39

Underlying Principles

- Quantum mechanics
 - wave-particle duality
 - isospin and fermion statistics
 - shell structure
- Relativity
 - space-time curvature and the expanding universe
 - mass-energy equivalence: $E = mc^2$

Controlling factors on nuclear stability

- Number nucleons
 - the more the merrier
- Spin pairing
 - favours even #s
- Shell structure
 - “magic numbers”
- Surface tension
 - like liquid drop
- Coulomb repulsion
 - limits ultimate size

All About Radioactive Decay

- Modes: Alpha, Beta*, Gamma, Fission
- Greater ΔE → Less stable → shorter $t_{1/2}$
- $dN/dt = -\lambda N \rightarrow N = N_0 e^{-\lambda t} \rightarrow t_{1/2} = (\ln 2)/\lambda$

- Dating types:
 - Simple Dating:
 - Parent-Daughter Dating:
 - Secular (Dis-)Equilibrium Dating:

*n*the elusive neutrino takes away ~ 1/3 the energy of a β decay
And Decay Branching…

- 19K40 is unstable, and decays either to
 - 20Ca40 (by β^- decay) 89% of the time, or
 - 18Ar40 (by electron capture, β^+ decay) 11% of the time
- The composite decay rate is related to the sum of the probabilities, i.e.,

 \[\lambda_{\text{tot}} = \lambda_1 + \lambda_2 \]

 \[t_{\text{tot}} = \frac{1}{1/t_1 + 1/t_2} \]

* I forgot to mention this last lecture…

Let there be light...

- The universe was created in a big bang about 15×10^9 years ago:
 - a hot, infinitely dense singular point
 - expanded very rapidly
 - Protons & neutrons couldn’t exist for the first minute or two

 - Cosmic abundances, nucleosynthesis and origin of the elements
 - The cosmic abundance of the elements
 - general patterns
 - Creating the universe
 - Primordial nucleosynthesis
 - The birth, life and death of a star
 - Origins and fusion modes
 - The end results
 - Nucleosynthesis

And there was light...

Cosmic microwave background: echo of the big bang

All bodies emit a “black body radiation spectrum” whose amplitude and maximum wavelength related to temperature

- CMB is red-shifted to an incredibly low temperature
- Patches caused by inflation of quantum fluctuations

And there was motion...

Objects further away are receding more rapidly (velocity proportional to distance) means the universe is expanding…

- The HRS and CMB form 2 most convincing “proofs” of the Hot Big Bang

And then matter...

- The universe was created in a big bang about $\sim 13 \times 10^9$ years ago:
 - a hot, infinitely dense singular point
 - expanded very rapidly
 - light elements form
Cosmic abundances, nucleosynthesis and origin of the elements
- The cosmic abundance of the elements – general patterns
- Creating the universe – Primordial nucleosynthesis
- The birth, life and death of a star – Origins and fusion modes
- The end results – Nucleosynthesis

Stellar Birth
- Some compression of the otherwise homogeneous gas cloud
 – collision of clouds
 – or a shock wave
- gravitational self attraction and collapse
 – accelerates with time
 – collapse ==> heating

Stellar Evolution:
- Gravitational heating
- Early high luminosity – effective cooling
- Deuterium burning – D rapidly exhausted
- Further collapse – intense heating – opacity increases
- Density reaches fusion threshold...

The onset of fusion:
- If gas is hot enough
 – nuclei moving fast enough to overcome mutual repulsion due to like (positive) nuclear charges
- and if gas is dense enough
 – many collisions per unit time to allow reactions to proceed
- then nuclei can begin to hit each other and "stick together" with strong nuclear force

Fusion Energy
- The whole is less than the sum of the parts
 – 4 of 1H weigh more than 4He
 \[^1H + ^1H \rightarrow ^2H + \beta^+ + \nu + \Delta E_1 \]
 \[^1H + ^3H \rightarrow ^4He + \gamma + \Delta E_2 \]
 \[^3He + ^3He \rightarrow ^4He + ^4He + \Delta E_3 \]
 – mass is energy!!

Mass \(^1H = 1.0078 \text{ amu} \) (x 4 = 4.0312 amu)
Mass \(^4He = 4.0026 \text{ amu} \)
Hydrogen “burning”

- The first/best viable energy source
- Rate ~ T^{15}
- lasts most of the star’s life (~ 10^{10} y)
- makes He from H
- eventually runs out…
 - the star begins to cool
 - … and starts to collapse further
 - … compression leads to additional heating

Fusion Energy

- Other ways to skin the cat, e.g., the CNO bi-cycle

\[
\begin{align*}
{}^{12}\text{C} + \text{H} & \rightarrow {}^{13}\text{N} + \gamma \\
{}^{13}\text{N} & \rightarrow {}^{13}\text{C} + e^+ + \nu \\
{}^{13}\text{C} + \text{H} & \rightarrow {}^{14}\text{N} + \gamma \\
{}^{14}\text{N} + \text{H} & \rightarrow {}^{15}\text{O} + \gamma \\
{}^{15}\text{O} & \rightarrow {}^{15}\text{N} + e^+ + \nu \\
{}^{15}\text{N} + \text{H} & \rightarrow {}^{16}\text{C} + {}^{4}\text{He}
\end{align*}
\]

- Uses C, N, & O as catalysts, so don’t need much
- Rate ~ T^{20}

Doing more of a good thing:

- Moving up the binding energy curve…
- combine He to make bigger nuclei
- actually difficult, because there’s no stable “mass 8” nucleus

Burning He

- Requires higher temperatures to overcome bigger charge barriers (He is 2+)
- Requires higher pressures to increase collision rates (half-life of intermediaries is 10^{-16} s)
 - takes place in stellar cores

\[
\begin{align*}
\frac{4}{2}\text{He} + \frac{4}{2}\text{He} & \rightarrow \frac{8}{2}\text{Be} + \gamma \rightarrow 2^{\frac{4}{2}}\text{He} \\
\frac{8}{4}\text{Be} + \frac{4}{2}\text{He} & \rightarrow \frac{16}{6}\text{C} + \gamma
\end{align*}
\]

- This is called “Helium Flashing” and is mostly done by “white dwarves”
- Requires higher pressures
 - takes place in stellar cores
 - is very exothermic

He Burning: climbing the “alpha ladder”

- The next rung: $^{12}\text{C} + {}^{4}\text{He} \rightarrow ^{16}\text{O} + \gamma$
- And so on:

\[
\begin{align*}
{}^{12}\text{C}(\alpha,\gamma)^{16}\text{O} \\
{}^{16}\text{O}(\alpha,\gamma)^{20}\text{Ne} \\
{}^{20}\text{Ne}(\alpha,\gamma)^{24}\text{Mg}
\end{align*}
\]

- A short-hand for the reactions

*Reaction rate is very sensitive to temperature and pressure
A star suddenly heats up due to the onset of He burning: expands, cools, and then extinguishes the He burning
Living in the balance: what makes the star “tick”

- The enemy:
 - relentless gravitational pull to implode
 - heat loss due to:
 - electromagnetic radiation (light) into space
 - neutrino losses from beta-decay (p => n)
- The tool:
 - use strong nuclear force to fuel fusion
 - heat produced from fusion:
 - creates heat and pressure to balance gravity

The beginning of the end...

- Running out of steam:
 - higher temperatures/pressures needed to burn
 - higher charge barriers
 - fewer gains for work done
 - lower slope on BE curve
 - eventually the slope turns over (becomes negative) so the reaction becomes “endothermic”, nuclei above maximum tend to fall apart

A stellar profile

- The star has an shell or onion-like character
 - with hotter shells near the core
 - cooler shells on the outside
 - H-burning on the outer shell
 - He, C, O, Si burning inward
- Its life is measured in years...
 - The e-process is fundamentally fruitless
 - neutrino losses are relentless
 - the star has nowhere to go...

Structure of an Evolved Massive Star

- Lifetime measured in seconds
 - inner core
 - turns endothermic
 - collapses
 - compresses to nuclear density (10^15g cc^-1)
 - becomes a giant nucleus
 - beta decays

© Anglo-Australian Observatory

February 22, 1987

© Anglo-Australian Observatory

February 23, 1987
Bang!

You’re dead

- Lifetime measured in seconds
- inner core
 - turns endothermic
 - collapses
 - compresses to nuclear density ($10^{15} \text{ g cm}^{-3}$)
 - becomes a giant nucleus
 - beta decays

Neutrino shock wave blows off outer shell

SN1987A

Neutrinos from SN 1987A

- Energy output of supernova:
 - Core temperature $\sim 200 \times 10^9 \text{ K}$
 - Core collapse releases 10^{54} ergs (gravitational)
 - 0.1% emerged as light
 - 1% as physical shock wave
 - $\sim 99\%$ lost by neutrinos
- on earth $\sim 5 \times 10^{10}$ neutrinos passed through each cm2
 - 20 events seen ~ 1 day prior to arrival of light

Neutrinos from SN 1987A

- How do you “detect” a neutrino?
 - Have a very large target
 - Eliminate “non-events”
 - Be very very patient
 - E.g., Super-Kamiokande
 - Cherenkov radiation* detector
 - 50,000 tons ultrapure water (40 m diam., 40 m high)
 - 1000 m underground

Neutrinos and Super-K

*photonic “sonic boom”
Neutrinos in Super-K

And then in November, 2001…

Cosmic abundances, nucleosynthesis and origin of the elements

- The cosmic abundance of the elements
 - general patterns
- Creating the universe
 - Primordial nucleosynthesis
- The birth, life and death of a star
 - Origins and fusion modes
 - The end results
 - Nucleosynthesis

The final hours before nova

- Neutrons made during He and Si burning are boiled off during e-process defragmentation of Fe-type nuclei
 - called the "s-process"

 Neutron addition rate is slower than or comparable to decay rates of unstable nuclei near the "valley of stability"

 Nuclides follow the floor of the valley like a river

 Some isotopes not made this way

The final seconds of nova

- Neutrons boil off the collapsing core, streaming outward through the shell
 - at first "slowly"
 - then "rapidly"
 - called the "r-process"

 Neutron addition rate is much faster than decay rates of unstable nuclei near the "valley of stability"

 The valley is flooded!

The final milliseconds of nova

- The outbound stream of neutrons entrains protons and other nuclei
 - Leads to p-capture reactions
 - called the "p-process"

 Drives nucleosynthesis up the proton-rich side of the valley, e.g., making 136Ce and 144,148Sm isotopes

What happens next?

- What’s left behind depends on stellar mass
 - small initial mass → sputter to dwarfdom
 - medium mass → collapse to neutron star (pulsars)
 - $1.4 M_{\odot} < M < 3 M_{\odot}$
 - spin rate from $0.1 \, \text{s}^{-1}$ to $10,000 \, \text{s}^{-1}$
 - major league → collapse to black hole
 - $M > 3 M_{\odot}$
 - & @ galactic centers

- Gas and material ejected into large clouds that expand to seed new star formation
 - At speeds approaching $10,000 \, \text{km/s}$
 - shock wave compresses gases → new stars
 - second/third generation stars rework material
An example: the Crab Nebula

A supernova observed in 1054 AD leaves behind a cloud of gas and debris with an embedded neutron star/pulsar.

And the beat goes on...

26Al has a half-life of only 730,000 years (short compared to the universe). It must have been produced recently in nucleosynthetically active regions.

Our sun

- Our sun is a second generation star
 - the solar system formed from the ashes of a supernova
 - step 1: blow up a star, creating all of our elements
 - step 2: make a new solar system
 - How do we measure the timing of this?

Uranium Isotopes

- All Uranium isotopes are unstable, but two have very long half-lives:
 - 238U decays with a half-life of \(4.51 \times 10^9\) years
 - 235U decays with a half-life of \(7.10 \times 10^6\) years
- Present day ratio: \(\frac{^{235}U}{^{238}U} \approx 7 \times 10^{-5}\)
- The lighter isotope was more abundant during formation: \(\frac{^{235}U}{^{238}U} \approx 1.3\)

Uranium Isotopes

- The isotopes decay at unequal rates:
 - \(^{235}U = 235Ue^{-\lambda_{235}t}\)
 - \(^{238}U = 238Ue^{-\lambda_{238}t}\)
Uranium Isotopes

\[^{235}U = ^{235}U_0 e^{-\lambda_{235}t} \]

Given

\[^{238}U = ^{238}U_0 e^{-\lambda_{238}t} \]

We then have

\[\frac{^{235}U}{^{238}U} = \frac{^{235}U_0 e^{-\lambda_{235}t}}{^{238}U_0 e^{-\lambda_{238}t}} = e^{-(\lambda_{235} - \lambda_{238})t} \]

or

\[R = R_0 e^{-(\lambda_{235} - \lambda_{238})t} \]

or

\[\frac{R}{R_0} = e^{-(\lambda_{235} - \lambda_{238})t} \]

\[t = \frac{\ln \left(\frac{R}{R_0} \right)}{\lambda_{235} - \lambda_{238}} \]

\[\ln \left(\frac{R}{R_0} \right) = -(\lambda_{235} - \lambda_{238})t \]

Taking natural log of both sides & substituting the numbers

\[t = \frac{\ln \left(\frac{R}{R_0} \right)}{\lambda_{235} - \lambda_{238}} = \frac{\ln \left(\frac{0.0072}{1.3} \right)}{1.537 \times 10^{-10} - 9.763 \times 10^{-10}} \]

\[t = 5.196 -8.226 \times 10^{-10} = 6.3 \pm 0.2 \text{Ga} \]

\[\pm 0.2 \text{Ga due to 20% uncertainty in original ratio} \]

232Th and 238U

- A similar exercise:
 - \((232\text{Th}:238\text{U})_0 \approx 1.6 \pm 0.3\)
 - \(232\text{Th} \text{ half-life} = 14.1 \times 10^9 \text{y} \)
 - \(238\text{U} \text{ half-life} = 4.51 \times 10^9 \text{y} \)
 - \(238\text{U} \text{ decays faster than } 232\text{Th} \)
 - \((232\text{Th}:238\text{U})_{\text{present}} \approx 2.8 \pm 0.8\)

\[\ln \left(\frac{R}{R_0} \right) = -(\lambda_{232} - \lambda_{238})t \]

\[t = \frac{\ln \left(\frac{R}{R_0} \right)}{\lambda_{232} - \lambda_{238}} \]

\[t = \frac{-0.5596}{-4.916 \times 10^{-10} - 1.5335 \times 10^{-10}} = -1.0419 \times 10^{-10} = 5.4 \text{Ga} \]

\[\ln \left(\frac{R}{R_0} \right) = -(\lambda_{232} - \lambda_{238})t \]

\[t = \frac{\ln \left(\frac{0.0072}{1.3} \right)}{1.537 \times 10^{-10} - 9.763 \times 10^{-10}} \]

\[t = 5.196 -8.226 \times 10^{-10} = 6.3 \pm 0.2 \text{Ga} \]

\[\pm 0.2 \text{Ga due to 20% uncertainty in original ratio} \]

232Th vs. 238U

- Is 5.4 Ga different from 6.3 Ga?
 - (and whom do you believe?)
 - If you vary the primordial ratios by \(\pm 20\%\) (a reasonable uncertainty) you get:
 - \((232\text{U}:238\text{U}) = 6.1 - 6.5 \text{ Ga} \)
 - \((232\text{Th}:238\text{U}) = 3.5 - 7.2 \text{ Ga} \)
 - The better estimate for former is due to \(235\text{U}\)'s short half-life
 - Also, there are many processes in nature (i.e. during the formation of the earth and subsequent reprocessing) that can affect Th/U ratios

But wait… it’s more complicated than this!

- If nucleosynthesis is occurring continuously
 - Nuclear "inventories" will grow until decay balances production
 - For U isotopes we have

\[\frac{P_{235}}{P_{238}} = \frac{\lambda_{233} N_{235}}{\lambda_{238} N_{238}} \]

which gives

\[\frac{N_{235}}{N_{238}}_{\text{Initial}} \]

\[\ln \left(\frac{R}{R_0} \right) = -(\lambda_{235} - \lambda_{238})t \]

\[t = \frac{\ln \left(\frac{R}{R_0} \right)}{\lambda_{235} - \lambda_{238}} \]

\[t = \frac{\ln \left(\frac{0.0072}{1.3} \right)}{1.537 \times 10^{-10} - 9.763 \times 10^{-10}} = -5.324 -8.226 \times 10^{-10} = 4.04 \text{Ga} \]

But wait… it’s more complicated than this!

- But it takes multiple half-lives to reach "secular equilibrium"
 - \(235\text{U}\) will reach this value before \(238\text{U}\)
 - And much sooner than \(232\text{Th}\)
Cosmic abundances, nucleosynthesis and origin of the elements

• The cosmic abundance of the elements
 – general patterns
• Creating the universe
 – Primordial nucleosynthesis
• The birth, life and death of a star
 – Origins and fusion modes
 – The end results
 – Nucleosynthesis
• The timing of it all…