A Software Environment for Sequence Data

by Wolfgang Ludwig and Oliver Strunk

Lehrstuhl für Mikrobiologie

Technische Universität München

D-80290 München

Germany
Chapter 1 Introduction

1 Documentation Conventions

- Words in *italics* indicate a special meaning of the term.
- Words in **bold** indicate ARB components, windows, subwindows, buttons.
- Words in `mono-spaced` indicate commands that are entered from the keyboard.
- Words in `[wordbox]` represent a key on the keyboard.
- Press and click mean pressing and releasing a mouse button (after properly positioning the cursor).
- Drag means moving the cursor while pressing a mouse button.

2 Authors

The ARB program package was developed at the Lehrstuhl für Mikrobiologie
Technische Universität München
D-80290 München
Germany

Design and programming was done by Oliver Strunk, Wolfgang Ludwig, Oliver Gross, Boris Reichel, Norbert Stuckmann, Michael May, Björn Nonhoff, Michael Lenke, Toni Ginhart, Alexander Vilbig, Ralf Westram.

The ARB program package is still under development.
Foreign software tools were integrated. Copyright notes are accessible via on-line help

3 The Manual

This is a preliminary manual and provides limited information on the most frequently used software tools. For further instruction consult the on-line help facilities. Most ARB windows contain **HELP** button(s). Press these buttons to display the **HELP WINDOW**. This window contains information on the current software tool and provides access to help texts an related topics.
4 The Concept of ARB

ARB (from arbor, Latin: tree) was conceived as a graphically oriented package of software tools for establishing, handling and using hierarchical databases of sequences and associated information. The major concept was to combine access to the data via graphically presented hierarchy (tree) and sequence data analysis. The programs have primarily been designed for rRNA data and data analysis, however, can be used for any nucleic or amino acid sequence data.

The data such as sequence, bibliography, identifiers or user provided text are stored in individual fields associated with the respective species. The term species does not necessarily match that of a biological species but indicates a containment for all data assigned to a sequence. The containments can be hierarchically arranged according to sequence similarity (phylogeny).

Any sequence data and/or associated information can be displayed in the ARB_NT main window along with a tree reflecting the hierarchy of the data base. The tree can be used as a guide to walk through the data as well as a tool for selecting (combinations of) data base entries for analysis by using other tools of the package (e.g. for searching, editing, modifying, aligning, treeing, profiling).

The software is fully graphic oriented. Any function can be invoked by mouse click. Generally, the left mouse button has to be used. (In cases where the other buttons are effective short advice is given on the screen).

5 Databases

ARB databases of small and large subunit rRNA sequences are periodically updated and provided at our FTP or WWW servers.

6 Why use ARB

There are hundreds of small and big programs for sequence analysis available. So why use ARB? Here is my personal checklist:

You should use ARB if you are

- designing many oligonucleid — (16s/23s) probes.
- working with hundreds of sequences.
- doing extensive phylogeny.
- working with 16s/23s/18s rRNA sequences.
- not afraid of UNIX/LINUX

You should use GCG if you are

- not interested in phylogeny
- working with only some sequences
- working with proteins
You should use GDE if you

- have only a few sequences to analyze.
- have a UNIX computer with xview.
Chapter 2 Installing ARB

1 Get ARB

This shows how to install the ARB Package. First of all check our www or ftp servers and download and read the file ‘arb_README’. Then download your machine specific program tar files and some demo databases:

- get the files arb_README from www / ftp-server either by
 - netscape http://www.mikro.biologie.tu-muenchen.de
 - or ftp ftp.mikro.biologie.tu-muenchen.de /pub/arb
 - or netscape http://www.biol.chemie.tu-muenchen.de
 - or ftp ftp.biol.chemie.tu-muenchen.de

2 Install ARB

- login as root (recommended, but only necessary for linux systems)
- Read the arb_README:

excerpt from arb_README

Welcome to the ‘ARB’ Sequence Database Tools

/*********** Hardware and System Requirements ***********/

ARB is currently developed on SUN workstations and Linux PCs. The most recent version is now available for this machines.

Release dates / history:

 HP Series 7000 June 95
 PC Linux Jan 96 (486dx; >16 Mega Byte RAM)
 SGI Irix June 96
 Digital OSF April 97
 SUNOS4.x Mai 92
 SUNOS5.x June 94
Hardware Requirements:
 Minimum Good
Real Memory 32 64-256
Free Disc Space 100 1000
Computer Speed 25Spec92 100Spec92
 = 486dx66 =586dx90
 Sparc 1 Sparc 5/10/20

Note: Memory is more important than a fast processor, a 486dx
width 64 mByte of RAM may be much faster than an
Ultra Sparc with 32 mByte of RAM.

/******* Files needed to install ARB ***********/

File FTP server location // Comment
'arb_README' pub/ARB/arb_README // this file
'arb_install' pub/ARB/$MACH/arb_install // install script
'arb.tar.gz' pub/ARB/$MACH/arb.tar.gz // ARB program
'zcat' pub/ARB/$MACH/zcat // decompress (gzip)
 ['arb_ale.tar.gz' pub/ARB/$MACH/arb_ale.tar.gz // optional Editor]
 ['***.arb' pub/ARB/data/*.arb // optional demo /
 real rRNA data]

Notes:
- $MACH should be replaced by your system type
 (type uname -sr to find out your system type)
- enable binary mode for ftp transfer (command 'bin')
- do not uncompress and untar arb.tar.gz directly, use the
 install script !!!

/******* Install/Update ARB ***********/

ARB consists of more than 750 files which are installed into a single
directory. Creating this directory, copying all data into it, and setting
the permissions correctly is done by the installation script
'arb_install'

Goto the directory, where the files

'arb_install' //install script
'arb_README' //this file
'arb.tar.gz' //all the libs and bin
'zcat' //decompress
 ['arb_ale.tar.gz' //optional sequence editor]

are located and type '/bin/sh arb_install'

On Linux computers become root.
Answer all questions asked by the script.
Notes: - The script will ask about a pt_server directory. This is a
directory where arb will store big index files.
You should enter a different path as you do not want to
recreate those files after an ARB update.
 - Normally pressing enter will be a good choice.
 - You can rerun the script many times, it can be used to change an existing installation.

Change your .cshrc/.profile files:
 Set the enviroment variable ARBHOME
to the ARB installation directory
Append $ARBHOME/bin to your PATH

reread it, (logout+login)

goto a directory with a demo database 'eg demo.arb'
and start 'ARB' with

 'arb'
Chapter 3 Working with ARB

1 Getting started

To start the ARB software type `arb` at a terminal window prompt. The ARB INTRO window pops up:

```
ARB INTRO

ARB - A Software Environment for Sequence Data

Authors:
Oliver Strunk, Wolfgang Ludwig
Oliver Drews, Rita Freidel, Michael May,
Stefan Herrmann, Norbert Stuckmann,
Eigard Kochloff, Michael Lumka,
Toni Gisbert, Alexander Vogel, Rolf Westerm

Existing Files (f) and Directories (D) Suffix

CONTENTS OF `/usr5/ludwig5/16s/arbwork`
D `PARENT DIR` (....)
D `HOME` (`/usr9/ludwig`)
D `PT_SERVER_HOME` (`/usr/arb/lib/pts`)
D `PWD` (`/usr5/ludwig5/23s/arbwork`)
 f `/usr5/ludwig5/16s/arbwork/dic2001.arb` 848k Dec 02 9:50 1
 f `/usr5/ludwig5/16s/arbwork/dic2001.arb` 848k Dec 02 9:50 1
```

.ARB data files (suffix: .arb, marked by f) of the current directory (indicated in the first line: CONTENTS OF) are listed in the Existing Files (f) and Directories (D) subwindow. If desired, move to other directories by mouse click on the lines marked by D.
2 Opening an ARB Data File

Select an ARB data file by single left mouse click and press the **OPEN SELECTED** button. The main window (**ARB_NT**) appears. The menus and buttons in this window provide access to all other functions of the software package.
3 The ARB_NT Main Program

The tree displayed in the ARB_NT main window gives access to any database entries and allows to select (mark) species for sequence analyses or processing:

Select a Sequence Type (Alignment)

Different sequence data sets (alignments) e.g. different gene sequences or gene and gene product (protein) sequences assigned to the same species can be maintained in an ARB database. Press the button below the Etc menu button to bring up the SELECT AN ALIGNMENT window and select a dataset from the list. Note: any following operation will be performed on the sequence data stored in the currently selected dataset (alignment).

Select a Tree

The tree to be displayed in the ARB_NT main window can be selected from a list displayed in the SELECT A TREE window. This window appears after selecting Select ... from the Tree menu or pressing the button below the Tree menu button. The name of the currently displayed tree is shown in the latter button.
Moving to Selected Species

The name of the selected species is shown in the button above the Jump button. Press the Jump button to display that part of the tree which contains the selected species.

Tree Layout

Radial tree or dendrogram display mode can be alternatively chosen by pressing the or button, respectively.

The whole tree can be moved by pressing the right mouse button and dragging while the cursor is placed somewhere within the tree display window.
Modifying Tree Layout (Mode Buttons on The Left)

Display Groups
Monophyletic groups (species shearing a common root in the currently displayed tree) can be displayed as triangles or four sided figures in a radial tree or dendrogram, respectively. To define those groups press either the \textbf{GROUP} or the \textbf{INFO} button, position the cursor and use the middle mouse button (as specified in the upper part of the ARB_NT main window) to bring up the \textbf{ENTER A STRING} window and type a name for the group. This name is permanently stored in the database.

The groups can be folded or unfolded pressing the \textbf{GROUP} button, positioning the cursor and using the mouse buttons as specified in the upper part of the ARB_NT main window. Further grouping options (\textit{Group All, Group All Except Marked} or \textit{Ungroup All}) are accessible from the \textbf{Collapse/Expand Tree} submenu which can be selected from the \textbf{Tree} menu of the ARB_NT main window.

Scaling
Pressing the \textbf{PZOOM} button enables you to define a region of the tree to scale up to full size of the tree display window. Use mouse buttons as specified in the upper part of the ARB_NT main window.

Pressing the \textbf{LZOOM} button you can define a subtree to scale up to full size of the tree display window. Use mouse buttons as specified in the upper part of the ARB_NT main window.

The original status can be restored by selecting \textbf{Reset Logical Zoom} or \textbf{Reset Physical Zoom} from the Etc menu of the ARB_NT main window.

Defining the Root

The position of the root (indicated by a square) can be changed after pressing the \textbf{S_ROOT} button, positioning the cursor and using mouse buttons as specified in the upper part of the ARB_NT main window.

Branch Swapping

The relative order of adjacent branches can be changed by pressing the \textbf{DSP} button, positioning the cursor and using mouse buttons as specified in the upper part of the ARB_NT main window.
Rotate Branches

The angles between branches in radial trees can be changed gradually or by mouse dragging. After pressing the [button] button or the [button], position the cursor and use the mouse buttons as specified in the upper part of the **ARB_NT** main window.
Finishing, Printing and Exporting Trees

The displayed tree can be exported as Newick formate, printed as it is or further modified using a (foreign) drawing program integrated into the ARB package.

To export the tree, bring up the TREE ADMIN window by selecting Copy, Delete, Rename ... from the Tree menu. This can also be done by selecting Print & Export and subsequently selecting Export Tree Newick ... from the displayed submenu. Select a tree from the list in the TREE ADMIN window and press the EXPORT button. Select or type a file name to the TREE SAVE window.

For printing the displayed tree, select Print & Export from the Tree menu and Print View to Printer from the appearing submenu. The PRINT GRAPHIC window pops up. Define whether the whole tree should be printed or only the part of that tree which is displayed on the screen by pressing the respective button in the upper part of the window. Similarly, define whether handles (squares indicating root and marked species) should be printed. Select Orientation: of the pages, Magnification% and press the Get Graphic Size button to calculate the number of printed pages which can be seen in the Pages subwindows. Select whether the data should be directly printed or stored (optionally previewed) as postscript file by pressing the corresponding button in the lower part of the window. File name and default printer can be defined by typing to the subwindows in the lower right part of the window.

Note: it depends on the memory of the printer whether large trees can be printed on multiple pages.

For further modifying of the tree, select Print & Export from the Tree menu and Export View to Filer from the appearing submenu. The EXPORT TREE TO FILE window pops up. Define whether the whole tree should be exported to file or only that part of the tree which is displayed on the screen by pressing the respective button in the upper part of the window. Similarly, define whether handles (squares indicating root and marked species) should be shown. Select xfig 2.1 from the list which is displayed after pressing the button right to Language: . Select or type a file name in the Directories (D) and Files (f) or File Name subwindows, respectively. Press the S & XFIG button to start the drawing facility.
Viewing Database Entries

There are two possible ways to view the database entries: i. display all field entries of one species in the SPECIES INFORMATION window; ii. display a selection of fields for all or a selection of species in the main (ARB_NT) window.

Viewing All Fields of one Species

The SPECIES INFORMATION window appears after either pressing the **INFO** button on the left vertical panel of the main (ARB_NT) window, or pressing the **INFO** item in the Species menu, or automatically after selecting a species in the Search and Query window:

![Species Information Window](image-url)
Database Searching

The **SEARCH** and **QUERY** panel locates strings of text in database **fields**. Select the **Search** option from the **Species** menu of the **ARB_NT** main window or press the **SEARCH** button of the **SPECIES INFORMATION** window to activate the panel.

Select a **field** from the **Search field** subwindow and type a string in the **Search string** subwindow. Use ? and * as wild cards for single and multiple characters, respectively.

Database searching is started by pressing the **SEARCH** button as it is by pressing the **RETURN** key while positioning the cursor in the **Search string** subwindow.

The list of **species** with matching **field** entries is displayed within the **HITLIST** subwindow. Short **names** and the selected **field** entries are given in the left and right columns, respectively. Alternative **field** entries are displayed after selecting another **Search field** and subsequently pressing the **REFRESH** button. The **HITLIST** can be modified according to the results of further database searches by selecting appropriate combinations of the buttons in the left and right columns of the upper region of the **SEARCH and QUERY** window.

Special search functions are accessible via the items of the **MORE SEARCH** menu. A **HIT LIST** of **species** shearing completely identical entries in the selected **field** is displayed after selecting **Search for Identical Fields ...** while selecting **Search for Identical Words ...** the **HIT LIST** contains **species** shearing single words in their **fields**. Selecting **Search Next Relatives ...** results in a scored **HIT LIST** of species with highest sequence similarity. Note that a correct alignment is not needed to use the latter option.
Defining Selections of species

To perform operations on a selection of species such as sequence editing, treeing, modifying database entries a set of desired species has to be defined by marking them. This can be done in several windows: the ARB_NT main window, the SPECIES INFORMATION window, the ARB_EDIT window and the SEARCH and QUERY window.

To mark / unmark species in the ARB_NT main window invoke the MARK MODE by pressing the button in the left vertical bar and position the cursor to the respective terminal tree node. Press one of the mouse buttons as indicated above the tree display area. There are also marking options available from the Species menu.

To mark / unmark the species edited in the SPECIES INFORMATION window press the MARK button.

To mark / unmark species in the ARB_EDIT window double click on the respective name or use the options available from the Edit menu.

To mark / unmark species in the SEARCH and QUERY window double click on the respective name or use the appropriate buttons right to the HIT LIST window or use the options available from the DO_ON_LISTED menu.

Creating, Deleting, Rearranging Species fields

Species fields can be created and deleted or their relative order rearranged by selecting Create ..., Delete ... and Reorder ... from the FIELDS menu from the SPECIES INFORMATION window.

The fields can be completely deleted from the database or only their listing be suppressed by choosing the appropriate buttons of the DELETE FIELD window which appears after selecting Delete ... from the FIELDS menu.¹

For creating a new field type and name of that field have to be defined in the CREATE A NEW FIELD window which appears after selecting Create ... from the FIELDS menu.

Modifying Database (field) Entries

Database field entries can be modified for a selection of species or individually.

For modifying field entries of individual species bring up the SPECIES INFORMATION window, ensure that editing is enabled and select a field from the DATABASE FIELDS subwindow. The field entry is displayed in the EDIT Box and can be modified by typing to this box.

For modifying field entries of a selection of (all) species display this selection in the SEARCH and QUERY window and use the WRITE TO FIELDS OF LISTED SP. button or the Modify fields ... item of the DO_ON_LISTED menu. For replacing or appending text to fields both approaches can be used.

¹ Note: If some fields have a high security level, you may run into security violation while trying to delete them. To overcome this limitation increase your own protection level until it is higher than the highest level of a field to delete.
When the WRITE TO FIELDS OF LISTED SP. button is used the SET MANY FIELDS window appears. Select a field from the list displayed on that window and press the appropriate button for writing to empty fields only or to replace the text of the respective fields of all selected species. The text in subfields can be modified by defining the appropriate tags.

The MODIFY DATABASE FIELD panel which is displayed after selecting Modify fields ... from the DO_ON_LISTED menu allows more sophisticated modification of fields and subfields. Small programs provided with the software or customized by the user analyze the entries and write the results to the selected field of the selected species.

Select a field from the list displayed in the Destination Field subwindow and define a Tag (if desired). Select an option from the ... predefined program: subwindow to display the syntax in the Command ... subwindow, modify the syntax or type your own if desired. The conventions for the syntax and examples are described in the on-line help text. For replacing or appending text : has to be typed followed by the current text separated by equal sign of text. Use * and ? as wild cards for multiple and single characters, respectively. See on-line help for defining wildcards for words. For analyzing field entries e.g. calculating base ratio of the sequence an ACI has to be used or typed (see on-line help).
4 The Sequence Editors

The ARB Sequence Editor

The ARB editor is started by selecting Edit Marked Sequences (ARB) from the Sequence menu or pressing the button of the ARB_NT main window. The sequences of the marked species and all SAI s are displayed in the ARB_EDIT window. The names of the species (>name<) and SAI s (#name#) are listed on the left. The number preceding the names indicates the protection level. The order of the sequences is that of the species in the database. It can be changed temporarily by dragging the name. There are three regions within the display window. Vertical scrolling is only possible in the middle region. The sequences or SAI s can be moved to the upper or lower region by trying to drag them vertically out of the display area.

Three editing modes are available by selecting from the Mode menu. For editing, first position the cursor using the mouse. Once positioned it can be moved by the arrow keys also. The align mode allows to insert and remove gap symbols (- or .) and to move characters, however, not to change other characters. Multiple insertion or deletion of gap characters can be achieved by typing a number before typing the symbol (not possible when using the other modes). The insert and replace modes allow to type and delete any characters.

Depending on the orientation of the arrow in the button (change by pressing) these operations can be performed in both directions. Single characters (not gap symbols) can be fetched to the cursor position from both directions by pressing Meta together with left or right arrow key with the arrow facing towards the character to fetch. Characters can be moved from the cursor position to the next neighboring character by performing the same procedure with the arrow facing towards the character to move. Blocks of adjacent characters next to the cursor can be dragged by pressing Control together with the respective arrow key.

Generally, to allow editing the global protection level which is indicated in the second menu bar has to be identical or higher than that of the individual sequence (SAI). For modifying the alignment in the align mode it is recommended to set the protection level globally, while for modifying the sequence (SAI) characters the protection level of the particular sequence (SAI) should preferably adjusted by selecting from the Edit menu.

Potential secondary structure elements can be indicated by symbols below the characters. The display of the symbols is controlled by the settings defined by the user within the HELIX PROPERTIES window which can be invoked by selecting Helix Symbols from the Properties menu. The display of the symbols is immediately sensitive to any changes of the sequences or alignment. It is controlled by the SAI s HELIX_NR and HELIX. For conventions consult the on-line help.

New species (sequences) can be created by selecting Create Sequence from the Edit menu. The name which has to be defined by the user is under control of the name server.
GDE Sequence Editor
For users who still want to use the GDE editor designed by Steven Smith we build an interface to it. Unfortunately GDE is available only for some computer systems (no SGI and no HP version). We have changed GDE slightly to behave like an ARB module. Unfortunately we did not succeed in making it fool proof. Please read the warning message which comes up automatically at GDE startup. This message includes the original GDE man pages.

Prototype of the ALE Sequence Editor
Some years ago the RDP started to develop a new editor called ALE. Unfortunately the editor was never finished. All what was left was a prototype which nevertheless offers excellent alignment editing. Like the GDE editor you should be careful not to use more than one editor at a time.

The new ARB Editor (Number 4)
The running ARB editor was never planned to be an editor. It was a test program to test the Motif library. In the end it became our main editor, but it’s source code looks like spaghetti. Right now (jan 97) we proudly present a prototype of the new editor (ARB_EDIT4), which is basically the old one, but offers much better multiple alignment functions.
5 Working with Sequences

Aligning Sequences

In case that you have established a completely new ARB database and no aligned sequences are available, the alignment can be done by hand or by using CLUSTALV an integrated foreign program which is accessible from the Align Sequences submenu of the Sequence menu in the ARB_NT main window by pressing Clustal

If you are working with an ARB database of aligned sequences, select Align Sequence ... from the Edit menu of the ARB_EDIT window to invoke the ARB aligner environment. Define in the AILGNER window whether the sequences of all marked or only the selected species (name highlighted in the editor) should be aligned and whether the PT_Server should search for the most similar sequences to be used as templates or a user defined sequence should be used instead.

In the latter case, type the name of the species to the Species by name subwindow. Select a PT_Server from the list which is displayed after pressing the button right to PT_SERVER: . Optionally, the closest relatives found by the PT_Server can be marked .

Note ensure to select a PT_Server for homologous sequences. The PT_Server does only perform the search for the closest relatives, however, the alignment is done with the sequences from these species as they are aligned in the current database.
Filters, and Profiles (SAI)

Any sequence or alignment related information which can be displayed as a linear sequence of characters along with (aligned) primary structures can be stored as SAI (sequence associated information) and used as filter to in- or exclude alignment columns for analyses such as reconstructing phylogenetic trees. The tools to establish SAI's are accessible from the SAI menu.

Consensus Sequence

Consensus sequences based on the fraction and frequency of residues at the individual alignment positions of sequences from all or a selection of (marked) species can be established according user defined criteria. Select Functions: Create ... from the SAI menu of the ARB_NT main window to display a submenu. Select Consensus from the submenu. The Expert Window appears:

Select an **Alignment** (if you have different sequence data sets in the database;) and define whether the sequences from all or only marked species should be analyzed (upper left subwindow).

Set threshold for in- or exclusion of characters and define whether gap consensus should be calculated and the IUPAC code should be used in the consensus sequence as described in the subwindows of the right part of the Expert Window.

Select or type a name for the new consensus in the lower left subwindow. Note: always select single line (the complex version has not yet been implemented.)
Conservation Profiles

The tools for calculation conservation profiles are accessible from the submenu **Functions: Create ...** which is displayed clicking on the SAI menu button of the ARB_NT main window. Positional variation can be visualized as SAI s generated by simply calculating the fraction of the most frequent residues in a set of (marked) species. Select **Maximum Frequency** to display the **Max Frequency** window and define in that window whether gaps should be equivalent to residues or be ignored. Then select or type a **name** for the new SAI. The fractions are expressed as characters ’1’ - ’9’, ’0’ indicating 10% - 100%, respectively.

A more detailed analysis based on the same criteria can be performed by selecting **Filter by ...**. The ARB_PHYLO window:

![Figure 2 Building a filter using a maximum frequency method](image)

... displays the alignment of the sequences from the marked species and the default settings (lower part of the window). Press **Config** to display the **PHYL FILTER** window. Define first and last alignment positions to include as well as lower and upper threshold of positional similarity (fraction of most frequent base) value by typing to the respective subwindows. Select whether real gaps (−), unknown residues (.), ambiguity codes (rest) and lower case letters (acgtu) should be ignored (the particular position is excluded from binary comparison), the column should be excluded completely or only if the majority of sequences contains the character by pressing the corresponding buttons and selecting **dont’ count, forget column** or **dont’ use column when maximum**. After pressing **Calculate**, the result is displayed at the lower edge of the sequence subwindow. The frequencies (%) are given in columns to read from top to bottom. Alignment positions which are completely excluded are indicated by “x”. Positions which do or do not fulfill the user defined similarity criteria are indicated by different user defined colors. The
results can be exported to the database as single line SAI by selecting Export Filter from the File menu and subsequently selecting or typing a name in the Export MLine window. Note the SAI contains “x” and dots for selected and excluded columns, respectively.

Positional variation can also be visualized as SAI generated by a maximum parsimony analysis of the selected data. Select Positional variability ... and select a tree in the Conservation Profile: Parsimony Method window and select or type a name for the new SAI. Note: the tree information is needed for the program to enable estimation of positional variability according the parsimony criterion. You should select the most informative (usually the most comprehensive) tree

A more sophisticated (and experimental) method for estimating positional variability is accessible by selecting ETC from the SAI menu of the ARB_NT main window. For further instruction see the on-line manual provided with that tool.

The Use of Filters

The windows providing access to treeing and data exporting facilities contain a Filter button. Pressing this button gives access to the Select Filter window:

Select a SAI from the Select a SAI ... subwindow.

Define first and last alignment position to be included (absolute position including gaps as indicated in the ARB editor) by typing to the small subwindows right to 1. .. position .. between. Specify characters of the SAI which should indicate columns to exclude from calculations by typing to the 2. at which ... subwindow. Note: any character can be used.

The effective filter can be viewed in the Result window. In- or excluded positions are indicated by “1” and “0”, respectively.

Multiple filters can be specified by pressing the button in the You may activate ... area. A new Select Filter window is displayed.
6 Phylogenetic Analyses

The central tool for phylogenetically organizing the database is a maximum parsimony based treeing method developed for the ARB-package (ARB_PARS). Another integral ARB component is a neighbor joining distance method which was further developed from the corresponding program from Felsensteins PHYLIP package. For establishing of similarity or distance matrices another ARB-tool was created. In addition foreign software for phylogenetic analyses was included in the ARB package such as PHYLIP, fastdnaml and GDE. For further information consult the respective literature or the original documentation partly provided with the ARB package.

Simple Rules

Often people are interested in simple rules how to get a good phylogeny. Unfortunately it is dangerous to give such rules because there is no perfect method in finding a correct phylogeny. Nethertheless here are some personal rules (by Oliver Strunk, who is ARB’s main programmer but not a biologist):

<table>
<thead>
<tr>
<th>Which Problem</th>
<th>What to do</th>
</tr>
</thead>
</table>
| Search the next relatives of a single short sequence. | • Use netscape and start a blast search
• Use the ARB parsimony program and insert your sequence into a big tree, do not use special filters, only generic filters like ECOLI to speed up the calculation process |
| Calculate a small tree of a single full sequence and it’s nearest relatives. | • Search the nearest relatives first,
• mark them
• try different tree algorithms, compare the trees, get a feeling for your data. |
| Search for a good tree for a small number of full sequences. | Try:
• Fastdnaml,
• Parsimony
• and Neighbour-Joining
• with a lot of different filters
• with different distance corrections and compare the resulting trees. |
| Search for a good tree for a small number of sequences of different length. | Avoid distance methods, rest as before. |

Figure 3 Simple Rules for Treeing (Continued) . . .
<table>
<thead>
<tr>
<th>Which Problem</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find a good tree of diverged protein coding sequences</td>
<td>Always do analysis in the protein sequence !!!!
-> translate dna into protein
Start neighbourjoining and protpars and compare trees.</td>
</tr>
<tr>
<td>What about filters ?</td>
<td>Rule: Take all informativ columns when doing phylogenetic analyses unless
• you are interested in the deepest branches, in this case exclude variable positions from the treeing algorithm.
• the sequences length varies significantly and you are working with distance methods, in this case exclude all columns where only some sequences have data.</td>
</tr>
<tr>
<td>What about weights/rates ?</td>
<td>Always try to use weights/rates for parsimony and fastdnaml algorithms if available.</td>
</tr>
</tbody>
</table>

Figure 3 Simple Rules for Treeing

Finding the Next Relative

A scored list of next relatives can be obtained for any species without the need of a proper alignment of the sequence from the `species` in question. Display the **SEARCH and QUERY** window by selecting **Search** from the **Species** menu of the **ARB_NT** main window. Select a **species** from the **HIT LIST** (see 2.4.2.) and press **Search Next ...** in the **MORE_SEARCH** menu. The **Search Next Neighbors** window appears. Select a **PT_server** from the list displayed after clicking to the button below **Search Database (PT_server)**. The result will be displayed in the **Hits**: subwindow arranged according scoring values. Higher values indicate closer relationship. Note: an appropriate **PT_server** has to be established before running this program.

Distance and Similarity Matrices

Matrices of similarity, distance and phylogenetically corrected distance values can be generated using the **NEIGHBOR JOINING** window (same as for treeing using neighbor joining) which pops up after selecting **Multiple Sequence Comparison** from the **Sequence** menu of the **ARB_NT** main window and pressing the appearing **Distance Matrix** button.

Select an **Alignment** (if you have different sequence data sets in the database) and define whether the sequences from all or only **marked species** should be analyzed (upper part of the window).

If desired, define a **SAI** as **filter** (this means to exclude alignment positions according to the filter information) by selecting from a list which pops up after pressing the button right to **Filter**. Note:
the filter defines which alignment columns are (completely) in- or excluded for the calculations.

Define which positions should be excluded (only) from binary sequence comparison by typing characters to the Exclude Position subwindow. For more information press the SELECT button. To get values corrected according to evolutionary models select from the list displayed after pressing the button right to Correction. Note: items marked with “(exp)” indicate procedures not yet extensively tested. Selecting “none” means non corrected distances.

The buttons Calculate Full Matrix and Calculate Compressed M. are used to define whether normal matrix should be calculated or mean values should be given for groups as defined in a tree, respectively. This tree has to be selected from a list displayed in the SELECT A TREE TO COMPRESS MATRIX window. Mean values are calculated for those groups which are currently compressed in the specified tree.

The results can be viewed or saved as ASCII file by pressing the VIEW MATRIX and SAVE MATRIX buttons, respectively. In the latter case, name and formate of the file can be defined in the Save Matrix window.
Distance Matrix Tree by Neighbor Joining

Distance matrix trees can be reconstructed by automatically combining matrix calculation and the ARB-specifically modified neighbor joining program. Select **Build Tree ...** from the **Tree** menu of the **ARB_NT** main window and subsequently press **Neighbor Joining** from the submenu.

Select an **Alignment** (if you have different sequence data sets in the database) and define whether the sequences from all or only **marked species** should be analyzed (upper part of the window).

If desired, define a **SAI** as **filter** (this means to exclude alignment positions according to the filter information) by selecting an SAI from a list which pops up after pressing the button right to **Filter**. Note: the **filter** defines which alignment columns are (completely) in- or excluded for the calculations.

Define which positions should be excluded (only) from binary sequence comparison by typing characters to the **Exclude Position** subwindow. For more information press the **SELECT** button.

To get values corrected according to evolutionary models select from the list displayed after pressing the button right to **Correction**. Note: items marked with “(exp)” indicate procedures not yet extensively tested. Selecting “none” means non corrected distances.

Select a tree from the **Trees in Database** subwindow or type a name to the **Name of New Tree** subwindow. Note: selecting an existing tree results in overwriting. A new name typed to the latter window has to follow the convention: **“tree_..”**.

The new or updated tree is stored in the database and can be viewed in the **ARB_NT** main window.
Maximum Parsimony Tree by ARB_PARS

A special treeing program (ARB_PARS) has been developed to update and optimize trees based on large datasets according to the maximum parsimony criteria. To invoke the ARB_PARS environment select Add Species ... from the Tree menu of the ARB_NT main window and press the appearing Parsimony button. The SET PARSIMONY OPTIONS window pops up. Select a tree to modify from the list in the Tree subwindow as well as an Alignment if there are different sequence sets in the database. Then select a filter by pressing the button right to Filter and define the proper selections in the appearing Select Filter window.

After invoking the ARB_PARS environment the ARB_PARSIMONY window is displayed which resembles the ARB_NT main window. Some of the ARB_NT functions for modifying the tree layout (buttons in the left column, Tree and ETC menus) are available here:

![ARB_PARSIMONY window](image)

Adding species to a Tree

Marked species or selected species can be added to the tree displayed in the ARB_PARSIMONY window by selecting Add Species to Tree from the Tree menu and pressing Add Marked Species or Add Selected Species from the submenu, respectively. This function uses the aligned sequence data to place the marked/selected species into the tree according to parsimony criteria without changing the tree topology (!). Note: the position of marked/selected species already present in the current tree is not changed.

Marked species or selected species can be added to the tree displayed in the ARB_PARSIMONY window by selecting Add Species to Tree from the Tree menu and pressing Add Marked Species + Local Optimization or Add Selected Species + Local Optimization from the submenu, respectively. This function uses the aligned sequence data to place the marked/selected species into the tree according to parsimony criteria and performs local tree optimization (see next topic). Note: (only) local optimization is also performed on marked/selected species already present in the current tree. Note: misplaced species may remain misplaced.

Marked species can be removed (if already placed in the tree) and (newly) inserted into the tree displayed in the ARB_PARSIMONY window according to parsimony criteria with or without
local optimization by selecting **Add Species to Tree** from the **Tree** menu and pressing **Remove & Add Marked Species** or **Remove & Add Marked Species + Local Optimization** from the submenu, respectively.

Tree Optimization

Performing tree operations, the different versions of the resulting trees can be temporarily stored in a **stack** by pressing the \[\text{Stack} \] button in the upper part of the **ARB_PARSIMONY** window. A number is assigned to that version which is displayed right to **Stack**. Previous versions can be displayed by pressing \[\text{-} \] button. Note: only the tree currently displayed will be stored in the database when quitting the **ARB_PARSIMONY** window. Note: after performing tree optimizations, the branch lengths have to be recalculated by selecting **Calculate Branch Lengths** from the **Tree** menu. The program sometimes changes the position of the root. If necessary, reset the root by pressing the \[\text{Root} \] button in the left column of the **ARB_PARSIMONY** window, placing the cursor and pressing the left mouse button (as indicated in the upper part of the window).

Optimization of tree topologies according to parsimony criteria can be obtained by performing swapping of neighboring branches (nearest neighbor interchange, **NNI**) and determining parsimony values. Only tree topologies are maintained which are characterized by a better parsimony value. To perform this operation on the whole tree displayed in the **ARB_PARSIMONY** window select **Tree Optimization** from the **Tree** menu and press **Local Optimization NNI** in the submenu which pops up. Alternatively press the \[\text{NNI} \] button in the left column of the **ARB_PARSIMONY** window to either work on a subtree or the whole tree by using the mouse buttons as specified in the upper part of the **ARB_PARSIMONY** window.

A more sophisticated optimization procedure which allows also swapping of distant branches under the control of a distance penalty is **K.L.** This procedure can be started on the whole tree by selecting **Tree Optimization** from the **Tree** menu and pressing **Global Optimization** in the submenu which pops up. Alternatively, press the \[\text{K.L.} \] button in the left column of the **ARB_PARSIMONY** window to either work on a subtree or the whole tree by using the mouse buttons as specified in the upper part of the **ARB_PARSIMONY** window.

A serious of alternating **NNI** and **K.L.** optimizations can be started by pressing the \[\text{NNI} \] button in the left column of the **ARB_PARSIMONY** window to either work on a subtree or the whole tree by using the mouse buttons as specified in the upper part of the **ARB_PARSIMONY** window. Cycles of the two optimization procedures are automatically performed until the parsimony value cannot be further improved.
7 Importing Data

There are three ways to get new sequences into an existing ARB database:

- Sequences can be imported by typing in the ARB editor, by copying to the Edit box of the SEcies INFORMATION window.
- Simple import using the ARB_NT/File/Import Sequences function: OK if you import only some sequences (<20).
- Or convert your foreign format to an arb format first (start arb foreignformat and select import), store data as an ARB file, and merge it with your old data: OK if you want to import many sequences safely.

Converting Sequences

Start the ARB software by typing arb at a terminal window prompt. The ARB INTRO window pops up. ARB data files (suffix: .arb, marked by f) of the current directory (indicated in the first line: CONTENTS OF) are listed in the Existing Files (f) and Directories (D) subwindow. If desired, move to other directories by mouse click on the lines marked by D.

Press the CREATE AND IMPORT button to bring up the ARB IMPORT window. Specify the data file(s) in the Enter file name ... subwindow, select a format from the Select foreign database format ... window or press the AUTO DETECT button. Type a name of the dataset (alignment) to the name subwindow and specify the sequence type by using the type button (the default type is indicated on the button).

After reading the file(s), the ARB_NT main window comes up. Use the options of the File menu to save the new database.
Note: at the end of the procedure, the program asks whether new names should be generated from accession numbers and *full_names*. It is recommended to perform this operation to ensure consistency of ARB databases at your site. Therefore, this information should be present in the files to import. If this is not the case, provide these data using the corresponding tools when the ARB_NT main window is displayed and rerun the naming procedure by selecting ETC from the Species menu.

Merging ARB Databases

Start the ARB software by typing `arb` at a terminal window prompt. The ARB INTRO window pops up. ARB data files (suffix: `.arb`, marked by `f`) of the current directory (indicated in the first line: CONTENTS OF) are listed in the Existing Files (f) and Directories (D) subwindow. If desired, move to other directories by mouse click on the lines marked by D.

Press the MERGE TWO ARB DATABASES button. The MERGE SELECT TWO DATABASES window appears:

Select source (Database I) and destination (Database 2) database from the corresponding Directories (D) and Files (f) subwindows. Note: merging is an one way operation.

Press the GO button to invoke the merge environment. The ARB MERGE window appears which allows to transfer all or part of database species field entries, SAI's, and trees.
First press **Check Alignments** to ensure that the names of the datasets of the two databases (alignments) containing homologous or equivalent sequences are identical. Note: if the names differ, the data will be stored as separate datasets in the same database. The names can be changed by using the MODIFY utility accessible in the MERGE ALIGNMENTS window.

Press **Check Names** to ensure identical names for identical species in both databases. Renaming of all (!) species in one or both databases using the name_server can be achieved by pressing the corresponding buttons of the SYNCHRONIZE NAMES window.

To transfer species field information press **Transfer Species** to bring up the TRANSFER SPECIES window. Select species of the source database from which data should be transferred by using the search facilities in the left part of the window. Note: if no search string is typed to the Search string subwindow, those species and fields are searched and listed which according to the settings in the upper half of the left window are identical or different in the destination database. Performing the same in the right part of the window results in a list of species and fields which are listed for the source database and are identical in the destination database.

For the transfer of full information or single field entries use the appropriate buttons in the middle (**Transfer ...**).

For transferring trees and SAI/s press the corresponding button of the ARB_MERGE window and select them in the MERGE TREES or MERGE SAI windows, respectively.
8 Saving Database

The ARB database can be saved from the ARB_NT main window as well as from the ARB_MERGE window by using the File menus or the Save ... buttons of the ARB_MERGE window. Either the complete database or only the recent changes are written to file. The ARB environment can be quitted from the File menu of the ARB_NT main window.
Chapter 4 Behind the Curtain

1 Introduction

It is most useful to know how the program works, how data is stored and what kind of data is available. So we have collected a list of things to know, each item split into a beginner and advanced part. If you are starting to work with arb, read the beginner parts.

2 Database

Beginner

- Any database is saved into and loaded from one huge file. Only explicitly saving to that file makes changes permanent.
- All kind of data (trees, filters, sequences ...) are stored in an ARB database.
- Each user has his private database consisting of one or multiple files (like a word document) and each modification is only private. From time to time the system administrator may collect all private files and merge them into a new database release, which itself is redistributed to the users. Therefore all private changes should be well documented.
- Simply start arb by typing 'arb <return>' and select a database.
- Never delete or copy database files by hand, use arb instead.
- From time to time optimize the database. Rule: do optimization after:
 - a great number of sequences is added to the database.
 - a great number of sequences has been changed.
 - a global alignment insert has been performed.
- You may save the entire database or only the changes. Rule: Always save only the changes unless
 - you made major database changes like inserting a gap in the whole alignment.
 - you want to transfer data via ftp.
 - you reoptimized the database.

Advanced

- A database normally consists of different files:
 - database.arb: The basic database (important)
 - database.a##: where # is a numerical value. (important)

As storing the entire database takes a while, ARB allows you to store only the changes made to the database into a changes file. The last 5 changes files are not deleted, so
you may roll back to the last 5 database states. All changes files are independent and old changes files may be deleted without any harm. ARB itself searches for the latest changes file (the file with the highest number) automatically.

- database.ARF A list of references to this database (optional)
- database.ARM An optional fast load file. If you have a computer with only a small amount of memory, it may take very long to open a database. If there is a 'fast load' file available the loading procedure is much faster. If you delete a database.ARM file, no date is lost, but loading the corresponding database may take more time.

- The sequence and other data are stored in a compressed form. Compressing all sequences at one time results in much better compression ratios compared to compressing single sequences. So once a sequence is changed it’s good compression is automatically changed to a worse one. If a great portion of the database is badly compressed, doing an optimization step will compress all sequences with the good method.
3 Database Objects

Beginner

There are three main type of data objects:

- **Species**: Everything which has a real sequence and some documentation information. Example: *E.Coli* with 16s sequence. Each species has a unique name.
- **SAI**: Everything which has a sequence but is not a biological sequence, like a filter, consensus, weights, rates, statistical information, helix information,
- **Trees**: Phylogenetic trees.

Advanced

Each database set (like species SAI, tree etc) has a number of subfields:

- Each subfield has a type:
 - string: Any number of characters except \0
 - integer: a value
 - double: a real value
 - integers: an array of integers
 - doubles: an array of real values
 - container: has no value but a set of subfields

- Each subfield has a key. Example of subfields of species
 - name: The internal name of a species/SAI
 - full_name: The official name of an organism
 - acc: The accession number of a sequence
 - ali_16s: (container) A set of subfields containing the 16s sequence and additional information (alignment quality, etc)
 - ali_16s/data: data is a subfield of ali_16s and holds the species’ sequence.

- Each subfield has a protection level.

You may add as many subfields as needed to your species. Because only those fields, which do have a value, are actually generated, creating new and empty fields does not need any computer ressources.

Sequences are treated differently: To create new sequence types do not create new species fields but use the `<sequence/admin>` window instead. There you may define the overall sequence length, default write security, create copies of sequences ...
4 NDS & SRT/ACI/REG

Absolute Beginner
Skip this section

Beginner
All species data can be represented as a string (eg. name full_name sequence ..). ARB offers many many ways to manipulate those strings. The most simple application for this is called NDS (Node Display Settings). In practice this means that: the user can select nearly any kind of information which will be displayed at the tips of the tree.. This is an extremely powerfull tool and enables such functions as:

- show part of the sequence at the tips
- calculate GC content on the fly
- show name full_name and accession number ...
- and many million more possibilites.

Please read the online help offered in the <Tree/NDS> subwindow.

Advanced
Often you want to store the result of the NDS output back into the database. This gives you for example the possibilty to simplify amino acid alignments, calculate the nucleotides of a sequence, store the current date into a list of species,

All this is done with the Modify Fields of Listed Species in the Search Species subwindow. As this manual cannot be up to date, please refer to the online documentation:

This is an excerpt:

TITLE MODIFY FIELDS OF LISTED SPECIES

OCCURRENCE ARB_NT/Species/Search: MODIFY FIELDS OF LISTED SPECIES
ARB_NT/Tree/NDS

DESCRIPTION Finds and replaces substrings within fields/tagged subfields of all listed species. The entries within the selected fields of all listed species can be modified either individually or globally.

Two different languages can be used to modify an entry:

SRT: indicated by a leading ‘:’ character
ACI: indicated by a leading ‘|’ character
REG: indicated by sourrounding ‘/’ characters

REG: Simple Regular Expressions (not for beginners)
‘/Seach RegExpr/Replace String/’
See help text for more details

SRT: Replaces substrings
Syntax: ‘:old_string=new_string’
see SRT help text for more details
example: remove all spaces -> SRT ‘: =’

Different search/replace commands can be performed simultaneously and have to be separated by ‘:’
‘:search1=replace1:search2=replace2: ... :searchn=replacen’.

* and ? are wild cards for multiple and single characters, respectively.

ACI: More sophisticated string manipulations
(Read help text for more information)

NOTES You may add new commands by editing the file
$ARBHOME/lib/sellists/mod_fields.sellst
You should save this file to another location when installing new versions of ARB

EXAMPLES ‘:p?r=p?1w’ replaces par to paw
pbr to pbw
pcr to pcw ...
’:p??r=p?2?1r’ swaps the two letters between p and r

’a*=b*1’ replaces only the first ‘a’ by ‘b’
‘?* *=?l. *2’ Replaces the first word by its first letter + ‘.’
‘:\=\n’ replaces all ‘:’ by <new_line>
‘:*=1 *(key1)’ appends the database field <key1>
‘:*=1 *(key1|nothing found)’
appends the database field <key1>
if <key1> does not contain entries
append ‘nothing found’

1. Global modification: Replace ‘spec.’ by ‘sp.’ within the field full_name of all listed species:

Press: ‘MODIFY FIELDS OD LISTED SPECIES’

Select Field: ‘full_name’
Type Command: ‘:spec.=sp.’
Press: ‘GO’

2. Individual modification: Append the particular entries of fields ‘title’ and ‘journal’ to that of the fields ‘author’ of all listed species if there are any entries:

Press: ‘MODIFY FIELDS OD LISTED SPECIES’
Select Field: ‘author’
Type Command: ‘:*=1 *(title) *(journal)’
Press: ‘GO’

NOTE Undo does work.

WARNINGS Be carefull if search or replace string contain special characters (such as ‘:’).

BUGS No bugs known
5 PT_SERVER

Basic

The probe designing and matching tools (‘ARB_PROBE’) and the aligner of the editor (‘ARB_EDIT’) rely on ‘PT_SERVER’ databases and servers. By default there are no PT_SERVER files, but they can be easily created using the ETC/PT_SERVER Admin/UPDATE SERVER function. ARB offers some predefined PT_SERVER templates and it’s up to the user to fill those templates with the currently loaded data. Please update the ‘PT_SERVER’ database when new sequence (species) entries or sequence modifications (base changes) have been introduced and aligned into the current data base.

Advanced

Please please read the online documentation: PT_SERVER: What Why and How.
6 General Conception

Beginner

Security Level
All data fields have a security level. This means only users with a higher security level than a data field can change or delete it. The security levels vary between 0 and 7, where a user can select just 0 to 6. Level 7 data never can be changed or deleted. Security levels are (until now) not to be used to disable unauthorizised users to change data, but to reduce the risk of data loss. Any user can raise his security level without any password (until now, future versions may include this option).

Different protection levels can be assigned to different database field entries. This can be done using the corresponding facilities of the ARB editor for sequence entries, the respective tools in combination with database searching for any database field entries, and the tree administration tool for trees. To modify or delete any protected database entries, the identical or higher protection level has to be selected by using the Protection button in the upper right part of the ARB_NT main window.

Advanced

System design
Although there exist different modules all they act as one single program as they are all connected over the ARBDB database. ARB_NT is the server, all other programs are clients.
7 Installation

Beginner

Do not care about the installation of ARB.

Advanced

PT_SERVER files

During the installation process a special directory can be assigned to hold the pt_server files. This directory should reside on a huge and fast hard drive. Assigning these directory helps to keep your data during a program update.

Versions of ARB

ARB is still under construction, do not expect anything perfect, download a new version every 3 months, install it not to the old location but to a new one (maybe the new version has a bug). Nearly every day I find a minor bug in the program (only 1 major bug every 3 months). But fixing a bug has always the risk of creating a new one. So sometimes it happens that the ARB version on our ftp server is a bad one. Sorry. In those cases write me (strunk@pages.de) an email, wait for a new release (1 day-2 weeks) and install the new version.

PT_SERVER & $(ARBHOME)/lib/arb_tcp.dat

The file '$ARBHOME/lib/arb_tcp' contains entries for communication services used by the different ARB modules. Each line tells an ARB program where to find its server. Normally there is no need to change this file unless you want to create new PT_SERVER (eg. 18s, special user pt_server ...). The file contains some help text.

This is an example file:
Syntax

Syntax

```plaintext
# [USER:]SERVER_ID HOST:IP_NR [programm args]
# [USER:]SERVER_ID :SOCKETPATH [programm args]
# [xxx] means optional field
# all $(enviroment_variable) are replaced by the value of the ‘enviroment_variable’
# Existing SERVER_IDs:
# ARB_DB_SERVER Your private database server. It is automatically started
# ARB_PT_SERVER Default PT_SERVER for PB_RETRIEVE (private TU Munich server)
# ARB_PT_SERVERn Global PT_SERVERs. Needed for fast database search (align seq, probe des.)
# n starts from 0 to max, no number can be excluded !!!
# ARB_NAME_SERVER Generates short names for species
#
```

Private Servers (for each user)

```plaintext
# This is a local server, running on one machine. Each user has his own socket:
# ARB_PID is an Environment Variable which is set by the command ‘arb’ to its own process id
# see programm $ARBHOME/SH/arb_clean to remove the sockets

ARB_DB_SERVER :/tmp/arb_db_$(USER)_$(ARB_PID)

If you want to run programs on a workstation cluster, you have to assign your arbdb server
and one ip-id for each user. To choose an ip-id choose any number between 1000 and 4000 and
examine /etc/services whether this ip-id has not yet been allocated by another programm
smith:ARB_DB_SERVER myhost:4011 // socket for smith (‘arb’ have to be started on ‘myhost’)
ludwig:ARB_DB_SERVER myhost:4012 // socket for ludwig
ARB_DB_SERVER :/tmp/arb_db_$(USER)_$(ARB_PID) // and sockets for all others
```

Global Servers (for all users)

```plaintext
*********** Nameserver The server should run on the nfs server ***************

ARB_NAME_SERVER pop:3029 arb_name_server -d$(ARBHOME)/lib/nas/names.dat
```

PT_SERVERS

```plaintext
*********** PT_SERVERS The server should run on the nfs server ***************

****** You may add new pt_servers here: (numbers must be continues) *******

ARB_PT_SERVER pop:3030 arb_pt_server -D$(ARBHOME)/lib/pts/16s_rRNA_aligned.arb
ARB_PT_SERVER0 pop:3030 arb_pt_server -D$(ARBHOME)/lib/pts/16s_rRNA_aligned.arb
ARB_PT_SERVER1 pop:3032 arb_pt_server -D$(ARBHOME)/lib/pts/23s_rRNA_aligned.arb
ARB_PT_SERVER2 pop:3034 arb_pt_server -D$(ARBHOME)/lib/pts/atp.arb
ARB_PT_SERVER3 pop:3035 arb_pt_server -D$(ARBHOME)/lib/pts/LSU_rRNA.arb
ARB_PT_SERVER4 pop:3036 arb_pt_server -D$(ARBHOME)/lib/pts/rrna.arb
ARB_PT_SERVER5 pop:3037 arb_pt_server -D$(ARBHOME)/lib/pts/SSU_WL.arb
ARB_PT_SERVER6 pop:3038 arb_pt_server -D$(ARBHOME)/lib/pts/user.arb
```